Implementasi Waypoint Menggunakan GPS pada UAV untuk Mendapatkan Akurasi Terbaik dengan Pengontrol PID

Authors

  • Ade Firli Ansyori University Ahmad Dahlan
  • Anton Yudhana Universitas Ahmad Dahlan

DOI:

https://doi.org/10.12928/biste.v3i3.4851

Keywords:

Fixed Wings, UAV, PID, GPS, Waypoint

Abstract

Unmanned Aerial Vehicles (UAV) is an unmanned aerial vehicle from a technical point of view, a UAV can be defined as an aircraft equipped with the necessary data processing units, sensors, automatic control, and communication systems, and capable of performing autonomous flight missions without manual intervention. This research is a research development and testing of the capabilities of fixed-wing aircraft, on flight missions, fixed-wing aircraft are often less precise so the accuracy of UAV flights is very influential in the intended coordinate mission in determining flight accuracy by following the coordinate point data provided obtained via GPS (Global Positioning System) can be minimized by setting the value of the PID manually on the Mission Planner so that the fixed-wing aircraft vehicle can go to its destination with precision at a predetermined coordination point. tracking can follow the desired coordinate point. With a PID value of P:0.65 I:0.3, D:6. The error distance generated by the fixed-wing aircraft from each coordinate point destination that has been given to the mission planner gets an error distance value of ± 3 m, with a level of precision in the Good category or the medium category.

Unmanned Aerial Vehicles (UAV) merupakan salah satu wahana tanpa awak di udara dari sudut pandang teknis, UAV dapat didefinisikan sebagai pesawat yang dilengkapi dengan unit pengolah data yang diperlukan, sensor, sistem kontrol dan komunikasi otomatis, dan mampu melakukan misi penerbangan otonomus tanpa intervensi manual. Penelitian ini merupakan penelitian pengembangan dan menguji kemampuan wahana pesawat fixed-wings, pada misi penerbangan wahana pesawat fixed-wing sering kali kurang presisi sehingga keakuratan pada penerbangan UAV sangat berpengaruh dalam suatu misi koordinat yang dituju, sehingga dalam menentukan keakurasian penerbangan dengan mengikuti data titik koordinasi yang di dapatkan melalui GPS (Global Positioning System) dapat diminimalisi dengan mengatur nilai dari PID-nya secara manual pada Mission Planner, sehingga wahana  pesawat fixed-wing dapat menuju lokasi tujuannya dengan presisi pada titik koordinasi yang telah di tentukan., Dari simulasi penelitian diperoleh proses tracking dapat mengikuti titik koordinat yang diinginkan. Dengan nilai PID sebesar P:0.65 I:0.3, D:6. Jarak error yang dihasilkan dari wahana pesawat fixed-wings dari setiap tujuan titik koordinat yang telah diberikan pada mission planner mendapatkan nilai jarak error ± 3 m, dengan tingkatan presisi pada katagori Good atau katagori yang sedang.

Author Biography

Anton Yudhana, Universitas Ahmad Dahlan

Program Studi Teknik Elektro

References

S. A. Akbar and A. Yudhana, “Wahana quadcopter bagi lahan tanaman padi,” J. Ecotipe, vol. 3, no. 2, pp. 1–5, 2016, https://doi.org/10.33019/ecotipe.v3i2.22

N. S. Widodo, A. Yudhana, and Sunardi, “Low cost open source based uav for aerial photography,” Int. J. Innov. Res. Adv. Eng., vol. 1, no. 10, pp. 416–424, 2014.

H. S. Saroinsong, V. C. Poekoel, and P. D. Manembu, “Rancang bangun wahana pesawat tanpa awak (Fixed Wing) berbasis ardupilot,” E-Journal Tek. Elektro Dan Komput., vol. 7, no. 1, pp. 73–84, 2018, https://ejournal.unsrat.ac.id/index.php/elekdankom/article/view/19195.

A. U. Darajat, M. Komarudin, and S. R. Sulistiyanti, “Sistem Telemetri Unmanned Aerial Vehicle (UAV) BERBASIS Inertial Measurement Unit (IMU),” Electr. J. Rekayasa dan Tek. Elektro, vol. 6, no. 3, pp. 169–177, 2012, https://electrician.unila.ac.id/index.php/ojs/article/view/87.

M. R. Radhelan, E. Syafrianti, and L. O. Sari, “Pemanfaatan UAV Jenis Quadcopter Dengan Terbang Otomatis Untuk Perbandingan Titik Koordinat Google Map Dengan Glonass,” Jurnal Online Mahasiswa (JOM) Bidang Teknik dan Sains, vol. 7, pp. 1–8, 2020, https://jom.unri.ac.id/index.php/JOMFTEKNIK/article/view/28339.

R. Hidayat and R. Mardiyanto, “Pengembangan Sistem Navigasi Otomatis pada UAV ( Unmanned Aerial Vehicle ) dengan GPS (Global Positioning System) Waypoint,” Jurnal Teknik ITS, vol. 5, no. 2, 2016, https://doi.org/10.12962/j23373539.v5i2.16342.

S. Wang, Z. Zhen, J. Jiang, and X. Wang, “Flight tests of autopilot integrated with fault-tolerant control of a small fixed-wing UAV,” vol. 2016, 2016, https://doi.org/10.1155/2016/2141482.

A. Hermawan and M. Muliady, “Realisasi dan Tuning Pengontrolan PID drone fixed wing untuk pemetaan udara,” J. Tek. Elektro dan Komput. TRIAC, vol. 6, no. 2, 2019, https://doi.org/10.21107/triac.v6i2.5846.

I. P. H. Prayogo, F. J. Manoppo, and L. I. R. Lefrandt, “Pemanfaatan teknologi unmanned aerial vehicle (uav) quadcopter dalam pemetaan digital (fotogrametri) menggunakan kerangka ground control point (GCP),” Jurnal Ilmiah Media Engineering, vol. 10, no. 1, 2020, https://ejournal.unsrat.ac.id/index.php/jime/article/view/29422.

W. Styorini, I. Renaldo, and W. Khabzli, “Quadcopter (UAV) akurasi tinggi dengan metode penggabungan GPS dan GLONASS,” Seminar Nasional Teknologi Informasi, Komunikasi dan Industri (SNTIKI 2019), pp. 542–548, 2019, http://ejournal.uin-suska.ac.id/index.php/SNTIKI/article/view/8025.

H. S. Widodo, R. E. A. Kadier, and J. Susila, “Perancangan dan implementasi kontroler pid untuk pengaturan heading dan pengaturan arah pada fixed-wing unmanned aerial vehicle (UAV),” J. Tek. ITS, vol. 1, no. 1, pp. A174–A178, 2012, http://ejurnal.its.ac.id/index.php/teknik/article/view/273.

H. S. Widodo, R. E. A. Kadier, and J. Susila, “Perancangan dan implementasi kontroler pid untuk pengaturan heading dan pengaturan arah pada fixed-wing unmanned aerial vehicle (UAV),” J. Tek. ITS, vol. 1, no. 1, pp. A174–A178, 2012, http://ejurnal.its.ac.id/index.php/teknik/article/view/273.

D. B. Widyantara, R. Sumiharto, and S. B. Wibowo, “Purwarupa sistem kendali kestabilan pesawat tanpa awak sayap tetap menggunakan robust PID,” IJEIS (Indonesian J. Electron. Instrum. Syst., vol. 6, no. 2, p. 139, 2016, https://doi.org/10.22146/ijeis.15260.

A. Yudhana, N. S. Widodo, and Sunardi, “Implementation of Quadcopter for Capturing Panoramic Image at Sedayu Bantul,” Int. Conf. Comput. Sci. Eng., pp. 37–39, 2014, https://seminar.ilkom.unsri.ac.id/index.php/iconcse/article/view/8.

J. D. Setiawan, A. Widodo, and D. B. Nugroho, “Perancangan dan Pembuatan Platform Validasi Inertial Measurement Unit (IMU),” Rotasi, vol. 13, no. 1, pp. 1–7, 2013, https://ejournal.undip.ac.id/index.php/rotasi/article/view/4416.

M. D. Dzulfiqar and N. S. Widodo, “Implementasi PID navigasi pelacakan titik api dengan sensor flame array pada robot hexapod KRPAI,” Buletin Ilmiah Sarjana Teknik Elektro, vol. 1, no. 3, pp. 131–143, 2019, https://doi.org/10.12928/biste.v1i3.1126.

C. A. Rokhmana, and D. Atunggal, “Kajian penggunaan gps modul pada penentuan posisi exposure dalam misi UAV,” FIT-ISI dan CGISE, 2016, https://www.researchgate.net/profile/Dedi-Atunggal/publication/332012445.

A. K. Rahman, H. Supriyanto, and T. Meizinta, “Rancang bangun dan implementasi sistem kendali quadcopter melalui jaringan internet berbasis lokasi menggunakan smartphone android,” Seminar Nasional Instrumentasi, Kontrol dan Otomasi, 2018, https://doi.org/10.5614/sniko.2018.35.

S. Sugeng, R. A. Putra, R. F. Muslim, and Y. Septianto, “Unmanned aerial vehicle (UAV) for mapping plantation Area,” Telekontran J. Ilm. Telekomun. Kendali dan Elektron. Terap., vol. 7, no. 1, pp. 79–89, 2019, https://doi.org/10.34010/telekontran.v7i1.1642.

Q. Dermawan, M. Sadli, and A. Bintoro, “Penggunaan motor dc brushless sunny sky x2212-13 kv : 980 ii pada perancangan quadcopter,” Jurnal Energi Elektrik, vol. 7, no. 2, p. 39, 2018, https://doi.org/10.29103/jee.v7i2.1060.

Downloads

Published

2022-04-06

How to Cite

[1]
A. F. Ansyori and A. Yudhana, “Implementasi Waypoint Menggunakan GPS pada UAV untuk Mendapatkan Akurasi Terbaik dengan Pengontrol PID”, Buletin Ilmiah Sarjana Teknik Elektro, vol. 3, no. 3, pp. 210–220, Apr. 2022.

Issue

Section

Artikel