Physical, Chemical, and Biological Pretreatment of Lignocellulose in Oil Palm Empty Fruit Bunches (OPEFB)
DOI:
https://doi.org/10.12928/jafost.v5i2.12008Keywords:
Cellulose, Empty palm oil fruit bunches, Hemicellulose, Lignin, PretreatmentAbstract
Oil Palm Empty Fruit Bunch (OPEFB) constitutes a solid waste generated by the palm oil industry. Empty palm oil bunches contain cellulose or fiber. This component is the primary source for generating valuable products, including fermented sugar, chemicals, liquid fuel, carbon sources, and energy. This research contributed to determine the lignin, hemicellulose, and cellulose content of empty palm oil fruit bunches during biological, physical and chemical Pretreatment, as well as to determine the degradation of lignin, hemicellulose and cellulose. Physical treatment uses steam explosion, chemical treatment uses NaOH and biological treatment uses Trichoderma reesei FNCC 6012. Pretreatment using steam explosion has temperature levels ranging from 120 ℃, 140 ℃, and 160 ℃. Treatments using NaOH consisted of concentrations of 2%, 4%, and 6%, while treatments using Trichoderma reesei were based on fermentation times of 5 days, 10 days, 15 days. This preliminary treatment functions to reduce the lignin levels in empty palm oil fruit bunches. The parameters observed in this research were lignin, hemicellulose and cellulose content. The research results showed that treatment using Steam explosion at temperatures of 140 ℃ and 160℃ was able to reduce lignin levels by 16.03% and 15.90%. Treatment using steam explosion at a temperature of 160 ℃ and Trichoderma reesei for 15 days was able to increase Hemicellulose levels by 35.84% and 36.21%. Treatment using Steam explosion at a temperature of 160℃ gave the best effect on cellulose of 51.09%.
References
Acharya, S., Liyanage, S., Parajuli, P., Rumi, S. S., Shamshina, J. L., & Abidi, N. (2021). Utilization of cellulose to its full potential: a review on cellulose dissolution, regeneration, and applications. Polymers, 13(24), 4344. https://doi.org/10.3390/polym13244344.
Ahamed, A., & Vermette, P. (2008). Culture-based strategies to enhance cellulase enzyme production from Trichoderma reesei RUT-C30 in bioreactor culture conditions. Biochemical Engineering Journal, 40(3), 399–407. https://doi.org/10.1016/j.bej.2007.11.030.
Alfarisy, M., & Rahmadhia, S. N. (2022). An analysis of the causes of damage to nata de coco in the fermentation process. Journal of Agri-Food Science and Technology, 2(1), 96–103. https://doi.org/10.12928/jafost.v2i1.4861.
Arifani, E. N., & Tamalea, R. R. (2024). Edible film based on arrowroot starch and glycerol. Journal of Agri-Food Science and Technology, 5(1), 33–43. https://doi.org/10.12928/jafost.v5i1.9494.
Chopra, L., & Manikanika. (2022). Extraction of cellulosic fibers from the natural resources: A short review. Materials Today: Proceedings, 48, 1265–1270. https://doi.org/10.1016/j.matpr.2021.08.267.
Damay, J., Duret, X., Ghislain, T., Lalonde, O., & Lavoie, J.-M. (2018). Steam explosion of sweet sorghum stems: Optimisation of the production of sugars by response surface methodology combined with the severity factor. Industrial Crops and Products, 111, 482–493. https://doi.org/10.1016/j.indcrop.2017.11.006.
Fitriani, A., Haliza, M. N., Utami, N. P., Nyambayo, I., Sanayei, S., & Rahmadhia, S. N. (2024). Texture profile analysis of lamtoro gung (Leucaena leucocephala ssp. glabrata (rose) s. zarate) tempeh. Journal of Agri-Food Science and Technology, 5(1), 65–72. https://doi.org/10.12928/jafost.v5i1.10226.
Gaikwad, A., & Meshram, A. (2020). Effect of particle size and mixing on the laccase-mediated pretreatment of lignocellulosic biomass for enhanced saccharification of cellulose. Chemical Engineering Communications, 207(12), 1696–1706. https://doi.org/10.1080/00986445.2019.1680364.
Giovani, S., Putri, A. D., Adelina, N. M., & Setiyoko, A. (2024). Quality characteristics of jack bean (Canavalia ensiformis L.) tempeh milk with addition of ajwa date (Phoenix dactylifera L.) and various types of stabilizers. Journal of Agri-Food Science and Technology, 5(1), 18–32. https://doi.org/10.12928/jafost.v5i1.10210.
Goshadrou, A. (2019). Bioethanol production from cogongrass by sequential recycling of black liquor and wastewater in a mild-alkali pretreatment. Fuel, 258, 116141. https://doi.org/10.1016/j.fuel.2019.116141.
Hidayah, N., & Wusko, I. U. (2020). Characterization and analysis of oil palm empty fruit bunch (OPEFB) waste of PT Kharisma Alam Persada South Borneo. Majalah Obat Tradisional, 25(3). https://doi.org/10.22146/mot.52715.
Hu, L., Fang, X., Du, M., Luo, F., & Guo, S. (2020). Hemicellulose-based polymers processing and application. American Journal of Plant Sciences, 11(12), 2066–2079. https://doi.org/10.4236/ajps.2020.1112146.
Huang, L.-Z., Ma, M.-G., Ji, X.-X., Choi, S.-E., & Si, C. (2021). Recent developments and applications of hemicellulose from wheat straw: a review. Frontiers in Bioengineering and Biotechnology, 9. https://doi.org/10.3389/fbioe.2021.690773.
Indriani, O. D., & Khairi, A. N. (2023). Physico-chemical characteristics of jelly drink with variation of red dragon fruit peel (Hylocereus polyrhizus) and additional sappan wood (Caesalpinia sappan). Journal of Agri-Food Science and Technology, 4(1), 37–48. https://doi.org/10.12928/jafost.v4i1.7069.
Jędrzejczyk, M., Soszka, E., Czapnik, M., Ruppert, A. M., & Grams, J. (2019). Physical and chemical pretreatment of lignocellulosic biomass. In Second and Third Generation of Feedstocks (pp. 143–196). Elsevier. https://doi.org/10.1016/B978-0-12-815162-4.00006-9.
Koesoemadinata, V. C., Chou, K., Baharin, N. S. K., Yahya, W. J., Yuzir, M. A. M., Akhir, F. N. M., Iwamoto, K., Hata, S., Aid, S. R. B., Othman, N., Ida, T., Murakami, Y., & Hara, H. (2021). The effectiveness of biological pretreatment of oil palm empty fruit bunch on its conversion into bio-coke. Bioresource Technology Reports, 15, 100765. https://doi.org/10.1016/j.biteb.2021.100765.
Lynd, L. R., Weimer, P. J., van Zyl, W. H., & Pretorius, I. S. (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66(3), 506–577. https://doi.org/10.1128/MMBR.66.3.506-577.2002.
Ma’ruf, A., Pramudono, B., & Aryanti, N. (2017). Optimization of lignin extraction from rice husk by alkaline hydrogen peroxide using response surface methodology. Rasayan Journal of Chemistry, 10(2), 407–414. https://doi.org/10.7324/RJC.2017.1021667.
Menon, V., & Rao, M. (2012). Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Progress in Energy and Combustion Science, 38(4), 522–550. https://doi.org/10.1016/j.pecs.2012.02.002.
Muryanto, M., Sudiyani, Y., & Abimanyu, H. (2016). Optimasi proses perlakuan awal NaOH tandan kosong kelapa sawit untuk menjadi bioetanol. Jurnal Kimia Terapan Indonesia, 18(01), 27–35. https://doi.org/10.14203/jkti.v18i01.37.
Naher, L., Fatin, S. N., Sheikh, M. A. H., Azeez, L. A., Siddiquee, S., Zain, N. M., & Karim, S. M. R. (2021). Cellulase enzyme production from filamentous fungi Trichoderma reesei and Aspergillus awamori in submerged fermentation with rice straw. Journal of Fungi, 7(10), 868. https://doi.org/10.3390/jof7100868.
Öhgren, K., Bura, R., Saddler, J., & Zacchi, G. (2007). Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresource Technology, 98(13), 2503–2510. https://doi.org/10.1016/j.biortech.2006.09.003.
Rilek, N. M., Hidayat, N., & Sugiarto, Y. (2017). Hidrolisis lignoselulosa hasil pretreatment pelepah sawit (Elaeis guineensis Jacq) menggunakan H2SO4 pada produksi bioetanol. Industria: Jurnal Teknologi Dan Manajemen Agroindustri, 6(2), 76–82. https://doi.org/10.21776/ub.industria.2017.006.02.3.
Risanto, L., Adi, D. T. N., Fajriutami, T., Teramura, H., Fatriasari, W., Hermiati, E., Kahar, P., Kondo, A., & Ogino, C. (2023). Pretreatment with dilute maleic acid enhances the enzymatic digestibility of sugarcane bagasse and oil palm empty fruit bunch fiber. Bioresource Technology, 369, 128382. https://doi.org/10.1016/j.biortech.2022.128382.
Rizal, N. A., Ibrahim, M., Zakaria, M., Bahrin, E. K., Abd-Aziz, S., & Hassan, M. (2018). Combination of superheated steam with laccase pretreatment together with size reduction to enhance enzymatic hydrolysis of oil palm biomass. Molecules, 23(4), 811. https://doi.org/10.3390/molecules23040811.
Rocha, G. J. M., Gonçalves, A. R., Oliveira, B. R., Olivares, E. G., & Rossell, C. E. V. (2012). Steam explosion pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production. Industrial Crops and Products, 35(1), 274–279. https://doi.org/10.1016/j.indcrop.2011.07.010.
Saritha, M., Arora, A., & Lata. (2012). Biological pretreatment of lignocellulosic substrates for enhanced delignification and enzymatic digestibility. Indian Journal of Microbiology, 52(2), 122–130. https://doi.org/10.1007/s12088-011-0199-x.
Sikder, M. B. H., Rashid, S. S., Rahim, M. H. A., Ramli, A. N. M., & Roslan, R. (2023). Enzymatic pretreatment of palm oil empty fruit bunch. Materials Today: Proceedings, 75, 193–196. https://doi.org/10.1016/j.matpr.2022.12.241.
Sui, W., & Chen, H. (2016). Effects of water states on steam explosion of lignocellulosic biomass. Bioresource Technology, 199, 155–163. https://doi.org/10.1016/j.biortech.2015.09.001.
Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 83(1), 1–11. https://doi.org/10.1016/S0960-8524(01)00212-7.
Watkins, D., Nuruddin, M., Hosur, M., Tcherbi-Narteh, A., & Jeelani, S. (2015). Extraction and characterization of lignin from different biomass resources. Journal of Materials Research and Technology, 4(1), 26–32. https://doi.org/10.1016/j.jmrt.2014.10.009.
Yu, Z., Zhang, B., Yu, F., Xu, G., & Song, A. (2012). A real explosion: The requirement of steam explosion pretreatment. Bioresource Technology, 121, 335–341. https://doi.org/10.1016/j.biortech.2012.06.055.
Zhao, X., Zhang, L., & Liu, D. (2008). Comparative study on chemical pretreatment methods for improving enzymatic digestibility of crofton weed stem. Bioresource Technology, 99(9), 3729–3736. https://doi.org/10.1016/j.biortech.2007.07.016.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Devi Devi, Ika Fitriana Dyah Ratnasari, Dwi Astutik, Hery Widodo, Roni Ismoyojati, Muhammad Waqar
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with the Journal of Agri-food Science and Technology (JAFOST) agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.