Mapping The Worldwide Knowledge of Jack Bean by A Bibliometric Approach

Authors

  • Aprilia Fitriani Universitas Ahmad Dahlan, Indonesia
  • Helen Onyeaka University of Birmingham, United Kingdom
  • Friska Citra Agustia Universitas Jenderal Soedirman, Purwokerto

DOI:

https://doi.org/10.12928/jafost.v5i1.10235

Keywords:

Bibliometric analysis, Canavalia ensiformis, Jack bean urease inhibition

Abstract

Indonesia's indigenous inhabitants acknowledge the local legume plant known as jack bean. The Jack bean has various advantages, including increased production, a shorter lifespan, upright stems mimicking shrubs, and improved tolerance to biotic and abiotic stresses. Nonetheless, the jack bean plant is particularly vulnerable due to harmful compounds such as canavaline, choline, hydroziamine acid, trogonelin, and cyanide. A bibliometric study was performed to locate studies on jack beans. The data collection procedure includes executing an extensive search in Scopus-indexed journals using the keywords "Jack Bean." It could limit the search to the article abstract, title, keywords, and country. The articles included in this study were published between 2000 and 2023. The search yielded a total of 999 items. The data was obtained on September 10, 2023; any later alterations are not considered in this research. According to the published literature, over the last 23 years, many studies have been conducted to develop urease inhibition and antioxidants from jack beans. However, little research has been done into the functional benefits of jack bean bioactive components for enhancing bodily health, such as antidiabetic, antihypertensive, and anticancer properties. This article contributes to helping researchers fill jack bean-related research gaps and apply technology to the industrialization process of jack beans in the functional food and nutraceutical industries.

References

Affandia, D. R., Ishartani, D., & Wijaya, K. (2009). Physical, Chemical and Sensory Characteristics of of Jack Bean (Canavalia ensiformis) Tempeh Flour at Various Drying Temperature. Arab Universities Journal of Agricultural Sciences, 17(2), 235–250. https://doi.org/10.21608/ajs.2009.14939

Agustia, F. C., Murdiati, A., Supriyadi, & Indrati, R. (2023). Production of Dipeptidyl Peptidase-IV Inhibitory Peptides from Germinated Jack Bean [Canavalia ensiformis (L.) DC.] Flour. Prev. Nutr. Food Sci., 28(April), 149–159.

Agustia, F. C., Supriyadi, S., Murdiati, A., & Indrati, R. (2023). Germination of jack bean [Canavalia ensiformis (L.) DC.] and its impact on nutrient and anti-nutrient composition. Food Research, 7(5), 210–218. https://doi.org/10.26656/fr.2017.7(5).905

Akpapunam, M. A., & Sefa-Dedeh, S. (1997). Jack bean (Canavalia ensiformis): Nutrition related aspects and needed nutrition research. Plant Foods for Human Nutrition, 50(2), 93–99. https://doi.org/10.1007/BF02436029

Andriati, N., Anggrahini, S., Setyaningsih, W., Sofiana, I., Pusparasi, D. A., & Mossberg, F. (2018). Physicochemical characterization of jack bean (Canavalia ensiformis) tempeh. Food Research, 2(5), 481–485. https://doi.org/10.26656/fr.2017.2(5).300

Anuntagool, J., & Soonthonsun, S. (2023). Effect of particle size classification on properties of flour from jack bean: An under-utilized high protein legumes. Lwt, 189(August), 115418. https://doi.org/10.1016/j.lwt.2023.115418

Arise, A. K., Malomo, S. A., Ihuoma Cynthia, C., Aliyu, N. A., & Arise, R. O. (2022). Influence of processing methods on the antinutrients, morphology and in-vitro protein digestibility of jack bean. Food Chemistry Advances, 1(June), 100078. https://doi.org/10.1016/j.focha.2022.100078

Ariyantoro, A. R., Affandi, D. R., Yulviatun, A., Ishartani, D., & Septiarani, A. (2021). Pasting properties of jack bean (Canavalia ensiformis) modified starch with heat moisture treatment. IOP Conference Series: Earth and Environmental Science, 905(1). https://doi.org/10.1088/1755-1315/905/1/012092

Ariyantoro, A. R., Fitriyani, A., Affandi, D. R., Muhammad, D. R. A., Yulviatun, A., & Nishizu, T. (2022). The effect of dual modification with annealing and Heat Moisture Treatment (HMT) on physicochemical properties of jack bean starch (Canavalia ensiformis). Food Research, 6(4), 189–198. https://doi.org/10.26656/fr.2017.6(4).497

Barreto, Y. C., Oliveira, R. S., Borges, B. T., Rosa, M. E., Zanatta, A. P., de Almeida, C. G. M., Vinadé, L., Carlini, C. R., & Belo, C. A. D. (2023). The neurotoxic mechanism of Jack Bean Urease in insects involves the interplay between octopaminergic and dopaminergic pathways. Pesticide Biochemistry and Physiology, 189(November 2022). https://doi.org/10.1016/j.pestbp.2022.105290

Cargnelutti Filho, A., Alves, B. M., Kleinpaul, J. A., Neu, I. M. M., Silveira, D. L., Simõands, F. M., & Wartha, C. A. (2016). Linear relations among traits of flax. Bragantia, 75(3), 157–162. https://doi.org/10.1590/1678-4499.474

Carrazoni, T., Nguyen, C., Maciel, L. F., Delgado-Cañedo, A., Stewart, B. A., Lange, A. B., Dal Belo, C. A., Carlini, C. R., & Orchard, I. (2018). Jack bean urease modulates neurotransmitter release at insect neuromuscular junctions. Pesticide Biochemistry and Physiology, 146(October 2017), 63–70. https://doi.org/10.1016/j.pestbp.2018.02.009

Chaudhry, F., Naureen, S., Aslam, M., Al-Rashida, M., Rahman, J., Huma, R., Fatima, J., Khan, M., Munawar, M. A., & Ain Khan, M. (2020). Identification of Imidazolylpyrazole Ligands as Potent Urease Inhibitors: Synthesis, Antiurease Activity and In Silico Docking Studies. ChemistrySelect, 5(38), 11817–11821. https://doi.org/10.1002/slct.202002482

Darini, M. T. (2021). The Potential of Jack Bean (Canavalia ensiformis L.) Developed in Suboptimal Soil to Succeeding Food Sufficiency. International Journal of Current Science Research and Review, 04(07), 740–744. https://doi.org/10.47191/ijcsrr/v4-i7-17

Darini, M. T., Zamroni, & Astuti, A. (2023). Correlation between Root Nodule Characteristic and Growth Component of Jack Bean Intercropped with Aloe Plant in Calcareous Soil. International Journal on Advanced Science, Engineering and Information Technology, 13(2), 625–631. https://doi.org/10.18517/ijaseit.13.2.10922

de Araújo, M. S. P., de Sousa, E. F., Pereira, V. R., Ferreira, F. H. A., & de Carvalho, D. F. (2017). Evapotranspiration and crop coefficients of corn in monoculture and intercropped with jack bean. Revista Brasileira de Engenharia Agricola e Ambiental, 21(1), 27–31. https://doi.org/10.1590/1807-1929/agriambi.v21n1p27-31

dos Santos, D. S., Zanatta, A. P., Martinelli, A. H. S., Rosa, M. E., de Oliveira, R. S., Pinto, P. M., Peigneur, S., Tytgat, J., Orchard, I., Lange, A. B., Carlini, C. R., & Dal Belo, C. A. (2019). Jaburetox, a natural insecticide derived from Jack Bean Urease, activates voltage-gated sodium channels to modulate insect behavior. Pesticide Biochemistry and Physiology, 153(September 2018), 67–76. https://doi.org/10.1016/j.pestbp.2018.11.003

Du, Z., & Li, Y. (2022). Review and perspective on bioactive peptides: A roadmap for research, development, and future opportunities. Journal of Agriculture and Food Research, 9(August), 100353. https://doi.org/10.1016/j.jafr.2022.100353

Farias, T. C., de Souza, T. S. P., Fai, A. E. C., & Koblitz, M. G. B. (2022). Critical Review for the Production of Antidiabetic Peptides by a Bibliometric Approach. Nutrients, 14(20), 1–19. https://doi.org/10.3390/nu14204275

Farooq, U., Khan, S., Naz, S., Wani, T. A., Bukhari, S. M., Aborode, A. T., Shahzad, S. A., & Zargar, S. (2022). Three New Acrylic Acid Derivatives from Achillea mellifolium as Potential Inhibitors of Urease from Jack Bean and α-Glucosidase from Saccharomyces cerevisiae. Molecules, 27(15), 1–18. https://doi.org/10.3390/molecules27155004

Gabriel da Rosa, R., Sganzerla, W. G., Barroso, T. L. C. T., Buller, L. S., Berni, M. D., & Forster-Carneiro, T. (2022). Sustainable production of bioactive compounds from jabuticaba (Myrciaria cauliflora): A bibliometric analysis of scientific research over the last 21 years. Sustainable Chemistry and Pharmacy, 27(December 2021), 1–17. https://doi.org/10.1016/j.scp.2022.100656

Grahl, M. V. C., Lopes, F. C., Martinelli, A. H. S., Carlini, C. R., & Fruttero, L. L. (2020). Structure-Function Insights of Jaburetox and Soyuretox: Novel Intrinsically Disordered Polypeptides Derived from Plant Ureases. Molecules, 25(22). https://doi.org/10.3390/MOLECULES25225338

Hahn, M., Hennig, M., Schlesier, B., & Hohne, W. (2000). Structure of jack bean chitinase. Acta Crystallographica Section D: Biological Crystallography, 56(9), 1096–1099. https://doi.org/10.1107/S090744490000857X

Hamad, A., Abbas Khan, M., Ahmad, I., Imran, A., Khalil, R., Al-Adhami, T., Miraz Rahman, K., Quratulain, Zahra, N., & Shafiq, Z. (2020). Probing sulphamethazine and sulphamethoxazole based Schiff bases as urease inhibitors; synthesis, characterization, molecular docking and ADME evaluation. Bioorganic Chemistry, 105, 104336. https://doi.org/10.1016/j.bioorg.2020.104336

He, B., Dong, C., Wang, X., Cao, Y., Gao, Y., Yang, M., Zhang, J., Jing, C., Shi, D., & You, Z. (2023). Syntheses, characterization, crystal structures and Jack bean urease inhibitory property of NiII, CdII, CuII and FeIII complexes with bis-Schiff bases. Polyhedron, 231(December 2022). https://doi.org/10.1016/j.poly.2022.116254

Jan van Eck, N., & Waltman, L. (2018). VOSviewer Manual.

Kanetro, B., Riyanto, M., Pujimulyani, D., & Huda, N. (2021). Improvement of Functional Properties of Jack Bean (Canavalia ensiformis) Flour by Germination and Its Relation to Amino Acids Profile. Current Research in Nutrition and Food Science, 9(3), 812–822. https://doi.org/10.12944/CRNFSJ.9.3.09

Karoli, N., Sumari, J. O., & Marealle, H. (2017). Utilization of jack beans (Canavalia ensiformis) for human consumption in Tanzania. International Journal of Agriculture and Food Security, 3(3), 39–049. www.advancedscholarsjournals.org

Kaya, M., MENTEŞE, E., SÖKMEN, B. B., & AKÇAY, H. T. (2020). The determination of molecular dynamic properties of Novel 5-oxo-1,2,4-triazole phthalocyanines and investigation of their urease inhibition properties. Journal of Molecular Structure, 1222, 1–7. https://doi.org/10.1016/j.molstruc.2020.128870

Ko, T. (2000). research papers The refined structure of canavalin from jack bean in Ê resolution. Acta Crystallographica Section D: Biological Crystallography, 56(9), 411–420.

Kot, M., Zaborska, W., & Juszkiewicz, A. (2000). Inhibition of jack bean urease by thiols. Calorimetric studies. Thermochimica Acta, 354(1–2), 63–69. https://doi.org/10.1016/S0040-6031(00)00451-2

Krisnawati, A., Nuryati, & Adie, M. M. (2023). Germination and Seedling Vigor of Jack Bean (Canavalia ensiformis) as Affected by Seed Size. BIO Web of Conferences, 69, 1–12. https://doi.org/10.1051/bioconf/20236901011

Larik, F. A., Faisal, M., Saeed, A., Channar, P. A., Korabecny, J., Jabeen, F., Mahar, I. A., Kazi, M. A., Abbas, Q., Murtaza, G., Khan, G. S., Hassan, M., & Seo, S. Y. (2019). Investigation on the effect of alkyl chain linked mono-thioureas as Jack bean urease inhibitors, SAR, pharmacokinetics ADMET parameters and molecular docking studies. Bioorganic Chemistry, 86(December 2018), 473–481. https://doi.org/10.1016/j.bioorg.2019.02.011

Liu, L., Gao, Y., Geng, W., Song, J., Zhou, Y., & Li, C. (2023). Comparison of jack bean and soybean crude ureases on surface stabilization of desert sand via enzyme-induced carbonate precipitation. Geoderma, 435(May), 116504. https://doi.org/10.1016/j.geoderma.2023.116504

Long, F., Yang, H., Xu, Y., Hao, H., & Li, P. (2015). A strategy for the identification of combinatorial bioactive compounds contributing to the holistic effect of herbal medicines. Scientific Reports, 5(1), 12361. https://doi.org/10.1038/srep12361

Lu, Q., Tan, D., Xu, Y., Liu, M., He, Y., & Li, C. (2021). Inactivation of Jack Bean Urease by Nitidine Chloride from Zanthoxylum nitidum: Elucidation of Inhibitory Efficacy, Kinetics and Mechanism. Journal of Agricultural and Food Chemistry, 69(46), 13772–13779. https://doi.org/10.1021/acs.jafc.1c04801

Marzadori, C., Francioso, O., Ciavatta, C., & Gessa, C. (2000). Activity and stability of jack bean urease in the presence of peat humic acids obtained using different extractants. Biology and Fertility of Soils, 32(5), 415–420. https://doi.org/10.1007/s003740000272

Melo, C. A. D., De Souza, W. M., Medeiros, W. N., Massenssini, A. M., Ferreira, L. R., & Costa, M. D. (2018). Pseudomonas spp. As growth promoting agents of sunflower and jack bean in soil with sulfentrazone. Cientifica, 46(1), 17–29. https://doi.org/10.15361/1984-5529.2018v46n1p17-29

Melo, A. M. de, Almeida, F. L. C., Cavalcante, A. M. de M., Ikeda, M., Barbi, R. C. T., Costa, B. P., & Ribani, R. H. (2021). Garcinia brasiliensis fruits and its by-products: Antioxidant activity, health effects and future food industry trends – A bibliometric review. Trends in Food Science and Technology, 112(April), 325–335. https://doi.org/10.1016/j.tifs.2021.04.005

Mörschbächer, A. P., & Granada, C. E. (2022). Mapping the worldwide knowledge of antimicrobial substances produced by Lactobacillus spp.: A bibliometric analysis. Biochemical Engineering Journal, 180(October 2021). https://doi.org/10.1016/j.bej.2022.108343

Moyetta, N. R., Fruttero, L. L., Leyria, J., Ramos, F. O., Carlini, C. R., & Canavoso, L. (2021). The entomotoxin Jack Bean Urease changes cathepsin D activity in nymphs of the hematophagous insect Dipetalogaster maxima (Hemiptera: Reduviidae). Comparative Biochemistry and Physiology Part - B: Biochemistry and Molecular Biology, 251(April 2020). https://doi.org/10.1016/j.cbpb.2020.110511

Mutahir, S., Khan, M. A., Almehizia, A. A., Abouzied, A. S., Khalifa, N. E., Naglah, A. M., Deng, H., Refat, M. S., Khojali, W. M. A., & Huwaimel, B. (2023). Design, Synthesis, Characterization and Computational Studies of Mannich Bases Oxadiazole Derivatives as New Class of Jack Bean Urease Inhibitors. Chemistry & Biodiversity, 20(8).

Nonis, S. G., Haywood, J., Schmidberger, J. W., Mackie, E. R. R., Soares da Costa, T. P., Bond, C. S., & Mylne, J. S. (2021). Structural and biochemical analyses of concanavalin A circular permutation by jack bean asparaginyl endopeptidase. Plant Cell, 33(8), 2794–2811. https://doi.org/10.1093/plcell/koab130

Oladebeye, A. O., Nomiye, M. M., Osisike, M., Gbadamosi, K. O., Adeyemi, A. F., Ashogbon, A. O., & Oladebeye, A. A. (2023). Properties of co-precipitated jack bean starch-based magnetic nanoparticles derivatives. Journal of Applied Polymer Science, 140(38). https://colab.ws/articles/10.1002/app.54419

Oriola, K. O., Hussein, J. B., Oke, M. O., & Ajetunmobi, A. (2021). Description and evaluation of physical and moisture-dependent thermal properties of jack bean seeds (Canavalia ensiformis). Journal of Food Processing and Preservation, 45(2).

Praseptiangga, D., & Wandansari, W. D. (2022). Chemical and physical properties of canna (Canna edulis) and jack bean (Canavalia ensiformis)-based composite flours. Food Research, 6(2), 354–367. https://doi.org/10.26656/fr.2017.6(2).292

Purwandari, F. A., Fogliano, V., de Ruijter, N. C. A., & Capuano, E. (2023). Chemical and microstructural characterization of easy- and hard-to-cook Jack bean (Canavalia ensiformis (L.) DC.) collections. Lwt, 189(June), 115451. https://doi.org/10.1016/j.lwt.2023.115451

Purwandari, F. A., Westerbos, C., Lee, K., Fogliano, V., & Capuano, E. (2023). Proximate composition, microstructure, and protein and starch digestibility of seven collections of Jack bean (Canavalia ensiformis) with different optimal cooking times. Food Research International, 170(April), 112956. https://doi.org/10.1016/j.foodres.2023.112956

Puspitojati, E., Cahyanto, M. N., Marsono, Y., & Indrati, R. (2023). Jack Bean (Canavalia ensiformis) Tempeh: ACE-Inhibitory Peptide Formation during Absorption in the Small Intestine. Food Technology and Biotechnology, 61(1), 64–72. https://doi.org/10.17113/ftb.61.01.23.7635

Sá, C. A., Vieira, L. R., Pereira Almeida Filho, L. C., Real-Guerra, R., Lopes, F. C., Souza, T. M., Vasconcelos, I. M., Staniscuaski, F., Carlini, C. R., Urano Carvalho, A. F., & Farias, D. F. (2020). Risk assessment of the antifungal and insecticidal peptide Jaburetox and its parental protein the Jack bean (Canavalia ensiformis) urease. Food and Chemical Toxicology, 136(July 2019), 110977. https://doi.org/10.1016/j.fct.2019.110977

Santos, V. F., Araújo, A. C. J., Freitas, P. R., Silva, A. L. P., Santos, A. L. E., Matias da Rocha, B. A., Silva, R. R. S., Almeida, D. V., Garcia, W., Coutinho, H. D. M., & Teixeira, C. S. (2021). Enhanced antibacterial activity of the gentamicin against multidrug-resistant strains when complexed with Canavalia ensiformis lectin. Microbial Pathogenesis, 152(November 2020). https://doi.org/10.1016/j.micpath.2020.104639

Seidel, E. P., dos Reis, W., & Mottin, M. C. (2016). Effects of surface application of gypsum in corn intercropped with jack bean (Canavalia eusiformis) with different soil penetration resistance. Australian Journal of Crop Science, 10(7), 985–989. https://doi.org/10.21475/ajcs.2016.10.07.p7661

Shah, Z. A., Hussain, S., Khan, S., Ali, N., Burki, S., Shah, S. U. A., Ahmad, A., -Ur-Rehman, F., Qureshi, M. N., Shah, S. M. M., & Shaheen, F. (2021). Inhibition of jack bean urease by amphiphilic peptides. Medicinal Chemistry Research, 30(8), 1569–1576. https://doi.org/10.1007/s00044-021-02757-y

Soares, P. A. G., Nascimento, C. O., Porto, T. S., Correia, M. T. S., Porto, A. L. F., & Carneiro-da-Cunha, M. G. (2011). Purification of a lectin from Canavalia ensiformis using PEG-citrate aqueous two-phase system. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 879(5–6), 457–460. https://doi.org/10.1016/j.jchromb.2010.12.030

Sridhar, K. R., & Seena, S. (2006). Nutritional and anti-nutritional significance of four unconventional legumes of the genus Canavalia - A comparative study. Food Chemistry, 99(2), 267–288. https://doi.org/10.1016/j.foodchem.2005.07.049

Sunaryo, Y., & Prasetyowati, S. E. (2023). Seed Nutrient and Leaf Mineral Content of Jack Bean (Canavalia ensiformis L.) Cultivated with Organic and Bio-fertilizers in Grumusol Soil. Current Applied Science and Technology, 23(1), 1–8. https://doi.org/10.55003/cast.2022.01.23.005

Sutedja, A. M., Ito, A., Yanase, E., Batubara, I., Fardiaz, D., & Lioe, H. N. (2022). Influence of jack bean (Canavalia ensiformis (L) DC) milk processing on bioactive compounds and its antioxidant activity. Food Science and Technology (Brazil), 42, 1–9. https://doi.org/10.1590/fst.11521

Sutedja, A. M., Yanase, E., Batubara, I., Fardiaz, D., & Lioe, H. N. (2020). Identification and Characterization of α-Glucosidase Inhibition Flavonol Glycosides from Jack Bean (Canavalia ensiformis (L.) DC. Molecules, 25(11). https://doi.org/10.3390/molecules25112481

Sutedja, A. M., Yanase, E., Batubara, I., Fardiaz, D., & Lioe, H. N. (2022). Thermal Stability of Anisoyl Kaempferol Glycosides in Jack Bean (Canavalia ensiformis (L.) DC) and Their Effect on α-Glucosidase Inhibition. Journal of Agricultural and Food Chemistry, 70(8), 2695–2700. https://doi.org/10.1021/acs.jafc.2c00097

Svane, S., Sigurdarson, J. J., Finkenwirth, F., Eitinger, T., & Karring, H. (2020). Inhibition of urease activity by different compounds provides insight into the modulation and association of bacterial nickel import and ureolysis. Scientific Reports, 10(1), 1–14. https://doi.org/10.1038/s41598-020-65107-9

Taha, M., Rahim, F., Khan, A. A., Anouar, E. H., Ahmed, N., Shah, S. A. A., Ibrahim, M., & Zakari, Z. A. (2020). Synthesis of diindolylmethane (DIM) bearing thiadiazole derivatives as a potent urease inhibitor. Scientific Reports, 10(1), 1–12. https://doi.org/10.1038/s41598-020-64729-3

Uge, E., Yusnawan, E., Baliadi, Y., & Inayati, A. (2023). Arthropods, Pests, and Diseases of Jack Bean (Canavalia Ensiformis) in Upland and Dry Climate Areas. BIO Web of Conferences, 69, 1–11. https://doi.org/10.1051/bioconf/20236904006

Valadão, F. C. de A., Valadão Junior, D. D., Rizzi, M., & Souza Neto, M. C. de. (2020). Jack beans and brachiaria cultivated in a single and consortium system. Nativa, 8(5), 625–632. https://doi.org/10.31413/nativa.v8i5.10563

van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3

Vanjare, B. D., Mahajan, P. G., Dige, N. C., Raza, H., Hassan, M., Seo, S. Y., & Lee, K. H. (2020). Synthesis of novel xanthene based analogues: Their optical properties, jack bean urease inhibition and molecular modelling studies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 241, 118667. https://doi.org/10.1016/j.saa.2020.118667

Vanni, C., Bodlenner, A., Marradi, M., Ramirez, M. D. L. A., Moya, S., Goti, A., Cardona, F., Compain, P., & Matassini, C. (2021). Hybrid Multivalent Jack Bean α-Mannosidase Inhibitors: The First Example of Gold Nanoparticles Decorated with Deoxynojirimycin Inhitopes. Molecules, 26.

Yarlina, V. P., Andoyo, R., Djali, M., & Lani, M. N. (2022). Metagenomic Analysis for Indigenous Microbial Diversity in Soaking Process of Making Tempeh Jack Beans (Canavalia ensiformis). Current Research in Nutrition and Food Science, 10(2), 620–632. https://doi.org/10.12944/CRNFSJ.10.2.18

Yarlina, V. P., Diva, A., Zaida, Andoyo, R., Djali, M., & Lani, M. N. (2023). Ratio Variation of Maltodextrin and Gum Arabic as Encapsulant on White Jack Bean Tempe Protein Concentrate. Current Research in Nutrition and Food Science, 11(3), 1087–1096. https://doi.org/10.12944/CRNFSJ.11.3.14

Yarlina, V. P., Djali, M., Andoyo, R., Lani, M. N., & Rifqi, M. (2023). Effect of Soaking and Proteolytic Microorganisms Growth on the Protein and Amino Acid Content of Jack Bean Tempeh (Canavalia ensiformis). Processes, 11(4). https://doi.org/10.3390/pr11041161

Yarlina, V. P., Nabilah, F., Djali, M., Andoyo, R., & Lani, M. N. (2023). Mold characterization in "RAPRIMA" tempeh yeast from LIPI and over-fermented Koro Pedang (Jack Beans) tempeh. Food Research, 7, 125–132. https://doi.org/10.26656/fr.2017.7(S1).27

Yarlina, V. P., Ramdani, M. R., Zaida, Sukri, N., Djali, M., Andoyo, R., & Lani, M. N. (2022). Protein Isolate of Jack Bean Tempeh (Canavalia ensiformis) by Spray Drying Method with Variation of Inlet Temperature. International Journal on Advanced Science, Engineering and Information Technology, 12(5), 1775–1780. https://doi.org/10.18517/ijaseit.12.5.16228

Yusuf, D., Kholifaturrohmah, R., Nurcholis, M., Setiarto, R. H. B., Anggadhania, L., & Sulistiani. (2023). Potential of White Jack Bean (Canavalia ensiformis L. DC) Kefir as a Microencapsulated Antioxidant. Prev. Nutr. Food Sci., 28(4), 1–23.

Zolghadr, L., Behbehani, G. R., PakBin, B., Hosseini, S. A., Divsalar, A., & Gheibi, N. (2022). Molecular dynamics simulations, molecular docking, and kinetics study of kaempferol interaction on Jack bean urease: Comparison of extended solvation model. Food Science and Nutrition, 10(11), 3585–3597. https://doi.org/10.1002/fsn3.2956

Downloads

Published

2024-04-30

Issue

Section

Articles