Edible Film Based on Arrowroot Starch and Glycerol

Authors

  • Erlina Nur Arifani Institut Teknologi Telkom, Purwokerto, Indonesia
  • Rafi Renaldy Tamalea Institut Teknologi Telkom, Purwokerto, Indonesia

DOI:

https://doi.org/10.12928/jafost.v5i1.9494

Keywords:

Arrowroot, Edible film, FTIR, Glycerol, Starch

Abstract

The edible film aims to improve the shelf life and safety of food by providing a physical barrier to external influences to prevent food deterioration. Arrowroot starch has high amylose content and excellent gelling ability, and it is massively produced in Indonesia. At the same time, glycerol has water-soluble and polar properties. So, studies were carried out on edible film based on arrowroot starch as the polysaccharide and glycerol as the plasticizer. This study was contributed to investigate the effect of the concentration of arrowroot starch (3, 4% w/v) and glycerol (1.25, 1.5, and 1.75% w/v) on physical properties (thickness by micrometer, functional group by FTIR, molecular structure surface by SEM) of edible film. The results showed that increasing the concentration of arrowroot starch and glycerol could increase tensile strength. Besides that, the formulations of 30% arrowroot starch with 12.5% glycerol and 40% arrowroot starch with 17.5% glycerol had the best tensile strength of 27.24 and 22.88 MPa, respectively. However, the results of the morphological analysis of the edible film on the arrowroot starch-glycerol formulation still contained pores and cracks.

References

Alcázar-Alay, S. C., & Meireles, M. A. A. (2015). Physicochemical properties, modifications and applications of starches from different botanical sources. Food Science and Technology (Brazil), 35(2), 215–236. https://doi.org/10.1590/1678-457X.6749

Basiak, E., Lenart, A., & Debeaufort, F. (2018). How glycerol and water contents affect the structural and functional properties of starch-based edible films. Polymers, 10(4). https://doi.org/10.3390/polym10040412

Cengristitama, & Ramlan, S. (2022). Pengaruh penambahan plasticizer gliserol dan kitosan terhadap karakteristik plastik biogradable berbahan dasar pati sukun. Tedc, 16(2), 102–108.

Choque-Quispe, D., Froehner, S., Ligarda-Samanez, C. A., Ramos-Pacheco, B. S., Palomino-Rincón, H., Choque-Quispe, Y., Solano-Reynoso, A. M., Taipe-Pardo, F., Zamalloa-Puma, L. M., Calla-Florez, M., Obregón-Yupanqui, M. E., Zamalloa-Puma, M. M., & Mojo-Quisani, A. (2021). Preparation and chemical and physical characteristics of an edible film based on native potato starch and nopal mucilage. Polymers, 13(21), 1–15. https://doi.org/10.3390/polym13213719

Dewi, M. Y., & Husni, A. (2020). Characterization of Biobased Alginate/Glycerol/ Sunflower Oil as Biodegradable Packaging. E3S Web of Conferences, 147. https://doi.org/10.1051/e3sconf/202014703004

Eslami, Z., Elkoun, S., Robert, M., & Adjallé, K. (2023). A Review of the Effect of Plasticizers on the Physical and Mechanical Properties of Alginate-Based Films. Molecules, 28(18). https://doi.org/10.3390/molecules28186637

Fakhouri, F. M., Nogueira, G. F., de Oliveira, R. A., & Velasco, J. I. (2019). Bioactive edible films based on arrowroot starch incorporated with cranberry powder: Microstructure, thermal properties, ascorbic acid content and sensory analysis. Polymers, 11(10). https://doi.org/10.3390/polym11101650

Fidianingsih, I., Aryandono, T., Widyarini, S., Herwiyanti, S., & Sunarti. (2022). Arrowroot (Maranta arundinacea L.) as a new potential functional food: A scoping review. International Food Research Journal, 29(6), 1240–1255. https://doi.org/10.47836/ifrj.29.6.02

Hamzah, F. H., Sitompul, F. F., Ayu, D. F., & Pramana, A. (2021). Effect of the Glycerol Addition on the Physical Characteristics of Biodegradable Plastic Made from Oil Palm Empty Fruit Bunch Pengaruh Penambahan Gliserol terhadap Sifat Fisik Plastik Biodegradable Berbahan Dasar Tandan Kosong Kelapa Sawit. Jurnal Teknologi Dan Manajemen Agroindustri, 10(3), 239–248.

Jiang, Y., Chen, Y., Zhao, C., Liu, G., Shi, Y., Zhao, L., Wang, Y., Wang, W., Xu, K., Li, G., Dai, Q., & Huo, Z. (2022). The Starch Physicochemical Properties between Superior and Inferior Grains of Japonica Rice under Panicle Nitrogen Fertilizer Determine the Difference in Eating Quality. Foods, 11(16). https://doi.org/10.3390/foods11162489

Karlan, L. S., & Rahmadhia, S. N. (2022). Physicochemical Characteristics Of Baby Java Orange Peel Pectin (Citrus sinensis) And Corn Starch-Based Edible Film With Glycerol Plasticizer. Jurnal Teknologi Pertanian, 23(2), 119–128. https://doi.org/10.21776/ub.jtp.2022.023.02.3

Maharijaya, A., Nur Salma, L., & Amarilis, S. (2020). Produksi dan Kualitas Umbi Beberapa Genotipe Kentang (Solanum tuberosum L.) Koleksi IPB untuk Olahan Keripik Kentang. Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy), 48(3), 275–282. https://doi.org/10.24831/jai.v48i3.32979

Mahiuddin, M., Khan, M. I. H., Kumar, C., Rahman, M. M., & Karim, M. A. (2018). Shrinkage of Food Materials During Drying: Current Status and Challenges. Comprehensive Reviews in Food Science and Food Safety, 17(5), 1113–1126. https://doi.org/10.1111/1541-4337.12375

Malki, M. K. S., Wijesinghe, J. A. A. C., Ratnayake, R. H. M. K., & Thilakarathna, G. C. (2023). Characterization of arrowroot (Maranta arundinacea) starch as a potential starch source for the food industry. Heliyon, 9(9), e20033. https://doi.org/10.1016/j.heliyon.2023.e20033

Marta, H., Rizki, D. I., Mardawati, E., Djali, M., Mohammad, M., & Cahyana, Y. (2023). Starch Nanoparticles: Preparation, Properties and Applications. Polymers, 15(5), 1–31. https://doi.org/10.3390/polym15051167

Montoya-Escobar, N., Ospina-Acero, D., Velásquez-Cock, J. A., Gómez-Hoyos, C., Serpa Guerra, A., Gañan Rojo, P. F., Vélez Acosta, L. M., Escobar, J. P., Correa-Hincapié, N., Triana-Chávez, O., Zuluaga Gallego, R., & Stefani, P. M. (2022). Use of Fourier Series in X-ray Diffraction (XRD) Analysis and Fourier-Transform Infrared Spectroscopy (FTIR) for Estimation of Crystallinity in Cellulose from Different Sources. Polymers, 14(23). https://doi.org/10.3390/polym14235199

Nasution, R. S., Harahap, M. R., & Yahya, H. (2019). Edible Film dari Karaginan (Eucheuma cottonii) Asal Aceh, Indonesia : Karakterisasi dengan FTIR dan SEM. Elkawnie, 5(2), 188. https://doi.org/10.22373/ekw.v5i2.5567

Ndukwe, C. O., Ezurike, B. O., & Okpala, P. C. (2021). Comparative studies of experimental and numerical evaluation of tensile properties of Glass Fibre Reinforced Polyester (GFRP) matrix. Heliyon, 7(5), e06887. https://doi.org/10.1016/j.heliyon.2021.e06887

Nogueira, G. F., Fakhouri, F. M., & de Oliveira, R. A. (2018a). Extraction and characterization of arrowroot (Maranta arundinaceae L.) starch and its application in edible films. Carbohydrate Polymers, 186, 64–72. https://doi.org/10.1016/j.carbpol.2018.01.024

Nogueira, G. F., Fakhouri, F. M., & de Oliveira, R. A. (2018b). Extraction and characterization of arrowroot (Maranta arundinaceae L.) starch and its application in edible films. Carbohydrate Polymers, 186(December 2017), 64–72. https://doi.org/10.1016/j.carbpol.2018.01.024

Nogueira, G. F., Fakhouri, F. M., Velasco, J. I., & de Oliveira, R. A. (2019). Active edible films based on arrowroot starch with microparticles of blackberry pulp obtained by freeze-drying for food packaging. Polymers, 11(9). https://doi.org/10.3390/polym11091382

Nogueira, G. F., Leme, B. de O., Santos, G. R. S. dos, Silva, J. V. da, Nascimento, P. B., Soares, C. T., Fakhouri, F. M., & de Oliveira, R. A. (2021). Edible Films and Coatings Formulated with Arrowroot Starch as a Non-Conventional Starch Source for Plums Packaging. Polysaccharides, 2(2), 373–386. https://doi.org/10.3390/polysaccharides2020024

Rahmadhia, S. N., Saputra, Y. A., Juwitaningtyas, T., & Rahayu, W. M. (2022). Intelligent Packaging as a pH-Indicator Based on Cassava Starch with Addition of Purple Sweet Potato Extract (Ipomoea batatas L.). Journal of Functional Food and Nutraceutical, 4(1), 17–27. https://doi.org/10.33555/jffn.v4i1.90

Rahmadhia, S. N., Sidqi, A. A., & Saputra, Y. A. (2023). Physical Properties of Tapioca Starch-based Film Indicators with Anthocyanin Extract from Purple Sweet Potato (Ipomea batatas L.) and Response to pH Changes. Sains Malaysiana, 52(6), 1685–1697. https://doi.org/10.17576/jsm-2023-5206-06

Rahmiatiningrum, N., Sukardi, S., & Warkoyo, W. (2019). Study of Physical Characteristic, Water Vapor Transmission Rate and Inhibition Zones of Edible Films from Aloe vera (Aloe barbadensis) Incorporated with Yellow Sweet Potato Starch and Glycerol. Food Technology and Halal Science Journal, 2(2), 195. https://doi.org/10.22219/fths.v2i2.12985

Rianto, D. (2022). Scanning Electron Microscopy for Nanostructure Analysis of Hybrid Multilayer Coating. Pillar Of Phisycs, 15(2), 119–128.

Shamsuri, A. A., & Darus, S. A. A. Z. M. (2020). Statistical Analysis of Tensile Strength and Flexural Strength Data from Universal Testing Machine. Asian Journal of Probability and Statistics, August, 54–62. https://doi.org/10.9734/ajpas/2020/v9i330230

Subando, T. R., Pranoto, Y., & Witasari, L. D. (2023). Optimization and Characterization of Arrowroot Porous Starch Using Thermostable α-amylase by Response Surface Methodology. ResearchSquare, 1–25. https://doi.org/10.21203/rs.3.rs-2440776

Tafa, K. D., Satheesh, N., & Abera, W. (2023). Mechanical properties of tef starch based edible films: Development and process optimization. Heliyon, 9(2), e13160. https://doi.org/10.1016/j.heliyon.2023.e13160

Utama, C. S., Sulistiyanto, B., & Kismiyati, S. (2018). the Effects of Water Addition and Steaming Duration on Starch Composition of Wheat Pollard. Reaktor, 17(4), 221. https://doi.org/10.14710/reaktor.17.4.221-225

Warkoyo, Y. W. N. H. (2019). Characterization of Edible Film from Starch of Taro (Colocasia esculenta (L.) Schott) with Addition of Chitosan on Dodol Substituted Seaweed (Eucheuma cottonii L.). Food Technology and Halal Science Journal, 1(1), 22. https://doi.org/10.22219/fths.v1i1.7544

Wulandari, D., Erwanto, Y., Pranoto, Y., & Rusman, R. (2017). the Properties of Edible Film Derived From Bovine Split Hide Gelatin With Isolated Soy Protein Using Various Levels of Glycerol in the Presence of Transglutaminase. Buletin Peternakan, 41(3), 319. https://doi.org/10.21059/buletinpeternak.v41i3.24329

Zamani, M. R. (2015). Al-Si Cast Alloys - Microstructure and Mechanical Properties at Ambient and Elevated Temperature Al-Si Cast Alloys - Microstructure and Mechanical Properties at Ambient and Elevated Temperature. In Dissertation Series (Issue 7).

Żołek-Tryznowska, Z., & Cichy, Ł. (2018). Glycerol Derivatives As a Modern Plasticizers for Starch Films. 217–222. https://doi.org/10.24867/grid-2018-p27

Downloads

Published

2024-04-30

Issue

Section

Articles