A Review of EEG Applications in Neuromarketing: Methods, Insights, and Future Directions

Authors

  • Yuri Pamungkas Institut Teknologi Sepuluh Nopember https://orcid.org/0000-0001-5036-8610
  • Yamin Thwe Rajamangala University of Technology Thanyaburi
  • Abdul Karim Hallym University
  • Uda Hashim Universiti Malaysia Sabah

DOI:

https://doi.org/10.12928/biste.v7i4.14375

Keywords:

Electroencephalography (EEG), Neuromarketing, Consumer Behavior, Machine Learning, Multimodal Analysis

Abstract

EEG is increasingly applied in neuromarketing as it provides direct insights into consumer cognition and emotion beyond traditional self-report measures. However, challenges such as small samples, low ecological validity, and methodological limitations hinder its broader real-world application. The research contribution is a comprehensive synthesis of 40 empirical studies that examine EEG applications in neuromarketing, highlighting methodological approaches, analytical techniques, key insights, and persistent gaps that define the current state of the field. This review applied a structured comparative method by extracting and analyzing details from published EEG-based neuromarketing studies, including sample characteristics, device specifications, stimuli types, analytical techniques, and outcomes. The data were organized into a review table and further examined for patterns, strengths, limitations, and emerging opportunities. The results reveal that EEG can reliably classify consumer preferences when paired with deep learning models, while EEG indices such as neural synchrony and frontal alpha asymmetry predict advertising effectiveness and purchase intention. Emotional and attentional processes were consistently reflected in ERP components, and multimodal integration with physiological and behavioral data improved predictive validity. Nonetheless, most studies relied on small, homogeneous samples and static laboratory stimuli, limiting generalizability. In conclusion, EEG holds strong potential for advancing neuromarketing research and practice, yet future work must address scalability, cross-cultural validation, and ecological realism to fully harness its promise.

Author Biographies

Yuri Pamungkas, Institut Teknologi Sepuluh Nopember

Department of Medical Technology

Yamin Thwe, Rajamangala University of Technology Thanyaburi

Department of Big Data Management and Analytics

Abdul Karim, Hallym University

Department of Artificial Intelligence Convergence

Uda Hashim, Universiti Malaysia Sabah

Department of Electrical Electronic Engineering

References

S. Bhardwaj, G. A. Rana, A. Behl, and S. J. G. de Caceres, “Exploring the boundaries of Neuromarketing through systematic investigation,” Journal of Business Research, vol. 154, p. 113371, 2023, https://doi.org/10.1016/j.jbusres.2022.113371.

S. Bansal, P. Nangia, and B. Koles, “Neuromarketing and the Marketing Mix: An Integrative Review and Future Research Agenda Using the TMC Approach,” International Journal of Consumer Studies, vol. 49, no. 3, 2025, https://doi.org/10.1111/ijcs.70072.

D. C. Orazi, K. Y. Mah, T. Derksen, and K. B. Murray, “Consumer escapism: Scale development, validation, and physiological associations,” Journal of Business Research, vol. 160, p. 113805, 2023, https://doi.org/10.1016/j.jbusres.2023.113805.

Y. Pamungkas, A. D. Wibawa and M. H. Purnomo, "EEG Data Analytics to Distinguish Happy and Sad Emotions Based on Statistical Features," 2021 4th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), pp. 345-350, 2021, https://doi.org/10.1109/ISRITI54043.2021.9702766.

P. Antiopi, E. Kalaitzi, and C. A. Fidas, “A Review on the Use of EEG for the Investigation of the Factors that Affect Consumer’s Behavior,” Physiology & behavior, pp. 114509–114509, 2024, https://doi.org/10.1016/j.physbeh.2024.114509.

M. E. Minissi, A. Altozano, J. M.-Morales, I. A. C. Giglioli, F. Mantovani, and M. Alcañiz, “Biosignal comparison for autism assessment using machine learning models and virtual reality,” Computers in Biology and Medicine, vol. 171, p. 108194, 2024, https://doi.org/10.1016/j.compbiomed.2024.108194.

A. Byrne, E. Bonfiglio, C. Rigby, and N. Edelstyn, “A systematic review of the prediction of consumer preference using EEG measures and machine-learning in neuromarketing research,” Brain Informatics, vol. 9, no. 1, 2022, https://doi.org/10.1186/s40708-022-00175-3.

H. A. Moghddam, J. Carlson, J. Wyllie, and S. M. Rahman, “Scroll, Stop, Shop: Decoding impulsive buying in social commerce,” Journal of business research, vol. 182, pp. 114776–114776, 2024, https://doi.org/10.1016/j.jbusres.2024.114776.

L. R.-Calderín and J. D. M.-Santana, “A review of research on neuromarketing using content analysis: key approaches and new avenues,” Cognitive Neurodynamics, vol. 15, no. 6, pp. 923–938, 2021, https://doi.org/10.1007/s11571-021-09693-y.

R. Gupta, A. P. Kapoor, and H. V. Verma, “Neuro-insights: a systematic review of neuromarketing perspectives across consumer buying stages,” Frontiers in Neuroergonomics, vol. 6, 2025, https://doi.org/10.3389/fnrgo.2025.1542847.

A. F. Yazid, S. Munirah, A. Razzak, S. Kamarudin, and N. Mohamad, “Decision-Making Analysis using Arduino-Based Electroencephalography (EEG): An Exploratory Study for Marketing Strategy,” International Journal of Advanced Computer Science and Applications, vol. 11, no. 9, 2020, https://doi.org/10.14569/ijacsa.2020.0110927.

M. Aldayel, M. Ykhlef, and A. Al-Nafjan, “Deep Learning for EEG-Based Preference Classification in Neuromarketing,” Applied Sciences, vol. 10, no. 4, p. 1525, 2020, https://doi.org/10.3390/app10041525.

E. Eijlers, M. A. S. Boksem, and A. Smidts, “Measuring Neural Arousal for Advertisements and Its Relationship With Advertising Success,” Frontiers in Neuroscience, vol. 14, 2020, https://doi.org/10.3389/fnins.2020.00736.

A. G.-Morales, “Right evaluation of marketing stimuli with neuroscience. An electroencephalography experiment,” Computers in Human Behavior Reports, vol. 2, p. 100030, 2020, https://doi.org/10.1016/j.chbr.2020.100030.

K. Chung, J. Y. Park, K. Park, and Y. Kim, “Which Visual Modality Is Important When Judging the Naturalness of the Agent (Artificial Versus Human Intelligence) Providing Recommendations in the Symbolic Consumption Context?,” Sensors, vol. 20, no. 17, p. 5016, 2020, https://doi.org/10.3390/s20175016.

P. Wang, S. Wang, D. Peng, L. Chen, C. Wu, Z. Wei, P. Childs, Y. Guo, and L. Li, “Neurocognition-inspired design with machine learning,” Design Science, vol. 6, 2020, https://doi.org/10.1017/dsj.2020.23.

H. Watanabe, K. Nakajima, S. Takagi, R. Mizuyama, M. Saito, K. Furusawa, K. Nakatani, Y. Yokota, H. Kataoka, H. Nakajima and Y. Naruse, “Differences in Mechanical Parameters of Keyboard Switches Modulate Motor Preparation: A Wearable EEG Study,” Frontiers in Neuroergonomics, vol. 2, 2021, https://doi.org/10.3389/fnrgo.2021.644449.

M. Aldayel, M. Ykhlef, and A. Al-Nafjan, “Recognition of Consumer Preference by Analysis and Classification EEG Signals,” Frontiers in Human Neuroscience, vol. 14, 2021, https://doi.org/10.3389/fnhum.2020.604639.

M. Zito, A. Fici, M. Bilucaglia, F. S. Ambrogetti, and V. Russo, “Assessing the Emotional Response in Social Communication: The Role of Neuromarketing,” Frontiers in Psychology, vol. 12, 2021, https://doi.org/10.3389/fpsyg.2021.625570.

N. Sutaj, M. Walchshofer, L. Schreiner, L. Turchet, H. Pretl, and C. Guger, “Evaluating a Novel P300-Based Real-Time Image Ranking BCI,” Frontiers in Computer Science, vol. 3, 2021, https://doi.org/10.3389/fcomp.2021.661224.

N. Leeuwis, D. Pistone, N. Flick, and T. van Bommel, “A Sound Prediction: EEG-Based Neural Synchrony Predicts Online Music Streams,” Frontiers in Psychology, vol. 12, 2021, https://doi.org/10.3389/fpsyg.2021.672980.

A. Vozzi, V. Ronca, P. Aricò, G. Borghini, N. Sciaraffa, P. Cherubino, A. Trettel, F. Babiloni, and G. D. Flumeri, “The Sample Size Matters: To What Extent the Participant Reduction Affects the Outcomes of a Neuroscientific Research. A Case-Study in Neuromarketing Field,” Sensors, vol. 21, no. 18, p. 6088, 2021, https://doi.org/10.3390/s21186088.

S. Wang, C. Xu, L. Xiao, and A. S. Ding, “The Implicit Aesthetic Preference for Mobile Marketing Interface Layout—An ERP Study,” Frontiers in Human Neuroscience, vol. 15, 2021, https://doi.org/10.3389/fnhum.2021.728895.

L. Alvino, E. Constantinides, and R. H. J. van der Lubbe, “Consumer Neuroscience: Attentional Preferences for Wine Labeling Reflected in the Posterior Contralateral Negativity,” Frontiers in Psychology, vol. 12, p. 688713, 2021, https://doi.org/10.3389/fpsyg.2021.688713.

A. Hassani, A. Hekmatmanesh, and A. M. Nasrabadi, “Discrimination of Customers Decision-Making in a Like/Dislike Shopping Activity Based on Genders: A Neuromarketing Study,” IEEE Access, vol. 10, pp. 92454–92466, 2022, https://doi.org/10.1109/access.2022.3201488.

S. Raiesdana and M. Mousakhani, “An EEG-Based Neuromarketing Approach for Analyzing the Preference of an Electric Car,” Computational Intelligence and Neuroscience, vol. 2022, pp. 1–19, 2022, https://doi.org/10.1155/2022/9002101.

A. Ullah, G. Baloch, A. Ali, A. B. Buriro, J. Ahmed, B. Ahmed, and S. Akhtar, “Neuromarketing Solutions based on EEG Signal Analysis using Machine Learning,” International Journal of Advanced Computer Science and Applications, vol. 13, no. 1, 2022, https://doi.org/10.14569/ijacsa.2022.0130137.

A. Al-Nafjan, “Feature selection of EEG signals in neuromarketing,” PeerJ Computer Science, vol. 8, p. e944, Apr. 2022, https://doi.org/10.7717/peerj-cs.944.

L. Zeng, M. Lin, K. Xiao, J. Wang, and H. Zhou, “Like/Dislike Prediction for Sport Shoes With Electroencephalography: An Application of Neuromarketing,” Frontiers in Human Neuroscience, vol. 15, 2022, https://doi.org/10.3389/fnhum.2021.793952.

F. R. Mashrur, K. M. Rahman, M. T. I. Miya, R. Vaidyanathan, S. F. Anwar, F. Sarker, and K. A. Mamun, “BCI-Based Consumers’ Choice Prediction From EEG Signals: An Intelligent Neuromarketing Framework,” Frontiers in Human Neuroscience, vol. 16, 2022, https://doi.org/10.3389/fnhum.2022.861270.

R. R. Ahmed, D. Streimikiene, Z. A. Channar, H. A. Soomro, J. Streimikis, and G. L. Kyriakopoulos, “The Neuromarketing Concept in Artificial Neural Networks: A Case of Forecasting and Simulation from the Advertising Industry,” Sustainability, vol. 14, no. 14, p. 8546, Jan. 2022, https://doi.org/10.3390/su14148546.

M.-C. Chiang, C. Yen, and H.-L. Chen, “Does age matter? Using neuroscience approaches to understand consumers’ behavior towards purchasing the sustainable product online,” Sustainability, vol. 14, no. 18, p. 11352, 2022, https://doi.org/10.3390/su141811352.

D. Baldo, V. S. Viswanathan, R. J. Timpone, and V. Venkatraman, “The heart, brain, and body of marketing: Complementary roles of neurophysiological measures in tracking emotions, memory, and ad effectiveness,” Psychology & Marketing, vol. 39, no. 10, pp. 1979–1991, 2022, https://doi.org/10.1002/mar.21697.

M. Wang, A. Ling, Y. He, Y. Tan, L. Zhang, Z. Chang, and Q. Ma, “Pleasure of paying when using mobile payment: Evidence from EEG studies,” Frontiers in Psychology, vol. 13, 2022, https://doi.org/10.3389/fpsyg.2022.1004068.

K. Georgiadis, F. Kalaganis, V. P. Oikonomou, S. Nikolopoulos, N. A. Laskaris, and I. Kompatsiaris, “RNeuMark: A Riemannian EEG Analysis Framework for Neuromarketing,” Brain Informatics, vol. 9, no. 1, 2022, https://doi.org/10.1186/s40708-022-00171-7.

S. M. A. Shah, S. M. Usman, S. Khalid, I. U. Rehman, A. Anwar, S. Hussain, S. S. Ullah, H. Elmannai, A. D. Algarni, and W. Manzoor, “An Ensemble Model for Consumer Emotion Prediction Using EEG Signals for Neuromarketing Applications,” Sensors, vol. 22, no. 24, p. 9744, 2022, https://doi.org/10.3390/s22249744.

V. Russo, M. Bilucaglia, C. Casiraghi, S. Chiarelli, M. Columbano, A. Fici, F. Rivetti, C. Rossi, R. Valesi, and M. Zito, “Neuroselling: applying neuroscience to selling for a new business perspective. An analysis on teleshopping advertising,” Frontiers in Psychology, vol. 14, 2023, https://doi.org/10.3389/fpsyg.2023.1238879.

N. Leeuwis and T. van Bommel, “EEG-Based Neural Synchrony Predicts Evaluative Engagement with Music Videos,” Engineering Proceedings, vol. 39, no. 1, p. 50. 2023, https://doi.org/10.3390/engproc2023039050.

A. Kislov, A. Gorin, N. Konstantinovsky, V. Klyuchnikov, B. Bazanov, and V. Klucharev, “Central EEG Beta/Alpha Ratio Predicts the Population-Wide Efficiency of Advertisements,” Brain Sciences, vol. 13, no. 1, p. 57, 2022, https://doi.org/10.3390/brainsci13010057.

A. Hakim, I. Golan, S. Yefet, and D. J. Levy, “DeePay: deep learning decodes EEG to predict consumer’s willingness to pay for neuromarketing,” Frontiers in Human Neuroscience, vol. 17, 2023, https://doi.org/10.3389/fnhum.2023.1153413.

A. Hassani, A. Hekmatmanesh, and A. M. Nasrabadi, “Gender Differences in EEG Responses to Color and Black-White Images: Implications for Neuromarketing Strategies,” IEEE Access, vol. 11, pp. 93739–93753, 2023, https://doi.org/10.1109/access.2023.3308810.

V. P. Oikonomou, K. Georgiadis, Fotis Kalaganis, S. Nikolopoulos, and I. Kompatsiaris, “A Sparse Representation Classification Scheme for the Recognition of Affective and Cognitive Brain Processes in Neuromarketing,” Sensors, vol. 23, no. 5, pp. 2480–2480, 2023, https://doi.org/10.3390/s23052480.

S. Bosshard and P. Walla, “Sonic Influence on Initially Neutral Brands: Using EEG to Unveil the Secrets of Audio Evaluative Conditioning,” Brain Sciences, vol. 13, no. 10, pp. 1393–1393, 2023, https://doi.org/10.3390/brainsci13101393.

M. Bilucaglia, M. Zito, A. Fici, C. Casiraghi, F. Rivetti, M. Bellati, and V. Russo, “I DARE: IULM Dataset of Affective Responses,” Frontiers in Human Neuroscience, vol. 18, 2024, https://doi.org/10.3389/fnhum.2024.1347327.

D. Shu, D. Liu, and G.-L. Zhang, “The N270 as an index of consumer commodity color preference in the S1–S2 paradigm,” Frontiers in Psychology, vol. 15, 2024, https://doi.org/10.3389/fpsyg.2024.1350358.

B. Akbugday, S. P. Akbugday, R. Sadikzade, A. Akan, and S. Unal, “Detection of Olfactory Stimulus in Electroencephalogram Signals Using Machine and Deep Learning Methods,” vol. 24, no. 1, pp. 175–182, 2024, https://doi.org/10.5152/electrica.2024.23111.

D. Panda, D. D. Chakladar, S. Rana, and M. N. Shamsudin, “Spatial Attention-Enhanced EEG Analysis for Profiling Consumer Choices,” IEEE Access, vol. 12, pp. 13477–13487, 2024, https://doi.org/10.1109/access.2024.3355977.

A. Fici, M. Bilucaglia, C. Casiraghi, C. Rossi, S. Chiarelli, M. Columbano, V. Micheletto, M. Zito, and V. Russo, “From E-Commerce to the Metaverse: A Neuroscientific Analysis of Digital Consumer Behavior,” Behavioral sciences, vol. 14, no. 7, pp. 596–596, 2024, https://doi.org/10.3390/bs14070596.

A. Nasim, A.-N. Samira, and Y. Omar, “Comparing Different Classifiers and Features for Electroencephalography-Based Product Preference Recognition,” International Journal of Fuzzy Logic and Intelligent Systems, vol. 24, no. 3, pp. 258–270, 2024, https://doi.org/10.5391/ijfis.2024.24.3.258.

M. N.-Cansado, G. C. Méndez, and D. J.-Varón, “Analysis of the residual effect using neuromarketing technology in audiovisual content entrepreneurship,” Sustainable Technology and Entrepreneurship, vol. 3, no. 3, p. 100069, 2024, https://doi.org/10.1016/j.stae.2023.100069.

M. F. K. Khondakar, M. H. Sarowar, M. H. Chowdhury, S. Majumder, M. A. Hossain, M. A. A. Dewan, and Q. D. Hossain, “A systematic review on EEG-based neuromarketing: recent trends and analyzing techniques,” Brain informatics, vol. 11, no. 1, 2024, https://doi.org/10.1186/s40708-024-00229-8.

J. Wang, A. H. Alsharif, N. A. Aziz, A. Khraiwish, and N. Z. M. Salleh, “Neuro-Insights in Marketing Research: A PRISMA-Based Analysis of EEG Studies on Consumer Behavior,” Sage Open, vol. 14, no. 4, 2024, https://doi.org/10.1177/21582440241305365.

Y. Pamungkas and U. W. Astuti, "Comparison of Human Emotion Classification on Single-Channel and Multi-Channel EEG using Gate Recurrent Unit Algorithm," 2023 International Conference on Computer Science, Information Technology and Engineering (ICCoSITE), pp. 1-6, 2023, https://doi.org/10.1109/ICCoSITE57641.2023.10127686.

J. Yang, Y. Wang, M. Peng, and G. Torrens, “Research on Evaluation and Prediction Methods of Cognitive Intentions for Product Morphological Features,” Applied Sciences, vol. 14, no. 20, pp. 9263–9263, 2024, https://doi.org/10.3390/app14209263.

M. T. Hossain, A. S. Sarker, A. Chowdhury, R. Mitra, R. Rahman, and M. R. C. Mahdy, “Decoding memory with explainable AI: A large-scale EEG-based machine learning study of encoding vs. retrieval,” Neuroscience Informatics, vol. 5, no. 4, p. 100227, 2025, https://doi.org/10.1016/j.neuri.2025.100227.

A. Farizal, A. D. Wibawa, D. P. Wulandari and Y. Pamungkas, "Investigation of Human Brain Waves (EEG) to Recognize Familiar and Unfamiliar Objects Based on Power Spectral Density Features," 2023 International Seminar on Intelligent Technology and Its Applications (ISITIA), pp. 77-82, 2023, https://doi.org/10.1109/ISITIA59021.2023.10221052.

T. Zhao, F. N. B. Gois, J. A. L. Marques, B. R. dos S. Silva, P. Cortez, S. K. Jagatheesaperumal, and V. H. C. de Albuquerque, “AutoML-based EEG signal analysis in neuro-marketing classification using biclustering method,” Applied Soft Computing, vol. 181, p. 113412, 2025, https://doi.org/10.1016/j.asoc.2025.113412.

Z. Xu and S. Liu, “Decoding consumer purchase decisions: exploring the predictive power of EEG features in online shopping environments using machine learning,” Humanities and Social Sciences Communications, vol. 11, no. 1, 2024, https://doi.org/10.1057/s41599-024-03691-1.

F. Ishtiaque, M. T. I. Miya, F. R. Mashrur, K. M. Rahman, R. Vaidyanathan, S. F. Anwar, F. Sarker, N. A. Ali, H. H. Tat, and K. A. Mamun, “Machine learning-based viewers’ preference prediction on social awareness advertisements using EEG,” Frontiers in Human Neuroscience, vol. 19, 2025, https://doi.org/10.3389/fnhum.2025.1542574.

A. H. Alsharif, N. Z. M. Salleh, M. Abdullah, A. Khraiwish, and A. Ashaari, “Neuromarketing Tools Used in the Marketing Mix: A Systematic Literature and Future Research Agenda,” SAGE Open, vol. 13, no. 1, p. 215824402311565, 2023, https://doi.org/10.1177/21582440231156563.

A. C.-Feito, A. M. G.-Fernández, C. R.-Santos, and M. C.-Blanco, “Electroencephalography in consumer behaviour and marketing: a science mapping approach,” Humanities & social sciences communications, vol. 10, no. 1, 2023, https://doi.org/10.1057/s41599-023-01991-6.

A. Roshdy, A. Karar, S. A. Kork, T. Beyrouthy, and A. Nait-ali, “Advancements in EEG Emotion Recognition: Leveraging Multi-Modal Database Integration,” Applied Sciences, vol. 14, no. 6, p. 2487, 2024, https://doi.org/10.3390/app14062487.

S. M. Usman, S. Khalid, A. Tanveer, A. S. Imran, and M. Zubair, “Multimodal consumer choice prediction using EEG signals and eye tracking,” Frontiers in Computational Neuroscience, vol. 18, 2025, https://doi.org/10.3389/fncom.2024.1516440.

G. Song, M. A. I. Gazi, A. Waaje, M. M. Roshid, R. Karim, and M. A. Rahaman, "The Neuromarketing: Bridging Neuroscience and Marketing for Enhanced Consumer Engagement," in IEEE Access, vol. 13, pp. 40331-40353, 2025, https://doi.org/10.1109/ACCESS.2025.3545742.

J. S.-García, M. C. S.-Manzanares, and R. M.-Sánchez, “A Proposed Method of Automating Data Processing for Analysing Data Produced from Eye Tracking and Galvanic Skin Response,” Computers, vol. 13, no. 11, p. 289, 2024, https://doi.org/10.3390/computers13110289.

N. Saffaryazdi, S. T. Wasim, K. Dileep, A. F. Nia, S. Nanayakkara, E. Broadbent, and M. Billinghurst, “Using Facial Micro-Expressions in Combination With EEG and Physiological Signals for Emotion Recognition,” Frontiers in Psychology, vol. 13, 2022, https://doi.org/10.3389/fpsyg.2022.864047.

A. H. Alsharif, J. Wang, S. M. Isa, N. Z. M. Salleh, H. A. Dawas, and M. H. Alsharif, “The synergy of neuromarketing and artificial intelligence: A comprehensive literature review in the last decade,” Future Business Journal, vol. 11, no. 1, 2025, https://doi.org/10.1186/s43093-025-00591-x.

Y. Şekerci, M. U. Kahraman, Ö. Özturan, E. Çelik, and S. Ş. Ayan, “Neurocognitive responses to spatial design behaviors and tools among interior architecture students: a pilot study,” Scientific Reports, vol. 14, no. 1, p. 4454, 2024, https://doi.org/10.1038/s41598-024-55182-7.

M. Goncalves, Y. Hu, I. Aliagas, and L. M. Cerdá, “Neuromarketing algorithms’ consumer privacy and ethical considerations: challenges and opportunities,” Cogent business & management, vol. 11, no. 1, 2024, https://doi.org/10.1080/23311975.2024.2333063.

I. Rejer, J. Jankowski, J. Dreger, and K. Lorenz, “Viewer Engagement in Response to Mixed and Uniform Emotional Content in Marketing Videos—An Electroencephalographic Study,” Sensors, vol. 24, no. 2, pp. 517–517, 2024, https://doi.org/10.3390/s24020517.

D. Bettiga and G. Noci, “The influence of television content on advertisement: A neurophysiological study,” Frontiers in Psychology, vol. 15, 2024, https://doi.org/10.3389/fpsyg.2024.1266906.

J. M. A.-Azofra, E. Bigne, C. Ruiz, J. M.-Morales, J. Guixeres, and M. Alcañiz, “Do You See What I See? Effectiveness of 360-Degree vs. 2D Video Ads Using a Neuroscience Approach,” Frontiers in Psychology, vol. 12, 2021, https://doi.org/10.3389/fpsyg.2021.612717.

M. Mohammadi, E. Tajik, R. M.-Maldonado, S. Sadiq, W. Tomaszewski, and H. Khosravi, “Artificial Intelligence in Multimodal Learning Analytics: A Systematic Literature Review,” Computers and Education Artificial Intelligence, pp. 100426–100426, 2025, https://doi.org/10.1016/j.caeai.2025.100426.

Downloads

Published

2025-11-26

How to Cite

[1]
Y. Pamungkas, Y. Thwe, A. Karim, and U. Hashim, “A Review of EEG Applications in Neuromarketing: Methods, Insights, and Future Directions”, Buletin Ilmiah Sarjana Teknik Elektro, vol. 7, no. 4, pp. 891–906, Nov. 2025.

Issue

Section

Article