Optimizing the clinker production by using an automation model in raw material feed

Ahmad Hidayat Sutawijaya, Abdul Kayi

Abstract


The clinker production process involves much equipment and material flow; thus, an operating system is needed to regulate and manage the production process. XYZ company uses an operating system for clinker production called Cement Management Quality (CMQ). The CMQ operation on clinker production is considered semi-automatic because it requires many interventions from the operator. Furthermore, the program is limited under specific condition. As a result, the quality of the clinker is decreased, and the energy consumption is increased. The failure of clinker production is related to the CMQ system, and it is vital to solving the problem appropriately. Since the CMQ system is connected with many aspects, it is essential to find the root cause. Root Cause Analysis (RCA) method is suitable to find the root of the problem for a complex system. After researching using RCA, the main problems on the CMQ system is the data not appropriately integrated, and the process algorithm is insufficient. The new integration of data transfer and new algorithms are developed as an attempt to solve the issues. The new data integration model and algorithm are applied through the simulation method as a test case before taking complete corrective action on the CMQ system. The new model's application shows the standard deviation of the process is decreased under the specified threshold. The method provides good results for improving the quality of the clinker production process. It can be used as an essential reference for applying the automation model in the clinker production process.

Keywords


Automation process; Clinker production; Root Cause Analysis; CPPS; Raw Mill

Full Text:

PDF

References


Arias Velásquez, R. M., & Mejía Lara, J. V. (2019). Root cause analysis for shunt reactor failure in 500 kV power system. Engineering Failure Analysis, 104, 1157–1173. https://doi.org/10.1016/j.engfailanal.2019.06.076

Benhelal, E., Shamsaei, E., & Rashid, M. I. (2019). Novel modifications in a conventional clinker making process for sustainable cement production. Journal of Cleaner Production, 221, 389–397. https://doi.org/10.1016/j.jclepro.2019.02.259

Benlamoudi, A., Kadir, A. A., Khodja, M., & Nuruddin, M. F. (2018). Analysis of the cement clinker produced with incorporation of petroleum sludge. Journal of Physics: Conference Series, 995(1). https://doi.org/10.1088/1742-6596/995/1/012070

Bhagath Singh, G. V. P., & Subramaniam, K. V. L. (2019). Production and characterization of low-energy Portland composite cement from post-industrial waste. Journal of Cleaner Production, 239, 118024. https://doi.org/10.1016/j.jclepro.2019.118024

Bill Forsthoffer, W. E. (2005). Root cause analysis techniques. In Forsthoffer’s Rotating Equipment Handbooks (pp. 97–251). https://doi.org/10.1016/b978-185617472-5/50112-x

Cao, L., Shen, W., Huang, J., Yang, Y., Zhang, D., Huang, X., … Ji, X. (2019). Process to utilize crushed steel slag in cement industry directly: Multi-phased clinker sintering technology. Journal of Cleaner Production, 217, 520–529. https://doi.org/10.1016/j.jclepro.2019.01.260

Faure, A., Coudray, C., Anger, B., Moulin, I., Colina, H., Izoret, L., … Smith, A. (2019). Beneficial reuse of dam fine sediments as clinker raw material. Construction and Building Materials, 218, 365–384. https://doi.org/10.1016/j.conbuildmat.2019.05.047

Fridrichová, M., Gazdič, D., Dvořák, K., & Magrla, R. (2017). Optimizing the reactivity of a raw-material mixture for portland clinker firing. Materiali in Tehnologije, 51(2), 219–223. https://doi.org/10.17222/mit.2015.187

Gaharwar, A. S., Gaurav, N., Singh, A., Gariya, H. S., & Bhoora. (2016). A Review Article on Manufacturing Process of Cement, Environmental Attributes, Topography and Climatological Data Station: IMD, Sidhi M.P. Journal of Medicinal Plants Studies, 4(4), 47–53.

Ghobakhloo, M. (2018). The future of manufacturing industry: a strategic roadmap toward Industry 4.0. Journal of Manufacturing Technology Management, 29(6), 910–936. https://doi.org/10.1108/JMTM-02-2018-0057

Joppen, R., Von Enzberg, S., Kuhn, A., & Dumitrescu, R. (2019). A practical Framework for the Optimization of Production Management Processes. Procedia Manufacturing, 33, 406–413. https://doi.org/10.1016/j.promfg.2019.04.050

Lea, J. F., & Rowlan, L. (2019). Production automation. In Gas Well Deliquification. https://doi.org/10.1016/b978-0-12-815897-5.00014-7

Lee, J., Azamfar, M., & Singh, J. (2019). A blockchain enabled Cyber-Physical System architecture for Industry 4.0 manufacturing systems. Manufacturing Letters, 20, 34–39. https://doi.org/10.1016/j.mfglet.2019.05.003

Lins, T., & Oliveira, R. A. R. (2020). Cyber-physical production systems retrofitting in context of industry 4.0. Computers and Industrial Engineering, 139, 106193. https://doi.org/10.1016/j.cie.2019.106193

Makmur, M. M. F., Wibisono, A. T., & Noerochim, L. (2017). Analisis Kegagalan Komponen Driver Plate dalam Cooler Clinker Pada Unit Tuban I PT. Semen Indonesia Tbk. Jurnal Teknik ITS, 6(2). https://doi.org/10.12962/j23373539.v6i2.24490

Mohsen, M., & Yousef Al-Farayh, A. (2015). Cement Manufacturing. Al-Hussein Bin Talal University, pp. 1–25. https://doi.org/10.13140/RG.2.1.3461.0003

Oni, A. O., Fadare, D. A., & Adeboye, L. A. (2017). Thermoeconomic and environmental analyses of a dry process cement manufacturing in Nigeria. Energy, 135, 128–137. https://doi.org/10.1016/j.energy.2017.06.114

Purnawan, I., & Prabowo, A. (2018). Pengaruh Penambahan Limestone terhadap Kuat Tekan Semen Portland Komposit. Jurnal Rekayasa Proses, 11(2), 86. https://doi.org/10.22146/jrekpros.31136

Rijal, S., Indrapriyatna, A. S., & Adi, A. H. B. (2019). Formulation of optimization model of raw material composition to achieve clinker quality standards (Case study PT Semen Padang Plant IV). IOP Conference Series: Materials Science and Engineering, 602(1). https://doi.org/10.1088/1757-899X/602/1/012036

Schmidt, M., Maier, J. T., & Härtel, L. (2020). Data based root cause analysis for improving logistic key performance indicators of a company’s internal supply chain. Procedia CIRP, 86, 276–281. https://doi.org/10.1016/j.procir.2020.01.023

Segata, M., Marinoni, N., Galimberti, M., Marchi, M., Cantaluppi, M., Pavese, A., & De la Torre, Á. G. (2019). The effects of MgO, Na2O and SO3 on industrial clinkering process: phase composition, polymorphism, microstructure and hydration, using a multidisciplinary approach. Materials Characterization, 155(June). https://doi.org/10.1016/j.matchar.2019.109809

Sieniutycz, S. (2020). Systems design: Modeling, analysis, synthesis, and optimization. In Complexity and Complex Thermo-Economic Systems. https://doi.org/10.1016/b978-0-12-818594-0.00005-2

Sutawidjaya, A. H., & Nawangsari, L. C. (2019). Operasi Strategi & Proses Manajemen: Pendekatan Praktis Manajemen Strategi.

Tsamatsoulis, D. (2012). Effective optimization of the control system for the cement raw meal mixing process: Simulating the effect of the process parameters on the product homogeneity. WSEAS Transactions on Circuits and Systems, 11(5), 147–158.

Vogl, G. W., Jameson, N. J., Archenti, A., Szipka, K., & Donmez, M. A. (2019). Root‐cause analysis of wear‐induced error motion changes of machine tool linear axes. International Journal of Machine Tools and Manufacture, 143(February), 38–48. https://doi.org/10.1016/j.ijmachtools.2019.05.004

Wangen, G. B., Hellesen, N., Wangen, G., Torres, H., & Braekken, E. (2017). An Empirical Study of Root-Cause Analysis in Information Security Management. (September), 26–33. Retrieved from https://www.researchgate.net/publication/319753715

Wurzinger, A., Leibinger, H., Jakubek, S., & Kozek, M. (2019). Data driven modeling and nonlinear model predictive control design for a rotary cement kiln. IFAC-PapersOnLine, 52(16), 759–764. https://doi.org/10.1016/j.ifacol.2019.12.054




DOI: https://doi.org/10.12928/ijio.v2i1.3002

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Ahmad Hidayat Sutawijaya, Abdul Kayi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

=================================================================================

International Journal of Industrial Optimization (IJIO)
ISSN: 2714-6006, e-ISSN: 2723-3022
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120 ext. 4902, Fax: +62 274 564604

View IJIO Stats