Measuring poverty of province of Java using micro data, are the results the same as macro data?
DOI:
https://doi.org/10.12928/optimum.v15i1.10852Keywords:
Multidimensional poverty, IFLS, Micro dataAbstract
Poverty is a problem that still occurs in many countries, both developed and developing countries. One of the important pieces of information from using microdata is to provide a map of the characteristics of the target households. Characteristics of poor households obtained through analysis of micro poverty data. The data used in this study is IFLS (Indonesian Family Life Survey) 5 data using data from the Provinces of DI Yogyakarta, West Java, Central Java, East Java, DKI Jakarta, and Banten. The variables used are characteristic variables from the Multidimensional Poverty Index (MPI) indicators, namely household health, health insurance, school level, and quality of household life in the form of sanitation, drinking water, electricity, cooking fuel, vehicles, electronics, and savings. This study found that there are differences in poverty calculated by applying monetary and multidimensional poverty. This research shows that monetary (consumption) alone is not enough to explain the deprivation faced by the poor. The low level of education, health, and household quality in the form of drinking water is a concern for the government to evaluate existing programs and policies.
References
Adnyani, A. W., & Sugiharti, L. (2019). Profil dan determinan kerentanan kemiskinan rumah tangga. Jurnal Ilmu Ekonomi & Sosial, 10(2), 100-118. https://doi.org/10.35724/jies.v10i2.2412
Akbar, M. F. (2019). Analisis Pola konsumsi rumah tangga di Indonesia melalui pendekatan mikro. Pareto, 2(2), 48-60.
Amartya, S. (1980). Poverty and Famines: an Essay on Entitlement and Deprivation. Clarendon Press.
Amartya, S. (2000). Development as Freedom. Oxford University Press.
Artha, D. R. P., & Dartanto, T. (2014). Multidimensional approach to poverty measurement in Indonesia. LPEM-FEUI Working Paper, 002, 1-17.
Azmi, R. (2014). Analisis beban dan konsumsi listrik rumah tangga Indonesia: Menggunakan Indonesian Family Life Survey. Kajian Ekonomi dan Keuangan, 18(2), 141-154. https://doi.org/10.31685/kek.v18i2.150
Badan Pusat Statistik. (2023). Kemiskinan dan Ketimpangan. https://www.bps.go.id/subject/23/kemiskinan-dan-keimpangan.html#subjekViewTab1
Budiantoro, S., Fanggidae, V., Saputra, W., Maftuchan, A., & Artha, D. R. P. (2013). Multidimensional Poverty Index (MPI) konsep dan pengukurannya di Indonesia. PRAKARSA Economic Policy Working Paper.
Direja, S. (2021). Pengaruh karakteristik individu kepala rumah tangga terhadap kemiskinan di provinsi Banten tahun 2020. Jurnal STEI Ekonomi, 30(02), 01-10. https://doi.org/10.36406/jemi.v30i02.475
Erlando, A., Riyanto, F. D., & Masakazu, S. (2020). Financial inclusion, economic growth, and poverty alleviation: Evidence from eastern Indonesia. Heliyon, 6(10). https://doi.org/10.1016/j.heliyon.2020.e05235
Hanandita, W., & Tampubolon, G. (2016). Multidimensional poverty in Indonesia: Trend over the last decade (2003-2013). Social Indicators Research, 128(2), 559-587. https://doi.org/10.1007/s11205-015-1044-0
Irwan, M., & Moeis, J. P. (2019). Transmisi kemiskinan antargenerasi di Indonesia tahun 1993-2014, Studi data IFLS. Jurnal Ekonomi Dan Pembangunan Indonesia, 19(2), 209-223. https://doi.org/10.21002/jepi.v19i2.728
Kurnianingsih, T. (2012). Dimensi Kemiskinan. Biro Analisa Anggaran Dan Pelaksanaan APBN DPR RI, 47-56.
Nurrika, D., Zhang, S., Discacciati, A., Tomata, Y., Liu, Y., Sugawara, Y., & Tsuji, I. (2020). Education level, monthly per-capita expenditure, and healthy aging in the older Indonesian population: The Indonesia family life survey 2007 and 2014. Tohoku Journal of Experimental Medicine, 250(2), 95-108. https://doi.org/10.1620/tjem.250.95
Rahayu, Luh Riniti, & Lesmana, Putu Surya Wedra. (2019). Moderasi beragama di Indonesia. Intizar, 25(2), 95-100.
Setyari, N. P. W. (2012). Evaluasi dampak kredit mikro terhadap kesejahteraan rumah tangga di Indonesia: Analisis data panel. Jurnal Ekonomi Kuantitatif Terapan, 5(2), 141-150.
Sholeh, M. (2022). Pengaruh pendidikan, jumlah anggota keluarga, dan akses informasi terhadap kemiskinan di indonesia. Jurnal Ekonomi Dan Pendidikan, 19(1). https://doi.org/10.21831/jep.v19i1.55021
Sudirman. (2014). Analisis kemiskinan makro dan mikro Kabupaten Kutai Kartanegara. Jurnal Ilmu Sosial MAHAKAM, 3(1), 19-36. https://doi.org/10.30872/jppa.v1i2.184
Sumarno, J. P., Oktaviani, L., & Aditya, Y. (2019). Pengaruh tingkat pendidikan terhadap kondisi ekonomi keluarga di Indonesia. Prosiding HERO 2022, 53(9), 204-210.
Suripto, Sukarniati, L., Khasanah, U., Kurniawan, M. L. A., & Istanti. (2024). The role of invesment for poverty alleviation in Yogyakarta: Evidence from logit regression. Jurnal Ekonomi & Studi Pembangunan, 25(1), 188-204. https://doi.org/10.18196/jesp.v25i1.21060
World Bank. (2022). World Bank East Asia and Pacific Economic Update, October 2022 : Reforms for Recovery. In World Bank East Asia and Pacific Economic Update, October 2022 : Reforms for Recovery (Issue October). https://doi.org/10.1596/978-1-4648-1921-6
World Bank. (2023). Pathways Towards Economic Security Indonesia Poverty Assessment.
Wuranti, H. (2022). Increasing risk of poverty in Central Java due to the covid-19 pandemic. Optimum: Jurnal Ekonomi Dan Pembangunan, 12(1), 53-64.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Dania Hellin Amrina, Ferdian Badri, Rodhiah Umaroh, Didit Welly Udjianto
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.