Relative risk of COVID-19 pandemic and regional inflation convergence in Indonesia: Spatial panel data approach

Authors

DOI:

https://doi.org/10.12928/optimum.v14i1.8935

Keywords:

Relative risk, Inflation convergence, COVID-19 pandemic, Spatial panel data, Bayesian spatial model

Abstract

The purpose of this study is to investigate the relationship between the risk of a COVID-19 pandemic and regional inflation convergence in Indonesia. Because the COVID-19 recession differs from the previous inflation recession, it is important to investigate regional inflation convergences in order to evaluate the inflation rate and the impact of macroeconomic policy on inflation convergence. The spatial panel data used in this study ranges from 2020:M3 to 2021:M12. The dynamic econometric spatial panel data model is used to quantify relative risk without spatial or SIRs to calculate the impact of the COVID-19 pandemic on regional inflation convergence in Indonesia. On the contrary, for calculating the risk relative to spatial elements, the CAR Leroux or BSCL Bayesian Spatial Model is used. Using BSCL, the calculation of the relative risk value for the COVID-19 pandemic concludes that Sumatera Island, Java Island, Kalimantan Island, Sulawesi Island, Maluku Island, and Papua Island have high risks, while Bali Island and Nusa Tenggara Island have low risks. In both static and dynamic models, the influence of currency circulation on inflation convergence is positive, and the relative risk of a COVID-19 pandemic on inflation convergence is negative. Monetary phenomena during the COVID-19 pandemic determined inflation behavior in Indonesia. Studies show that the COVID-19 pandemic is a deterrent to inflation convergence, while the circulation of money drives inflation convergence.

Author Biography

Sayifullah Sayifullah, Universitas Sultan Ageng Tirtayasa

Senior Lecturer at Economics Department, University of Sultan Ageng Tirtayasa

References

Anggraeni, D., & Dwiputri, I. N. (2022). Variabel-variabel yang mempengaruhi inflasi di Indonesia. Jurnal Ekonomi Pembangunan, 11(2), 119–128. doi: 10.23960/jep.v11i2.490

Arellano, M., & Bond, S. (1991). Some test of specification for panel data: Monte carlo evidence and an application to employment equations. The Review of Economic Studies, 58(2), 277–297. doi: 10.2307/2297968

Arestis, P., Chortareas, G., Magkonis, G., & Moschos, D. (2014). Inflation targeting and inflation convergence: International evidence. Journal of International Financial Markets, Institutions and Money, 31, 285–295. doi: 10.1016/j.intfin.2014.04.002

Aswi, Sukarna, & Nurhilaliyah. (2022). Pemodelan kasus COVID-19 di Indonesia menggunakan analisis spasial dengan pendekatan Bayesian. Jurnal Matematika Dan Statistika Serta Aplikasinya, 10(2), 40–47. doi: 10.24252/msa.v10i2.33221

Baltagi, B. H. (2005). Econometric analysis of panel data (3rd ed.). John Wiley & Sons, Ltd.

Barro, R. J., & Sala-i-Martin, X. (1992). Convergence. Journal of Political Economy, 100(2). doi: 10.1086/261816

BPS. (2020). Indeks Harga Konsumen dan Inflasi Bulanan Indonesia. https://www.bps.go.id/statictable/2009/06/15/907/indeks-harga-konsumen-dan-inflasi-bulanan-indonesia-2006-2022.html

Elhorst, J. P. (2003). Specification and estimation of spatial panel data models. International Regional Science Review, 26(3), 244–268. doi: 10.1177/0160017603253791

Erdoğan, S., Yildirim, D. Ç., & Gedikli, A. (2020). Dynamics and determinants of inflation during the covid-19 pandemic period in european countries: A spatial panel data analysis. Düzce Tıp Fakültesi Dergisi, 22(Special Issue 1), 61–67. doi: 10.18678/dtfd.794107

Gharehgozli, O., & Lee, S. (2022). Money Supply and Inflation after COVID-19. Economies, 10(5), 101–118. doi: 10.3390/economies10050101

Insukindro, & Utama, C. (2015). Povincial inflation dynamics in Indonesia: Hybrid new keynesian phillips curve approach. EcoMod, 8599.

Khoirudin, R., & Ardini, D. (2023). Analisis determinan inflasi di Indonesia. Management Studies and Entrepreneurship Journal (MSEJ), 4(5), 7378–7390.

Kočenda, E., & Papell, D. H. (1997). Inflation convergence within the European Union: A panel data analysis. International Journal of Finance and Economics, 2(3), 189–198. doi: 10.1002/(SICI)1099-1158(199707)2:3<189::AID-IJFE46>3.0.CO;2-6

Kuncoro, H. (2020). Regional inflation dynamics and its persistence: The case of selected regions in Indonesia. Regional Statistics, 10(2), 95–116. doi: 10.15196/RS100211

Kurniawan, M. L. A., & Prawoto, N. (2014). Pertumbuhan ekonomi dan penentuan titik ambang batas inflasi di Indonesia. Jurnal Ekonomi Dan Studi Pembangunan, 15(1), 71–77.

Kusuma, I. W. (2014). The Dynamics of Indonesian Inflation: What can We Learn from Inflation Disaggregation? Buletin Ekonomi Moneter Dan Perbankan, 16(1), 39–72. doi: 10.21098/bemp.v16i1.437

Levin, A., & Sinha, A. (2020). Limitations on the Effectiveness of Monetary Policy Forward Guidance in the Context of the COVID-19 Pandemic (No. 27748). doi: 10.3386/w27748

Lopez, C., & Papell, D. H. (2012). Convergence of Euro area inflation rates. Journal of International Money and Finance, 31(6), 1440–1458. doi: 10.1016/j.jimonfin.2012.02.010

Mehrota, A. N., Peltonen, T. A., & Rivera, A. S. (2007). Modelling inflation in China - A regional perspective (BOFIT Discussion Paper No.19/2007; ECB Working Paper). doi: 10.2139/ssrn.1010629

Ng, S. (2021). Modeling macroeconomic variations after COVID-19 (No. 29060; NBER Working Paper Series). http://www.nber.org/papers/w29060. doi: 10.3386/w29060

OECD. (2020). Evaluating the initial impact of COVID-19 containment measures on economic activity. http://www.oecd.org/coronavirus/

Paas, T., Kuusk, A., Schlitte, F., & Võrk, A. (2007). Econometric analysis of income convergence in selected EU countries and their nuts 3 level regions (Working Paper No. 60). doi: 10.2139/ssrn.1078863

Purwono, R., Yasin, M. Z., & Mubin, M. K. (2020). Explaining regional inflation programmes in Indonesia: Does inflation rate converge? Economic Change and Restructuring, 53(4), 571–590. doi: 10.1007/s10644-020-09264-x

Ridhwan, M. M. (2016). Inflation differentials, determinants, and convergence: Evidence from Indonesia subnational data. The Journal of Developing Areas, 50(5), 257–276. doi: 10.1353/jda.2016.0030

Tirtosuharto, D., & Adiwilaga, H. (2014). Decentralization and regional inflation in Indonesia. Buletin Ekonomi Moneter Dan Perbankan, 16(2), 149–166. doi: 10.21098/bemp.v16i2.30

Utama, C., Wijaya, M. B. L., & Lim, C. (2017). The role of interest rate and provincial monetary aggregate in maintaining inflation in Indonesia. Bulletin of Monetary Economics and Banking, 19(3), 1–20. doi: 10.21098/bemp.v19i3.666

Verbeek, B. H. (2004). A guide to modern econometric (2nd ed.). John Wiley & Sons, Ltd.

Wahidah, N. L., & Antriyandarti, E. (2021). Impact of climate change and Coronavirus Disease (COVID-19) on inflation in Indonesia. Earth and Environmental Science Paper, 5–9. doi: 10.1088/1755-1315/724/1/012105

Wei, X., & Han, L. (2021). The impact of COVID-19 pandemic on transmission of monetary policy to financial markets. International Review of Financial Analysis, 74(37), 101705. doi: 10.1016/j.irfa.2021.101705

Yuniarti, D., Rosadi, D., & Abdurakhman. (2021). Inflation of Indonesia during the COVID-19 pandemic. Journal of Physics: Conference Series 1821(1), 012039. doi: 10.1088/1742-6596/1821/1/012039

Downloads

Published

2024-04-01

Issue

Section

Articles