Optimizing shipping routes to minimize cost using particle swarm optimization

Authors

  • Annur Rahman Universitas Ahmad Dahlan
  • Hayati Mukti Asih Universitas Ahmad Dahlan

DOI:

https://doi.org/10.12928/ijio.v1i1.1605

Keywords:

Traveling Salesman Problem, Particle Swarm Optimization, Product shipping

Abstract

Product shipping is important in the economic process in the company. Efficient product shipping routes should provide low transportation costs. This study based on a case company of CV. Kayana, a distributor of “Sari Rotiâ€, has 4 motorbikes and 2 cars. Each vehicle has their own shipping routes. Nowadays, high distance for each route results on high transportation cost. Therefore, the objective of this study to minimize the distance and cost of product shipping by developing shipping algorithm using Particle Swarm Optimization (PSO) for Traveling Salesman Problem (TSP). The MATLAB software was employed to solve this problem. The solution is obtained by varying the amount of particles and number of iterations. Experimental results proved that the developed PSO is enough effective and efficient to solve shipping routes problem. The results show the proposed model have lower distance and transportation cost. It helps the company in determining the routes for product shipping with minimum transportation cost.

References

Febtysiana, N. F., Yurisinthae, E., & Suyatno, A. (2014). Analisis Dampak Teknologi Budidaya Jagung Terhadap Tingkat Pendapatan dan Distribusi Pendapatan Petani Jagung pada Kawasan Usaha Agribisnis Terpadu (KUAT) Di Rasau Jaya Komplek. 3, 77–86.

Gamayanti, N., Alkafi, A., & Mangatas, R. (2015). Optimisasi Multi Depot Vehicle Routing Problem ( MDVRP ) dengan Variabel Travel Time Menggunakan Algoritma Particle Swarm Optimization. JAVA Journal of Electrical and Electronics Engineering, 13, 18–22.

Huang Lan, Z., & Chunguang, W. (2003). Hybrid Ant Colony algorithm for Traveling Salesman Problem. 13.

Iswari, T., & Asih, A. M. S. (2018). Comparing genetic algorithm and particle swarm optimization for solving capacitated vehicle routing problem. IOP Conference Series: Materials Science and Engineering, 337(1). https://doi.org/10.1088/1757-899X/337/1/012004

Muyassaroh, U. L. (2012). Algiritma Particle Swarm Optimization dengan Local Search (PSO-LS) Sebagai Metode Penyelesaian Uncapacitated Facility Location Problem (UFLP). Universitas Airlangga.

Octora, L., Imran, A., & Susanty, S. (2014). Pembentukan Rute Distribusi Menggunakan Algoritma Clarke & Wright Savings dan Algoritma Sequential Insertion. Reka Integra, 2(2), 1–11.

Sasmita, H. H., Nugroho, A., & Sukmadi, T. (2018). Optimasi Penggunaan Sistem Pengereman Regeneratif dan Pneumatic pada Kereta Rel Listrik Jabodetabek Menggunakan Metode Particle Swarm Optimization (PSO). Transient: Jurnal Ilmiah Teknik Elektro, 7(1), 285-293.

Utamima, A., & Adrian, A. M. (2016). Penyelesaian Masalah Penempatan Fasilitas dengan Algoritma Estimasi Distribusi dan Particle Swarm Optimization. Journal of Information Systems Engineering and Business Intelligence, 2(1), 11–16.

Xu, X. L., Cheng, X., Yang, Z. C., Yang, X. H., & Wang, W. L. (2013). Improved particle swarm optimization for Traveling Salesman Problem. Proceedings - 27th European Conference on Modelling and Simulation, ECMS 2013, (November), 857–862.

Zhang, J., Yang, F., & Weng, X. U. N. (2018). An Evolutionary Scatter Search Particle Swarm Optimization Algorithm for the Vehicle Routing Problem With Time Windows. IEEE Access, 6, 63468–63485. https://doi.org/10.1109/ACCESS.2018.2877767

Downloads

Published

2020-02-29

How to Cite

Rahman, A., & Asih, H. M. (2020). Optimizing shipping routes to minimize cost using particle swarm optimization. International Journal of Industrial Optimization, 1(1), 53–60. https://doi.org/10.12928/ijio.v1i1.1605

Issue

Section

Articles