Peningkatan Kestabilan Quadrotor menggunakan Kendali Linear Quadratic Regulator dengan Kompensasi Integrator dalam Mempertahankan Posisi

Authors

  • Oktaf Agni Dhewa Universitas Negeri Yogyakarta
  • Faisal Fajri Rahani Universitas Ahmad Dahlan

DOI:

https://doi.org/10.12928/biste.v4i2.6808

Keywords:

UAV Quadrotor, Position Holding Stability, Optimal Control, Integrator

Abstract

The quadrotor's ability to maintain position is a major requirement for the completion of various current missions. However, the large steady-state error (SSE) and multiple overshoots due to environmental disturbances cause flight instability. This condition makes Quadrotor unable to complete the mission optimally. Therefore, in this study applying a linear quadratic regulator control method, this research contributes to the addition of integrator compensation in handling the translational movement of the quadrotor. System model design testing is carried out by comparing quadrotor control using the LQR method without an Integrator and LQR with an Integrator. The value of R=1 for all states and Q_x=0.87, Q_y=124.6, Q_(v_x)=1.77, Q_(v_y)=124.6 and Ki_x=0,004, Ki_y=0.002 makes the SSE tendency that occurs 0.10 meters for the x-axis and -0.28 for the y-axis, while the multi-overshoot that occurs is 0.41 m for the maximum deviation and -1.35 m for the minimum deviation on the x-axis and 0.40 m maximum deviation and 0.47 m minimum deviations on the y axis. The test results show that the LQR control method with Integrator compensation is able to minimize and improve SSE and multiple overshoots that occur in quadrotor flights. In addition, it is able to significantly increase accuracy to 100% from 71.38% and precision to 37.71% from 35.91%.
Kemampuan quadrotor dalam mempertahankan posisi menjadi kebutuhan utama untuk penyelesaian berbagai misi saat ini. Namun, besarnya steady state error (SSE) dan multiple overshoot karena gangguan lingkungan menyebabkan ketidakstabilan gerak terbang. Kondisi tersebut menjadikan quadrotor tidak mampu menyelesaikan misi secara optimal. Maka dari itu, pada penelitian ini menerapkan sebuah metode kendali Linear Quadratic Regulator penelitian ini memiliki kontribusi dengan penambahan kompensasi Integrator dalam menangani pergerakan translasi quadrotor. Pengujian desain model sistem, dilakukan dengan membandingkan antara pengendalian quadrotor menggunakan metode LQR tanpa Integrator dan LQR dengan Integrator. Nilai R=1 untuk semua state serta Q_x=0,87; Q_y=124,6; Q_(v_x)=1,77; Q_(v_y)=124,6 dan Ki_x=0,004; Ki_y=0,002 menjadikan kecenderungan SSE yang terjadi sebesar 0,10 m untuk sumbu x dan -0,28 m untuk sumbu y, sedangkan multi overshoot yang terjadi sebesar 0,41 meter simpangan maksimal dan -1,35 m simpangan minimal pada sumbu x serta 0,40 m simpangan maksimal dan 0,47 meter simpangan minimal pada sumbu y. Hasil pengujian tersebut menunjukkan bahwa metode LQR dengan kompensasi Integrator mampu meminimalkan dan memperbaiki SSE maupun multiple overshoot yang terjadi pada penerbangan quadrotor. Selain itu juga mampu meningkatkan akurasi secara signifikan sebesar 100% dari 71,38% serta presisi sebesar 37,71% dari 35,91%.

References

M. S. Mahmoud, M. O. Oyedeji, and Y. Xia, “Path planning in autonomous aerial vehicles,” in Advanced Distributed Consensus for Multiagent Systems, Elsevier, 2021, pp. 331–362, https://doi.org/10.1016/B978-0-12-821186-1.00018-0.

J. Jaykumar and S. D. Gowda, “Drone types and its applications-A survey,” International Research Journal of Engineering and Technology, vol. 7, no. 6, 2020, https://www.irjet.net/archives/V7/i6/IRJET-V7I61362.pdf.

O. A. Dhewa, A. Dharmawan, and T. K. Priyambodo, “Model of linear quadratic regulator (LQR) control method in hovering state of quadrotor,” Journal of Telecommunication, Electronic and Computer Engineering, vol. 9, no. 3, 2017, https://jtec.utem.edu.my/jtec/article/view/1589.

R. Dainelli, P. Toscano, S. F. di Gennaro, and A. Matese, “Recent Advances in Unmanned Aerial Vehicle Forest Remote Sensing—A Systematic Review. Part I: A General Framework,” Forests, vol. 12, no. 3, p. 327, Mar. 2021, https://doi.org/10.3390/f12030327.

A. Houari, I. Bachir, D. K. Mohame, and M. K. Mohamed, “PID vs LQR controller for tilt rotor airplane,” International Journal of Electrical and Computer Engineering (IJECE), vol. 10, no. 6, p. 6309, Dec. 2020, https://doi.org/10.11591/ijece.v10i6.pp6309-6318.

A. Dharmawan, A. Ashari, and A. E. Putra, “Translation Movement Stability Control of Quad Tiltrotor Using LQR and LQG,” International Journal of Intelligent Systems and Applications, vol. 10, no. 3, pp. 10–21, Mar. 2018, https://doi.org/10.5815/ijisa.2018.03.02.

O. A. Dhewa, T. K. Priyambodo, A. Nasuha, and Y. M. Mustofa, “Enhancement of Stability on Autonomous Waypoint Mission of Quadrotor using LQR Integrator Control,” IIUM Engineering Journal, vol. 23, no. 1, 2022, https://doi.org/10.31436/iiumej.v23i1.1803.

M. Eatemadi, “Mathematical Dynamics, Kinematics Modeling and PID Equation Controller of QuadCopter,” International Journal of Applied Operational Research, vol. 7, no. 1, pp. 77-85, 2017, http://ijorlu.liau.ac.ir/browse.php?a_id=503&sid=1&slc_lang=en.

L. R. García Carrillo, A. E. Dzul López, R. Lozano, and C. Pégard, Quad Rotorcraft Control, Springer London, 2013, https://doi.org/10.1007/978-1-4471-4399-4.

G. P. Rible, N. A. Arriola, and M. R. Jr., “Modeling and Implementation of Quadcopter Autonomous Flight Based on Alternative Methods to Determine Propeller Parameters,” Advances in Science, Technology and Engineering Systems Journal, vol. 5, no. 5, pp. 727–741, 2020, https://doi.org/10.25046/aj050589.

W. Giernacki, J. Gośliński, J. Goślińska, T. Espinoza-Fraire, and J. Rao, “Mathematical Modeling of the Coaxial Quadrotor Dynamics for Its Attitude and Altitude Control,” Energies (Basel), vol. 14, no. 5, p. 1232, Feb. 2021, https://doi.org/10.3390/en14051232.

K. Ogata, Modern control engineering, Prentice-Hall, 2010, https://books.google.co.id/books?id=Ca4rAAAAQBAJ&hl=en.

M. Haidekker, Linear Feedback Controls. Elsevier, 2020, https://doi.org/10.1016/C2018-0-00115-2.

R. C. Hibbeler, Engineering Mechanics: Dynamics, 15th ed. Pearson, 2021, https://books.google.co.id/books?id=tOFRjXB-XvMC&hl=en.

F. Ahmad, P. Kumar, A. Bhandari, and P. P. Patil, “Simulation of the Quadcopter Dynamics with LQR based Control,” Mater Today Proc, vol. 24, pp. 326–332, 2020, https://doi.org/10.1016/j.matpr.2020.04.282.

L. Martins, C. Cardeira, and P. Oliveira, “Linear Quadratic Regulator for Trajectory Tracking of a Quadrotor,” IFAC-PapersOnLine, vol. 52, no. 12, pp. 176–181, 2019, https://doi.org/10.1016/j.ifacol.2019.11.195.

A. Ma’arif and N. R. Setiawan, “Control of DC Motor Using Integral State Feedback and Comparison with PID: Simulation and Arduino Implementation,” Journal of Robotics and Control (JRC), vol. 2, no. 5, 2021, https://doi.org/10.18196/jrc.25122.

R. Gill and R. D’Andrea, “Propeller thrust and drag in forward flight,” in 2017 IEEE Conference on Control Technology and Applications (CCTA), Aug. 2017, pp. 73–79, https://doi.org/10.1109/CCTA.2017.8062443.

A. B. Zakaria and A. Dharmawan, “Sistem Kendali Penghindar Rintangan Pada Quadrotor Menggunakan Konsep Linear Quadratic,” IJEIS (Indonesian Journal of Electronics and Instrumentation Systems), vol. 7, no. 2, p. 219, Oct. 2017, https://doi.org/10.22146/ijeis.25503.

A. Winursito and G. N. P. Pratama, “LQR state feedback controller with precompensator for magnetic levitation system,” J Phys Conf Ser, vol. 2111, no. 1, p. 012004, Nov. 2021, https://doi.org/10.1088/1742-6596/2111/1/012004.

Downloads

Published

2022-11-28

How to Cite

[1]
O. A. Dhewa and F. F. Rahani, “Peningkatan Kestabilan Quadrotor menggunakan Kendali Linear Quadratic Regulator dengan Kompensasi Integrator dalam Mempertahankan Posisi”, Buletin Ilmiah Sarjana Teknik Elektro, vol. 4, no. 2, pp. 62–75, Nov. 2022.

Issue

Section

Artikel

Most read articles by the same author(s)