Emerging Neuroplasticity-based Therapies in Stroke Rehabilitation: Literature Review

Authors

  • Andrianto Selohandono Ahmad Dahlan University
  • Zamroni Department of Neurology, Universitas Muhammadiyah Yogyakarta, Yogyakarta, Indonesia
  • Ana Budi Rahayu Department of Neurology, Universitas Ahmad Dahlan, Yogyakarta, Indonesia

DOI:

https://doi.org/10.12928/admj.v5i2.11626

Keywords:

neuroplasticity, stroke, emerging therapies, mechanisms

Abstract

Stroke is a significant global health concern, leading to substantial mortality and long-term disability among survivors. Traditionally, stroke rehabilitation has focused on compensatory strategies to mitigate the effects of impairments rather than addressing their root causes. However, growing recognition of the brain's capacity for neuroplasticity a process involving the brain's ability to reorganize itself in response to injury has prompted a paradigm shift. This review explores the mechanisms of neuroplasticity and the latest neuroplasticity-based interventions for stroke recovery. It highlights the role of neuronal regeneration, synaptic plasticity, and functional reorganization in promoting recovery. Additionally, the review discusses emerging therapies, such as Constraint-Induced Movement Therapy, mirror therapy, robot-assisted training, and non-invasive brain stimulation techniques, which have shown promise in enhancing neuroplasticity and improving functional outcomes. Although the results of these interventions have been complex and the effect sizes modest, they underscore the potential for innovative approaches to harness neuroplasticity in stroke rehabilitation.

Author Biography

Andrianto Selohandono, Ahmad Dahlan University

Deaprtment of Neurology

References

Robert AA, Zamzami MM. Stroke in Saudi Arabia: a review of the recent literature. Pan Afr Med J. 2014;17. doi:10.11604/pamj.2014.17.14.3015

Peng S, Liu X, Cao W, et al. Global, regional, and national time trends in mortality for stroke, 1990–2019: An age-period-cohort analysis for the global burden of disease 2019 study and implications for stroke prevention. International Journal of Cardiology. 2023;383:117-131. doi:10.1016/j.ijcard.2023.05.001

Vos T, Abajobir AA, Abate KH, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet. 2017;390(10100):1211-1259. doi:10.1016/S0140-6736(17)32154-2

Donkor ES. Stroke in the 2 1 s t Century: A Snapshot of the Burden, Epidemiology, and Quality of Life. Stroke Research and Treatment. 2018;2018:1-10. doi:10.1155/2018/3238165

Cramer SC, Sur M, Dobkin BH, et al. Harnessing neuroplasticity for clinical applications. Brain. 2011;134(6):1591-1609. doi:10.1093/brain/awr039

Lunghi C, Sale A. A cycling lane for brain rewiring. Current Biology. 2015;25(23):R1122-R1123. doi:10.1016/j.cub.2015.10.026

Price RB, Duman R. Neuroplasticity in cognitive and psychological mechanisms of depression: an integrative model. Mol Psychiatry. 2020;25(3):530-543. doi:10.1038/s41380-019-0615-x

Puskar K, Slivka C, Lee H, Martin C, Witt M. A Case Study on Promoting Neuroplasticity in a Patient With Schizophrenia: A Case Study on Promoting Neuroplasticity in a Patient With Schizophrenia. Perspect Psychiatr Care. 2016;52(2):95-101. doi:10.1111/ppc.12104

Norman SL, Wolpaw JR, Reinkensmeyer DJ. Targeting neuroplasticity to improve motor recovery after stroke: an artificial neural network model. Brain Communications. 2022;4(6):fcac264. doi:10.1093/braincomms/fcac264

Qiao C, Liu Z, Qie S. The Implications of Microglial Regulation in Neuroplasticity-Dependent Stroke Recovery. Biomolecules. 2023;13(3):571. doi:10.3390/biom13030571

Aderinto N, AbdulBasit MO, Olatunji G, Adejumo T. Exploring the transformative influence of neuroplasticity on stroke rehabilitation: a narrative review of current evidence. Annals of Medicine & Surgery. 2023;85(9):4425-4432. doi:10.1097/MS9.0000000000001137

Lövdén M, Bäckman L, Lindenberger U, Schaefer S, Schmiedek F. A theoretical framework for the study of adult cognitive plasticity. Psychological Bulletin. 2010;136(4):659-676. doi:10.1037/a0020080

Wojtalik JA, Eack SM, Smith MJ, Keshavan MS. Using Cognitive Neuroscience to Improve Mental Health Treatment: A Comprehensive Review. Journal of the Society for Social Work and Research. 2018;9(2):223-260. doi:10.1086/697566

Zotey V, Andhale A, Shegekar T, Juganavar A. Adaptive Neuroplasticity in Brain Injury Recovery: Strategies and Insights. Cureus. Published online September 24, 2023. doi:10.7759/cureus.45873

Wenger E, Kühn S. Neuroplasticity. In: Strobach T, Karbach J, eds. Cognitive Training: An Overview of Features and Applications. Springer International Publishing; 2021:69-83. doi:10.1007/978-3-030-39292-5_6

Puderbaugh M, Emmady PD. Neuroplasticity - StatPearls - NCBI Bookshelf. 2023. Accessed August 27, 2024. https://www.ncbi.nlm.nih.gov/books/NBK557811/

Hara Y. Brain Plasticity and Rehabilitation in Stroke Patients. J Nippon Med Sch. 2015;82(1):4-13. doi:10.1272/jnms.82.4

Aderinto N, AbdulBasit MO, Olatunji G, Adejumo T. Exploring the transformative influence of neuroplasticity on stroke rehabilitation: a narrative review of current evidence. Annals of Medicine & Surgery. 2023;85(9):4425-4432. doi:10.1097/MS9.0000000000001137

Su F, Xu W. Enhancing Brain Plasticity to Promote Stroke Recovery. Front Neurol. 2020;11:554089. doi:10.3389/fneur.2020.554089

Yang YK, Lin CY, Chen PH, Jhou HJ. Timing and Dose of Constraint-Induced Movement Therapy after Stroke: A Systematic Review and Meta-Regression. JCM. 2023;12(6):2267. doi:10.3390/jcm12062267

Kwakkel G, Veerbeek JM, Van Wegen EEH, Wolf SL. Constraint-induced movement therapy after stroke. The Lancet Neurology. 2015;14(2):224-234. doi:10.1016/S1474-4422(14)70160-7

Peurala SH, Kantanen MP, Sjögren T, Paltamaa J, Karhula M, Heinonen A. Effectiveness of constraint-induced movement therapy on activity and participation after stroke: a systematic review and meta-analysis of randomized controlled trials. Clin Rehabil. 2012;26(3):209-223. doi:10.1177/0269215511420306

Zhou H, Zhang Z, Li R, Xu Y, Bai J. The Efficacy of Task-Based Mirror Therapy for Upper Limb Motor Function in Stroke Patients: A Meta-Analysis of Randomized Controlled Trials. Physikalische Medizin, Rehabilitationsmedizin, Kurortmedizin. 2023;33(02):93-99. doi:10.1055/a-1791-5170

Samudera GA, Prasetya H, Murti B. Effectiveness of Mirror Therapy on Post Stroke Functional Ability: A Meta-Analysis. INDONES J MED. 2023;8(1):1-11. doi:10.26911/theijmed.2023.08.01.01

Lim KB, Lee HJ, Yoo J, Yun HJ, Hwang HJ. Efficacy of Mirror Therapy Containing Functional Tasks in Poststroke Patients. Ann Rehabil Med. 2016;40(4):629. doi:10.5535/arm.2016.40.4.629

Kim JH, Lee B. Mirror Therapy Combined With Biofeedback Functional Electrical Stimulation for Motor Recovery of Upper Extremities After Stroke: A Pilot Randomized Controlled Trial. Occupation Therapy Intl. 2015;22(2):51-60. doi:10.1002/oti.1384

Chen Z, Wang C, Fan W, et al. Robot-Assisted Arm Training versus Therapist-Mediated Training after Stroke: A Systematic Review and Meta-Analysis. Karjalainen PA, ed. Journal of Healthcare Engineering. 2020;2020:1-10. doi:10.1155/2020/8810867

Kawakami M, Takahashi Y, Okada K, et al. The effect of robotized knee-ankle-foot orthosis-assisted gait training on genu recurvatum during gait: a safety and feasibility study in healthy participants and patients with chronic stroke. Published online April 5, 2022. doi:10.21203/rs.3.rs-1502469/v1

Wang L, Zheng Y, Dang Y, et al. Effects of robot-assisted training on balance function in patients with stroke: A systematic review and meta-analysis. J Rehabil Med. 2021;53(4):jrm00174. doi:10.2340/16501977-2815

Zhang C, Huang MZ, Kehs GJ, Braun RG, Cole JW, Zhang LQ. Intensive In-Bed Sensorimotor Rehabilitation of Early Subacute Stroke Survivors With Severe Hemiplegia Using a Wearable Robot. IEEE Trans Neural Syst Rehabil Eng. 2021;29:2252-2259. doi:10.1109/TNSRE.2021.3121204

Kim DH, Kim KH, Lee SM. The effects of Virtual Reality Training with Upper Limb Sensory Exercise Stimulation on the AROM of Upper Limb Joints, Function, and Concentration in Chronic Stroke Patients. Physikalische Medizin, Rehabilitationsmedizin, Kurortmedizin. 2020;30(02):86-94. doi:10.1055/a-0917-4604

Pervaiz H, Kousar R, Islam F, Raza Thakur A, Gulzar K, Asif S. Effectiveness of Virtual Rehabilitation Versus Therapeutic Exercises in the Balance Training of Lower Limb Among Post-Stroke Patients: Virtual Rehabilitation in Patients with Stroke. THJ. 2023;3(1):306-313. doi:10.55735/hjprs.v3i1.119

Rodríguez-Hernández M, Criado-Álvarez JJ, Corregidor-Sánchez AI, Martín-Conty JL, Mohedano-Moriano A, Polonio-López B. Effects of Virtual Reality-Based Therapy on Quality of Life of Patients with Subacute Stroke: A Three-Month Follow-Up Randomized Controlled Trial. IJERPH. 2021;18(6):2810. doi:10.3390/ijerph18062810

Wang X, Ge L, Hu H, Yan L, Li L. Effects of Non-Invasive Brain Stimulation on Post-Stroke Spasticity: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Brain Sciences. 2022;12(7):836. doi:10.3390/brainsci12070836

Shen Q ru, Hu M ting, Feng W, Li KP, Wang W. Narrative Review of Noninvasive Brain Stimulation in Stroke Rehabilitation. Med Sci Monit. 2022;28. doi:10.12659/MSM.938298

Takeuchi N, Izumi SI. Noninvasive Brain Stimulation for Motor Recovery after Stroke: Mechanisms and Future Views. Stroke Research and Treatment. 2012;2012:1-10. doi:10.1155/2012/584727

Liu M, Bao G, Bai L, Yu E. The role of repetitive transcranial magnetic stimulation in the treatment of cognitive impairment in stroke patients: A systematic review and meta-analysis. Science Progress. 2021;104(2):003685042110042. doi:10.1177/00368504211004266

Li H, Li L, Zhang R, et al. Effectiveness of repetitive transcranial magnetic stimulation on poststroke dysphagia: a meta-analysis of randomized-controlled trials. International Journal of Rehabilitation Research. 2022;45(2):109-117. doi:10.1097/MRR.0000000000000517

Devi M, Arumugum N, Midha D. Combined effect of transcranial direct current stimulation (tDCS) and functional electrical stimulation (FES) on upper limb recovery in patients with subacute stroke. JNSK. 2019;9(3). doi:10.15406/jnsk.2019.09.00364

Marquez J, Van Vliet P, McElduff P, Lagopoulos J, Parsons M. Transcranial Direct Current Stimulation (tDCS): Does it Have Merit in Stroke Rehabilitation? A Systematic Review. International Journal of Stroke. 2015;10(3):306-316. doi:10.1111/ijs.12169

Geroin C, Picelli A, Munari D, Waldner A, Tomelleri C, Smania N. Combined transcranial direct current stimulation and robot-assisted gait training in patients with chronic stroke: a preliminary comparison. Clin Rehabil. 2011;25(6):537-548. doi:10.1177/0269215510389497

Shaker HA, Sawan SAE, Fahmy EM, Ismail RS, Elrahman SAEA. Effect of transcranial direct current stimulation on cognitive function in stroke patients. Egypt J Neurol Psychiatry Neurosurg. 2018;54(1):32. doi:10.1186/s41983-018-0037-8

Saeys W, Vereeck L, Lafosse C, Truijen S, Wuyts FL, Van De Heyning P. Transcranial direct current stimulation in the recovery of postural control after stroke: a pilot study. Disability and Rehabilitation. 2015;37(20):1857-1863. doi:10.3109/09638288.2014.982834

Matinyan SV. THE ROLE OF DEEP BRAIN STIMULATION IN THE RECOVERY OF STROKE PATIENTS. MSEJ. 2022;(34):13-17. doi:10.56936/18291775-2022.34-13

Choi B, Kim Y, Jeon S. Vascular changes caused by deep brain stimulation using double-dose gadolinium-enhanced brain MRI. Neural Regen Res. 2014;9(3):276. doi:10.4103/1673-5374.128221

Ejma M, Madetko N, Brzecka A, et al. The Role of Stem Cells in the Therapy of Stroke. CN. 2022;20(3):630-647. doi:10.2174/1570159X19666210806163352

Lees JS, Sena ES, Egan KJ, et al. Stem Cell-Based Therapy for Experimental Stroke: A Systematic Review and Meta-Analysis. International Journal of Stroke. 2012;7(7):582-588. doi:10.1111/j.1747-4949.2012.00797.x

Hamblin MH, Lee JP. Neural Stem Cells for Early Ischemic Stroke. IJMS. 2021;22(14):7703. doi:10.3390/ijms22147703

Chi K, Fu RH, Huang YC, et al. Therapeutic Effect of Ligustilide-Stimulated Adipose-Derived Stem Cells in a Mouse Thromboembolic Stroke Model. Cell Transplant. 2016;25(5):899-912. doi:10.3727/096368916X690539

Borlongan CV, Glover L, Sanberg P, Hess D. Permeating the Blood Brain Barrier and Abrogating the Inflammation in Stroke: Implications for Stroke Therapy. curr pharm des. 2012;18(25):3670-3676. doi:10.2174/138161212802002841

Jeong H, Yim HW, Cho Y seung, et al. Efficacy and Safety of Stem Cell Therapies for Patients with Stroke: a Systematic Review and Single Arm Meta-Analysis. Int J Stem Cells. 2014;7(2):63-69. doi:10.15283/ijsc.2014.7.2.63

Permana AT, Bajamal AH, Parenrengi MA, Suroto NS, Lestari P, Fauzi AA. Clinical outcome and safety of stem cell therapy for ischemic stroke: A systematic review and meta-analysis. Surgical Neurology International. 2022;13:206. doi:10.25259/SNI_1174_2021

Li F, Zhang D, Chen J, Tang K, Li X, Hou Z. Research hotspots and trends of brain-computer interface technology in stroke: a bibliometric study and visualization analysis. Front Neurosci. 2023;17:1243151. doi:10.3389/fnins.2023.1243151

Zhao CG, Ju F, Sun W, et al. Effects of Training with a Brain–Computer Interface-Controlled Robot on Rehabilitation Outcome in Patients with Subacute Stroke: A Randomized Controlled Trial. Neurol Ther. 2022;11(2):679-695. doi:10.1007/s40120-022-00333-z

Yang W, Zhang X, Li Z, Zhang Q, Xue C, Huai Y. The Effect of Brain–Computer Interface Training on Rehabilitation of Upper Limb Dysfunction After Stroke: A Meta-Analysis of Randomized Controlled Trials. Front Neurosci. 2022;15:766879. doi:10.3389/fnins.2021.766879

Sinha AM, Nair VA, Prabhakaran V. Brain-Computer Interface Training With Functional Electrical Stimulation: Facilitating Changes in Interhemispheric Functional Connectivity and Motor Outcomes Post-stroke. Front Neurosci. 2021;15:670953. doi:10.3389/fnins.2021.670953

Szelenberger R, Kostka J, Saluk-Bijak J, Miller E. Pharmacological Interventions and Rehabilitation Approach for Enhancing Brain Self-repair and Stroke Recovery. CN. 2019;18(1):51-64. doi:10.2174/1570159X17666190726104139

Wang H, Gaur U, Xiao J, Xu B, Xu J, Zheng W. Targeting phosphodiesterase 4 as a potential therapeutic strategy for enhancing neuroplasticity following ischemic stroke. Int J Biol Sci. 2018;14(12):1745-1754. doi:10.7150/ijbs.26230

Tao D, Liu F, Sun X, et al. Bumetanide: A review of its neuroplasticity and behavioral effects after stroke. RNN. 2019;37(4):397-407. doi:10.3233/RNN-190926

Downloads

Published

2024-11-30

How to Cite

Selohandono, A., Zamroni, & Budi Rahayu, A. . (2024). Emerging Neuroplasticity-based Therapies in Stroke Rehabilitation: Literature Review. Ahmad Dahlan Medical Journal, 5(2), 205–219. https://doi.org/10.12928/admj.v5i2.11626

Issue

Section

Review Article