Mapping The Worldwide Knowledge of Jack Bean by A Bibliometric Approach
DOI:
https://doi.org/10.12928/jafost.v5i1.10235Keywords:
Bibliometric analysis, Canavalia ensiformis, Jack bean urease inhibitionAbstract
Indonesia's indigenous inhabitants acknowledge the local legume plant known as jack bean. The Jack bean has various advantages, including increased production, a shorter lifespan, upright stems mimicking shrubs, and improved tolerance to biotic and abiotic stresses. Nonetheless, the jack bean plant is particularly vulnerable due to harmful compounds such as canavaline, choline, hydroziamine acid, trogonelin, and cyanide. A bibliometric study was performed to locate studies on jack beans. The data collection procedure includes executing an extensive search in Scopus-indexed journals using the keywords "Jack Bean." It could limit the search to the article abstract, title, keywords, and country. The articles included in this study were published between 2000 and 2023. The search yielded a total of 999 items. The data was obtained on September 10, 2023; any later alterations are not considered in this research. According to the published literature, over the last 23 years, many studies have been conducted to develop urease inhibition and antioxidants from jack beans. However, little research has been done into the functional benefits of jack bean bioactive components for enhancing bodily health, such as antidiabetic, antihypertensive, and anticancer properties. This article contributes to helping researchers fill jack bean-related research gaps and apply technology to the industrialization process of jack beans in the functional food and nutraceutical industries.
References
Affandia, D. R., Ishartani, D., & Wijaya, K. (2009). Physical, chemical and sensory characteristics of of jack bean (Canavalia ensiformis) tempeh flour at various drying temperature. Arab Universities Journal of Agricultural Sciences, 17(2), 235–250. https://doi.org/10.21608/ajs.2009.14939
Agustia, F. C., Murdiati, A., Supriyadi, & Indrati, R. (2023). Production of dipeptidyl peptidase-iv inhibitory peptides from germinated jack bean [Canavalia ensiformis (L.) DC.] flour. Prev. Nutr. Food Sci., 28, 149–159. https://doi.org/10.3746/pnf.2023.28.2.149
Agustia, F. C., Supriyadi, S., Murdiati, A., & Indrati, R. (2023). Germination of jack bean [Canavalia ensiformis (L.) DC.] and its impact on nutrient and anti-nutrient composition. Food Research, 7(5), 210–218. https://doi.org/10.26656/fr.2017.7(5).905
Akpapunam, M. A., & Sefa-Dedeh, S. (1997). Jack bean (Canavalia ensiformis): Nutrition related aspects and needed nutrition research. Plant Foods for Human Nutrition, 50(2), 93–99. https://doi.org/10.1007/BF02436029
Andriati, N., Anggrahini, S., Setyaningsih, W., Sofiana, I., Pusparasi, D. A., & Mossberg, F. (2018). Physicochemical characterization of jack bean (Canavalia ensiformis) tempeh. Food Research, 2(5), 481–485. https://doi.org/10.26656/fr.2017.2(5).300
Anuntagool, J., & Soonthonsun, S. (2023). Effect of particle size classification on properties of flour from jack bean: An under-utilized high protein legumes. Lwt, 189, 115418. https://doi.org/10.1016/j.lwt.2023.115418
Arise, A. K., Malomo, S. A., Ihuoma Cynthia, C., Aliyu, N. A., & Arise, R. O. (2022). Influence of processing methods on the antinutrients, morphology and in-vitro protein digestibility of jack bean. Food Chemistry Advances, 1, 100078. https://doi.org/10.1016/j.focha.2022.100078
Ariyantoro, A. R., Affandi, D. R., Yulviatun, A., Ishartani, D., & Septiarani, A. (2021). Pasting properties of jack bean (Canavalia ensiformis) modified starch with heat moisture treatment. IOP Conference Series: Earth and Environmental Science, 905(1). https://doi.org/10.1088/1755-1315/905/1/012092
Ariyantoro, A. R., Fitriyani, A., Affandi, D. R., Muhammad, D. R. A., Yulviatun, A., & Nishizu, T. (2022). The effect of dual modification with annealing and heat moisture treatment (HMT) on physicochemical properties of jack bean starch (Canavalia ensiformis). Food Research, 6(4), 189–198. https://doi.org/10.26656/fr.2017.6(4).497
Barreto, Y. C., Oliveira, R. S., Borges, B. T., Rosa, M. E., Zanatta, A. P., de Almeida, C. G. M., Vinadé, L., Carlini, C. R., & Belo, C. A. D. (2023). The neurotoxic mechanism of jack bean urease in insects involves the interplay between octopaminergic and dopaminergic pathways. Pesticide Biochemistry and Physiology, 189. https://doi.org/10.1016/j.pestbp.2022.105290
Cargnelutti Filho, A., Alves, B. M., Kleinpaul, J. A., Neu, I. M. M., Silveira, D. L., Simõands, F. M., & Wartha, C. A. (2016). Linear relations among traits of flax. Bragantia, 75(3), 157–162. https://doi.org/10.1590/1678-4499.474
Carrazoni, T., Nguyen, C., Maciel, L. F., Delgado-Cañedo, A., Stewart, B. A., Lange, A. B., Dal Belo, C. A., Carlini, C. R., & Orchard, I. (2018). Jack bean urease modulates neurotransmitter release at insect neuromuscular junctions. Pesticide Biochemistry and Physiology, 146, 63–70. https://doi.org/10.1016/j.pestbp.2018.02.009
Chaudhry, F., Naureen, S., Aslam, M., Al-Rashida, M., Rahman, J., Huma, R., Fatima, J., Khan, M., Munawar, M. A., & Ain Khan, M. (2020). Identification of imidazolylpyrazole ligands as potent urease inhibitors: synthesis, antiurease activity and in silico docking studies. ChemistrySelect, 5(38), 11817–11821. https://doi.org/10.1002/slct.202002482
Darini, M. T. (2021). The potential of jack bean (Canavalia ensiformis L.) developed in suboptimal soil to succeeding food sufficiency. International Journal of Current Science Research and Review, 04(07), 740–744. https://doi.org/10.47191/ijcsrr/v4-i7-17
Darini, M. T., Zamroni, & Astuti, A. (2023). Correlation between root nodule characteristic and growth component of jack bean intercropped with aloe plant in calcareous soil. International Journal on Advanced Science, Engineering and Information Technology, 13(2), 625–631. https://doi.org/10.18517/ijaseit.13.2.10922
de Araújo, M. S. P., de Sousa, E. F., Pereira, V. R., Ferreira, F. H. A., & de Carvalho, D. F. (2017). Evapotranspiration and crop coefficients of corn in monoculture and intercropped with jack bean. Revista Brasileira de Engenharia Agricola e Ambiental, 21(1), 27–31. https://doi.org/10.1590/1807-1929/agriambi.v21n1p27-31
dos Santos, D. S., Zanatta, A. P., Martinelli, A. H. S., Rosa, M. E., de Oliveira, R. S., Pinto, P. M., Peigneur, S., Tytgat, J., Orchard, I., Lange, A. B., Carlini, C. R., & Dal Belo, C. A. (2019). Jaburetox, a natural insecticide derived from jack bean urease, activates voltage-gated sodium channels to modulate insect behavior. Pesticide Biochemistry and Physiology, 153, 67–76. https://doi.org/10.1016/j.pestbp.2018.11.003
Du, Z., & Li, Y. (2022). Review and perspective on bioactive peptides: A roadmap for research, development, and future opportunities. Journal of Agriculture and Food Research, 9, 100353. https://doi.org/10.1016/j.jafr.2022.100353
Farias, T. C., de Souza, T. S. P., Fai, A. E. C., & Koblitz, M. G. B. (2022). Critical review for the production of antidiabetic peptides by a bibliometric approach. Nutrients, 14(20), 1–19. https://doi.org/10.3390/nu14204275
Farooq, U., Khan, S., Naz, S., Wani, T. A., Bukhari, S. M., Aborode, A. T., Shahzad, S. A., & Zargar, S. (2022). Three new acrylic acid derivatives from achillea mellifolium as potential inhibitors of urease from jack bean and α-glucosidase from Saccharomyces cerevisiae. Molecules, 27(15), 1–18. https://doi.org/10.3390/molecules27155004
Gabriel da Rosa, R., Sganzerla, W. G., Barroso, T. L. C. T., Buller, L. S., Berni, M. D., & Forster-Carneiro, T. (2022). Sustainable production of bioactive compounds from jabuticaba (Myrciaria cauliflora): A bibliometric analysis of scientific research over the last 21 years. Sustainable Chemistry and Pharmacy, 27, 1–17. https://doi.org/10.1016/j.scp.2022.100656
Grahl, M. V. C., Lopes, F. C., Martinelli, A. H. S., Carlini, C. R., & Fruttero, L. L. (2020). Structure-Function Insights of Jaburetox and Soyuretox: Novel Intrinsically Disordered Polypeptides Derived from Plant Ureases. Molecules, 25(22). https://doi.org/10.3390/MOLECULES25225338
Hahn, M., Hennig, M., Schlesier, B., & Hohne, W. (2000). Structure of jack bean chitinase. Acta Crystallographica Section D: Biological Crystallography, 56(9), 1096–1099. https://doi.org/10.1107/S090744490000857X
Hamad, A., Abbas Khan, M., Ahmad, I., Imran, A., Khalil, R., Al-Adhami, T., Miraz Rahman, K., Quratulain, Zahra, N., & Shafiq, Z. (2020). Probing sulphamethazine and sulphamethoxazole based Schiff bases as urease inhibitors; synthesis, characterization, molecular docking and ADME evaluation. Bioorganic Chemistry, 105, 104336. https://doi.org/10.1016/j.bioorg.2020.104336
He, B., Dong, C., Wang, X., Cao, Y., Gao, Y., Yang, M., Zhang, J., Jing, C., Shi, D., & You, Z. (2023). Syntheses, characterization, crystal structures and Jack bean urease inhibitory property of NiII, CdII, CuII and FeIII complexes with bis-Schiff bases. Polyhedron, 231. https://doi.org/10.1016/j.poly.2022.116254
Jan van Eck, N., & Waltman, L. (2018). VOSviewer Manual.
Kanetro, B., Riyanto, M., Pujimulyani, D., & Huda, N. (2021). Improvement of functional properties of jack bean (canavalia ensiformis) flour by germination and its relation to amino acids profile. Current Research in Nutrition and Food Science, 9(3), 812–822. https://doi.org/10.12944/CRNFSJ.9.3.09
Karoli, N., Sumari, J. O., & Marealle, H. (2017). Utilization of jack beans (Canavalia ensiformis) for human consumption in Tanzania. International Journal of Agriculture and Food Security, 3(3), 39–049. www.advancedscholarsjournals.org
Kaya, M., Menteşe, E., Sökmen, B. B., & Akçay, H. T. (2020). The determination of molecular dynamic properties of Novel 5-oxo-1,2,4-triazole phthalocyanines and investigation of their urease inhibition properties. Journal of Molecular Structure, 1222, 1–7. https://doi.org/10.1016/j.molstruc.2020.128870
Ko, T. (2000). The refined structure of canavalin from jack bean in Å resolution. Acta Crystallographica Section D: Biological Crystallography, 56(9), 411–420.
Kot, M., Zaborska, W., & Juszkiewicz, A. (2000). Inhibition of jack bean urease by thiols. Calorimetric studies. Thermochimica Acta, 354(1–2), 63–69. https://doi.org/10.1016/S0040-6031(00)00451-2
Krisnawati, A., Nuryati, & Adie, M. M. (2023). Germination and seedling vigor of jack bean (Canavalia ensiformis) as affected by seed size. BIO Web of Conferences, 69, 1–12. https://doi.org/10.1051/bioconf/20236901011
Larik, F. A., Faisal, M., Saeed, A., Channar, P. A., Korabecny, J., Jabeen, F., Mahar, I. A., Kazi, M. A., Abbas, Q., Murtaza, G., Khan, G. S., Hassan, M., & Seo, S. Y. (2019). Investigation on the effect of alkyl chain linked mono-thioureas as Jack bean urease inhibitors, SAR, pharmacokinetics ADMET parameters and molecular docking studies. Bioorganic Chemistry, 86, 473–481. https://doi.org/10.1016/j.bioorg.2019.02.011
Liu, L., Gao, Y., Geng, W., Song, J., Zhou, Y., & Li, C. (2023). Comparison of jack bean and soybean crude ureases on surface stabilization of desert sand via enzyme-induced carbonate precipitation. Geoderma, 435, 116504. https://doi.org/10.1016/j.geoderma.2023.116504
Long, F., Yang, H., Xu, Y., Hao, H., & Li, P. (2015). A strategy for the identification of combinatorial bioactive compounds contributing to the holistic effect of herbal medicines. Scientific Reports, 5(1), 12361. https://doi.org/10.1038/srep12361
Lu, Q., Tan, D., Xu, Y., Liu, M., He, Y., & Li, C. (2021). Inactivation of jack bean urease by nitidine chloride from zanthoxylum nitidum: elucidation of inhibitory efficacy, kinetics and mechanism. Journal of Agricultural and Food Chemistry, 69(46), 13772–13779. https://doi.org/10.1021/acs.jafc.1c04801
Marzadori, C., Francioso, O., Ciavatta, C., & Gessa, C. (2000). Activity and stability of jack bean urease in the presence of peat humic acids obtained using different extractants. Biology and Fertility of Soils, 32(5), 415–420. https://doi.org/10.1007/s003740000272
Melo, C. A. D., De Souza, W. M., Medeiros, W. N., Massenssini, A. M., Ferreira, L. R., & Costa, M. D. (2018). Pseudomonas spp. As growth promoting agents of sunflower and jack bean in soil with sulfentrazone. Cientifica, 46(1), 17–29. https://doi.org/10.15361/1984-5529.2018v46n1p17-29
Melo, A. M. de, Almeida, F. L. C., Cavalcante, A. M. de M., Ikeda, M., Barbi, R. C. T., Costa, B. P., & Ribani, R. H. (2021). Garcinia brasiliensis fruits and its by-products: Antioxidant activity, health effects and future food industry trends – A bibliometric review. Trends in Food Science and Technology, 112, 325–335. https://doi.org/10.1016/j.tifs.2021.04.005
Mörschbächer, A. P., & Granada, C. E. (2022). Mapping the worldwide knowledge of antimicrobial substances produced by Lactobacillus spp.: A bibliometric analysis. Biochemical Engineering Journal, 180. https://doi.org/10.1016/j.bej.2022.108343
Moyetta, N. R., Fruttero, L. L., Leyria, J., Ramos, F. O., Carlini, C. R., & Canavoso, L. (2021). The entomotoxin jack bean urease changes cathepsin D activity in nymphs of the hematophagous insect Dipetalogaster maxima (Hemiptera: Reduviidae). Comparative Biochemistry and Physiology Part - B: Biochemistry and Molecular Biology, 251. https://doi.org/10.1016/j.cbpb.2020.110511
Mutahir, S., Khan, M. A., Almehizia, A. A., Abouzied, A. S., Khalifa, N. E., Naglah, A. M., Deng, H., Refat, M. S., Khojali, W. M. A., & Huwaimel, B. (2023). Design, synthesis, characterization and computational studies of mannich bases oxadiazole derivatives as new class of jack bean urease inhibitors. Chemistry & Biodiversity, 20(8). https://doi.org/10.1002/cbdv.202300241
Nonis, S. G., Haywood, J., Schmidberger, J. W., Mackie, E. R. R., Soares da Costa, T. P., Bond, C. S., & Mylne, J. S. (2021). Structural and biochemical analyses of concanavalin A circular permutation by jack bean asparaginyl endopeptidase. Plant Cell, 33(8), 2794–2811. https://doi.org/10.1093/plcell/koab130
Oladebeye, A. O., Nomiye, M. M., Osisike, M., Gbadamosi, K. O., Adeyemi, A. F., Ashogbon, A. O., & Oladebeye, A. A. (2023). Properties of co-precipitated jack bean starch-based magnetic nanoparticles derivatives. Journal of Applied Polymer Science, 140(38). https://colab.ws/articles/10.1002/app.54419
Oriola, K. O., Hussein, J. B., Oke, M. O., & Ajetunmobi, A. (2021). Description and evaluation of physical and moisture-dependent thermal properties of jack bean seeds (Canavalia ensiformis). Journal of Food Processing and Preservation, 45(2). https://doi.org/10.1111/jfpp.15166
Praseptiangga, D., & Wandansari, W. D. (2022). Chemical and physical properties of canna (Canna edulis) and jack bean (Canavalia ensiformis)-based composite flours. Food Research, 6(2), 354–367. https://doi.org/10.26656/fr.2017.6(2).292
Purwandari, F. A., Fogliano, V., de Ruijter, N. C. A., & Capuano, E. (2023). Chemical and microstructural characterization of easy- and hard-to-cook Jack bean (Canavalia ensiformis (L.) DC.) collections. Lwt, 189, 115451. https://doi.org/10.1016/j.lwt.2023.115451
Purwandari, F. A., Westerbos, C., Lee, K., Fogliano, V., & Capuano, E. (2023). Proximate composition, microstructure, and protein and starch digestibility of seven collections of Jack bean (Canavalia ensiformis) with different optimal cooking times. Food Research International, 170(April), 112956. https://doi.org/10.1016/j.foodres.2023.112956
Puspitojati, E., Cahyanto, M. N., Marsono, Y., & Indrati, R. (2023). Jack bean (Canavalia ensiformis) tempeh: ACE-inhibitory peptide formation during absorption in the small intestine. Food Technology and Biotechnology, 61(1), 64–72. https://doi.org/10.17113/ftb.61.01.23.7635
Sá, C. A., Vieira, L. R., Pereira Almeida Filho, L. C., Real-Guerra, R., Lopes, F. C., Souza, T. M., Vasconcelos, I. M., Staniscuaski, F., Carlini, C. R., Urano Carvalho, A. F., & Farias, D. F. (2020). Risk assessment of the antifungal and insecticidal peptide Jaburetox and its parental protein the Jack bean (Canavalia ensiformis) urease. Food and Chemical Toxicology, 136(July 2019), 110977. https://doi.org/10.1016/j.fct.2019.110977
Santos, V. F., Araújo, A. C. J., Freitas, P. R., Silva, A. L. P., Santos, A. L. E., Matias da Rocha, B. A., Silva, R. R. S., Almeida, D. V., Garcia, W., Coutinho, H. D. M., & Teixeira, C. S. (2021). Enhanced antibacterial activity of the gentamicin against multidrug-resistant strains when complexed with Canavalia ensiformis lectin. Microbial Pathogenesis, 152. https://doi.org/10.1016/j.micpath.2020.104639
Seidel, E. P., dos Reis, W., & Mottin, M. C. (2016). Effects of surface application of gypsum in corn intercropped with jack bean (Canavalia eusiformis) with different soil penetration resistance. Australian Journal of Crop Science, 10(7), 985–989. https://doi.org/10.21475/ajcs.2016.10.07.p7661
Shah, Z. A., Hussain, S., Khan, S., Ali, N., Burki, S., Shah, S. U. A., Ahmad, A., -Ur-Rehman, F., Qureshi, M. N., Shah, S. M. M., & Shaheen, F. (2021). Inhibition of jack bean urease by amphiphilic peptides. Medicinal Chemistry Research, 30(8), 1569–1576. https://doi.org/10.1007/s00044-021-02757-y
Soares, P. A. G., Nascimento, C. O., Porto, T. S., Correia, M. T. S., Porto, A. L. F., & Carneiro-da-Cunha, M. G. (2011). Purification of a lectin from Canavalia ensiformis using PEG-citrate aqueous two-phase system. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 879(5–6), 457–460. https://doi.org/10.1016/j.jchromb.2010.12.030
Sridhar, K. R., & Seena, S. (2006). Nutritional and anti-nutritional significance of four unconventional legumes of the genus Canavalia - A comparative study. Food Chemistry, 99(2), 267–288. https://doi.org/10.1016/j.foodchem.2005.07.049
Sunaryo, Y., & Prasetyowati, S. E. (2023). Seed nutrient and leaf mineral content of jack bean (Canavalia ensiformis L.) cultivated with organic and bio-fertilizers in grumusol soil. Current Applied Science and Technology, 23(1), 1–8. https://doi.org/10.55003/cast.2022.01.23.005
Sutedja, A. M., Ito, A., Yanase, E., Batubara, I., Fardiaz, D., & Lioe, H. N. (2022). Influence of jack bean (Canavalia ensiformis (L) DC) milk processing on bioactive compounds and its antioxidant activity. Food Science and Technology (Brazil), 42, 1–9. https://doi.org/10.1590/fst.11521
Sutedja, A. M., Yanase, E., Batubara, I., Fardiaz, D., & Lioe, H. N. (2020). Identification and characterization of α-Glucosidase inhibition flavonol glycosides from jack bean (Canavalia ensiformis (L.) DC. Molecules, 25(11). https://doi.org/10.3390/molecules25112481
Sutedja, A. M., Yanase, E., Batubara, I., Fardiaz, D., & Lioe, H. N. (2022). Thermal stability of anisoyl kaempferol glycosides in jack bean (Canavalia ensiformis (L.) DC) and their effect on α-Glucosidase inhibition. Journal of Agricultural and Food Chemistry, 70(8), 2695–2700. https://doi.org/10.1021/acs.jafc.2c00097
Svane, S., Sigurdarson, J. J., Finkenwirth, F., Eitinger, T., & Karring, H. (2020). Inhibition of urease activity by different compounds provides insight into the modulation and association of bacterial nickel import and ureolysis. Scientific Reports, 10(1), 1–14. https://doi.org/10.1038/s41598-020-65107-9
Taha, M., Rahim, F., Khan, A. A., Anouar, E. H., Ahmed, N., Shah, S. A. A., Ibrahim, M., & Zakari, Z. A. (2020). Synthesis of diindolylmethane (DIM) bearing thiadiazole derivatives as a potent urease inhibitor. Scientific Reports, 10(1), 1–12. https://doi.org/10.1038/s41598-020-64729-3
Uge, E., Yusnawan, E., Baliadi, Y., & Inayati, A. (2023). Arthropods, pests, and diseases of jack bean (Canavalia ensiformis) in upland and dry climate areas. BIO Web of Conferences, 69, 1–11. https://doi.org/10.1051/bioconf/20236904006
Valadão, F. C. de A., Valadão Junior, D. D., Rizzi, M., & Souza Neto, M. C. de. (2020). Jack beans and brachiaria cultivated in a single and consortium system. Nativa, 8(5), 625–632. https://doi.org/10.31413/nativa.v8i5.10563
van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3
Vanjare, B. D., Mahajan, P. G., Dige, N. C., Raza, H., Hassan, M., Seo, S. Y., & Lee, K. H. (2020). Synthesis of novel xanthene based analogues: Their optical properties, jack bean urease inhibition and molecular modelling studies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 241, 118667. https://doi.org/10.1016/j.saa.2020.118667
Vanni, C., Bodlenner, A., Marradi, M., Ramirez, M. D. L. A., Moya, S., Goti, A., Cardona, F., Compain, P., & Matassini, C. (2021). Hybrid multivalent jack bean α-mannosidase inhibitors: The first example of gold nanoparticles decorated with deoxynojirimycin inhitopes. Molecules, 26(19), 5864. https://doi.org/10.3390/molecules26195864
Yarlina, V. P., Andoyo, R., Djali, M., & Lani, M. N. (2022). Metagenomic analysis for indigenous microbial diversity in soaking process of making tempeh jack beans (Canavalia ensiformis). Current Research in Nutrition and Food Science, 10(2), 620–632. https://doi.org/10.12944/CRNFSJ.10.2.18
Yarlina, V. P., Diva, A., Zaida, Andoyo, R., Djali, M., & Lani, M. N. (2023). Ratio variation of maltodextrin and gum arabic as encapsulant on white jack bean tempe protein concentrate. Current Research in Nutrition and Food Science, 11(3), 1087–1096. https://doi.org/10.12944/CRNFSJ.11.3.14
Yarlina, V. P., Djali, M., Andoyo, R., Lani, M. N., & Rifqi, M. (2023). Effect of soaking and proteolytic microorganisms growth on the protein and amino acid content of jack bean tempeh (Canavalia ensiformis). Processes, 11(4). https://doi.org/10.3390/pr11041161
Yarlina, V. P., Nabilah, F., Djali, M., Andoyo, R., & Lani, M. N. (2023). Mold characterization in "RAPRIMA" tempeh yeast from LIPI and over-fermented Koro Pedang (Jack Beans) tempeh. Food Research, 7, 125–132. https://doi.org/10.26656/fr.2017.7(S1).27
Yarlina, V. P., Ramdani, M. R., Zaida, Sukri, N., Djali, M., Andoyo, R., & Lani, M. N. (2022). Protein isolate of jack bean tempeh (Canavalia ensiformis) by spray drying method with variation of inlet temperature. International Journal on Advanced Science, Engineering and Information Technology, 12(5), 1775–1780. https://doi.org/10.18517/ijaseit.12.5.16228
Yusuf, D., Kholifaturrohmah, R., Nurcholis, M., Setiarto, R. H. B., Anggadhania, L., & Sulistiani. (2023). Potential of white jack bean (Canavalia ensiformis L. DC) kefir as a microencapsulated antioxidant. Prev. Nutr. Food Sci., 28(4), 1–23. https://doi.org/10.3746/pnf.2023.28.4.453
Zolghadr, L., Behbehani, G. R., PakBin, B., Hosseini, S. A., Divsalar, A., & Gheibi, N. (2022). Molecular dynamics simulations, molecular docking, and kinetics study of kaempferol interaction on Jack bean urease: Comparison of extended solvation model. Food Science and Nutrition, 10(11), 3585–3597. https://doi.org/10.1002/fsn3.2956
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Aprilia Fitriani, Helen Onyeaka, Friska Citra Agustia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with the Journal of Agri-food Science and Technology (JAFOST) agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.