Advancements in recommender systems: a comprehensive analysis based on data, algorithms, and evaluation
DOI:
https://doi.org/10.12928/ijio.v6i1.11107Keywords:
Recommender system, Systematic literature review, ChatGPT, Metaverse, Diverse user needsAbstract
Systematic review and analysis of recommender systems (RSs) in emerging technologies, new scenarios, and diverse user needs are essential for understanding their development, strengthening research, and ensuring sustainability. Using 286 research papers from major databases, this study adopts a systematic review approach to summarize current challenges and future directions in RSs related to data, algorithms, and evaluation. Five key research topics emerge: algorithmic improvement, domain applications, user behavior & cognition, data processing & modeling, and social impact & ethics. Collaborative filtering and hybrid techniques dominate, but RS performance is constrained by eight data issues, twelve algorithmic issues, and two evaluation issues. Major challenges include cold start, data sparsity, data poisoning, interest drift, device-cloud collaboration, non-causal driven models, multitask conflicts, offline data leakage, and multi-objective balancing. Potential solutions include integrating physiological signals for multimodal modeling, mitigating data poisoning via user behavior analysis, evaluating generative recommendations through social experiments, fine-tuning pre-trained models for device-cloud resource allocation, enhancing causal inference with deep reinforcement learning, training multi-task models using probability distributions, implementing cross-temporal dataset partitioning, and evaluating RS objectives across the full lifecycle. The reviewed literature is sourced from major international databases, with future research aiming for broader exploration.
References
Y. Himeur, S. S. Sohail, F. Bensaali, A. Amira, and M. Alazab, “Latest Trends of Security and Privacy in Recommender Systems: A Comprehensive Review and Future Perspectives”, Computers & Security, vol. 118, pp. 102746, 2022. doi: 10.1016/j.cose.2022.102746.
L. Wu, P. Sun, Y. Fu, et al., "A Neural Influence Diffusion Model for Social Recommendation," in Proceedings of the 42nd international ACM SIGIR conference on research and development in information retrieval, Paris, France, 2019, pp. 235-244. doi: 10.1145/3331184.3331214.
D. Roy and M. Dutta, “A Systematic Review and Research Perspective on Recommender Systems”, Journal of Big Data, vol. 9, no. 1, pp. 1-36, 2022. doi: 10.1186/s40537-022-00592-5.
Y. Himeur, A. Sayed, A. Alsalemi, F. Bensaali, A. Amira, I. Varlamis, M. Eirinaki, C. Sardianos, and G. Dimitrakopoulos, “Blockchain-Based Recommender Systems: Applications, Challenges and Future Opportunities”, Computer Science Review, vol. 43, no. 100439, 2022. doi: 10.1016/j.cosrev.2021.100439.
X. Li, L. Sun, M. Ling, and Y. Peng, “A Survey of Graph Neural Network based Recommendation in Social Networks”, Neurocomputing, vol. 548, pp. 126441, 2023. doi: 10.1016/j.neucom.2023.126441.
S. Wu, F. Sun, W. Zhang, X. Xie, and B. Cui, “Graph Neural Networks in Recommender Systems: A Survey”, ACM Computing Surveys, vol. 55, no. 5, pp. 1-37, 2022. doi: 10.1145/3535101.
A. Aljohani, M. A. Rakrouki, N. Alharbe, and R. Alluhaibi, “A Self-Attention Mask Learning-Based Recommendation System”, IEEE Access, vol. 10, pp. 93017-93028, 2022. doi: 10.1109/ACCESS.2022.3202637.
D. Li, Y. Gao, Z. Wang, H. Qiu, P. Liu, Z. Xiong, and Z. Zhang, “Homogeneous Graph Neural Networks for Third-Party Library Recommendation”, Information Processing & Management, vol. 61, no. 6, pp. 103831, 2024. doi: 10.1016/j.ipm.2024.103831.
R. Kumar, E. Althaqafi, S. G. K. Patro, V. Simic, A. Babbar, D. Pamucar, S. K. Singh, and A. Verma, “Machine and Deep Learning Methods for Concrete Strength Prediction: A Bibliometric and Content Analysis Review of Research Trends and Future Directions”, Applied Soft Computing, vol. 164, pp. 111956, 2024. doi: 10.1016/j.asoc.2024.111956.
J. N. Bondevik, K. E. Bennin, Ö. Babur, and C. Ersch, “A Systematic Review on Food Recommender Systems”, Expert Systems with Applications, vol. 238, no. E, pp. 122166, 2024. doi: 10.1016/j.eswa.2023.122166.
S. Raza, C. Ding, “News Recommender System: A Review of Recent Progress, Challenges, and Opportunities”, Artificial Intelligence Review, vol. 55, pp. 749-800, 2022. doi: 10.1007/s10462-021-10043-x.
D. Nawara, R. Kashef, “IoT-based Recommendation Systems–An Overview”, Proceedings of the 2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), Vancouver, BC, Canada, 2020, pp. 1-7. doi: 10.1109/IEMTRONICS51293.2020.9216391.
J. Zhang, K. Bao, Y. Zhang, W. Wang, F. Feng, and X. He, “Is ChatGPT Fair for Recommendation? Evaluating Fairness in Large Language Model Recommendation”, Proceedings of the 17th ACM Conference on Recommender System, Singapore, Singapore, 2023, pp. 993-999. doi: 10.1145/3604915.3608860.
M. Etemadi, S. B. Abkenar, A. Ahmadzadeh, M. H. Kashani, P. Asghari, M. Akbari, and E. Mahdipour, “A Systematic Review of Healthcare Recommender Systems: Open Issues, Challenges, and Techniques”, Expert Systems with Applications, vol. 213, no. part A, pp. 118823, 2023. doi: 10.1016/j.eswa.2022.118823.
J. Sun, W. Gan, Z. Chen, J. Li, and P. S. Yu, “Big Data Meets Metaverse: A Survey”, arXiv preprint, arXiv: 2022.221016282. Available: arxiv.org.
L. Tightiz, L. M. Dang, S. Padmanaban, and K. Hur, “Metaverse-driven smart grid architecture”, Energy Reports, vol. 12, pp. 2014-2025, 2024. doi: 10.1016/j.egyr.2024.08.027.
Y. Huang, Y. Li, Z. Cai, “Security and Privacy in Metaverse: A Comprehensive Survey”, Big Data Mining and Analytics, vol. 6, no. 2, pp. 234-247, 2023. doi: 10.26599/BDMA.2022.9020047.
A. B. Melchiorre, N. Rekabsaz, E. Parada-Cabaleiro, S. Brandl, O. Lesota, and M. Schedl, “Investigating Gender Fairness of Recommendation Algorithms in the Music Domain”, Information Processing & Management, vol. 58, no. 5, pp. 102666, 2021. doi: 10.1016/j.ipm.2021.102666.
S. Chen, H. Qiu, S. Zhao, Y. Han, W. He, M. Siponen, J. Mou, and H. Xiao, “When More is Less: The Other Side of Artificial Intelligence Recommendation”, Journal of Management Science and Engineering, vol. 7, no. 2, pp. 213-232, 2022. doi: 10.1016/j.jmse.2021.08.001.
J. Chinnadurai, A. Karthik, J. V. Naga Ramesh, S. Banerjee, P. V. Rajlakshmi, K. Venkateswara Rao, D. Sudarvizhi, and A. Rajaram, “Enhancing Online Education Recommendations Through Clustering-Driven Deep Learning”, Biomedical Signal Processing and Control, vol. 97, pp.106669, 2024. doi: 10.1016/j.bspc.2024.106669.
S. Yu, H. Wang, Y. Su, Z. Niu, Z. Li, J. Liu, and J. Wang, “Privacy-Preserving Recommendation System Based on Social Relationships”, Journal of King Saud University - Computer and Information Sciences, vol. 36, no. 2, pp. 101923, 2024. doi: 10.1016/j.jksuci.2024.101923.
T. Markchom, H. Liang, J. Ferryman, “Scalable and Explainable Visually-Aware Recommender Systems”, Knowledge-Based Systems, vol. 263, pp. 110258. doi: 10.1016/j.knosys.2023.110258.
T. Lalitha, P. Sreeja, “Recommendation System Based on Machine Learning and Deep Learning in Varied Perspectives: A Systematic Review”, Information and Communication Technology for Competitive Strategies (ICTCS 2020), vol. 190, pp. 419-432, 2021. doi: 10.1007/978-981-16-0882-7_36.
V. Mohammadi, A. M. Rahmani, A. M. Darwesh, and A. Sahafi, “Trust-Based Recommendation Systems in Internet of Things: A Systematic Literature Review”, Human-Centric Computing and Information Sciences, vol. 9, no. 1, pp. 1-61, 2019. doi: 10.1186/s13673-019-0183-8.
D. Moher, A. Liberati, J. Tetzlaff, D. G. Altman, and P. Group, “Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement”, Annals of Internal Medicine, vol. 151, no. 4, pp. 264-269, 2009. doi: 10.1016/j.ijsu.2010.02.007.
A. Liberati, D. G. Altman, J. Tetzlaff, C. Mulrow, P. C. Gøtzsche, J. P. A. Ioannidis, M. Clarke, P. J. Devereaux, J. Kleijnen, and D. Moher, “The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies that Evaluate Health Care Interventions: Explanation and Elaboration”, Annals of Internal Medicine, vol. 151, np. 4, pp. e1-e34, 2009. doi: 10.7326/0003-4819-151-4-200908180-00136.
A. Pollock, E. Berge, “How to Do a Systematic Review”, International Journal of Stroke, vol. 13, no. 2, pp. 138-156, 2018. doi: 10.1177/1747493017743796.
M. Tavana, S. Sorooshian, “A Systematic Review of the Soft Computing Methods Shaping the Future of the Metaverse”, Applied Soft Computing, vol. 150, pp. 111098, 2024. doi: 10.1016/j.asoc.2023.111098.
C. Pickering, J. Byrne, “The Benefits of Publishing Systematic Quantitative Literature Reviews for PhD Candidates and Other Early-Career Researchers”, Higher Education Research & Development, vol. 33, no. 3, pp. 534-548, 2014. doi: 10.1080/07294360.2013.841651.
R. De Croon, L. Van Houdt, N. N. Htun, G. Štiglic, V. V. Abeele, and K. Verbert, “Health Recommender Systems: Systematic Review”, Journal of Medical Internet Research, vol. 23, no. 6, pp. 1-50, 2021. doi: 10.2196/18035.
I. Kulev, C. Valk, Y. Lu, and P. Pu, “Recommender System for Responsive Engagement of Senior Adults in Daily Activities”, Journal of Population Ageing, vol. 13, no. 1, pp. 167-185, 2020. doi: 10.1007/s12062-020-09263-w.
Y. Liu, W. Zhang, “Design and simulation of precision marketing recommendation system based on the NSSVD++ algorithm”, Neural Computing and Applications, pp. 1-14, 2023. doi: 10.1007/s00521-023-08302-9.
Y. Pan, F. He, H. Yu, “A Novel Enhanced Collaborative Autoencoder with Knowledge Distillation for Top-N Recommender Systems”, Neurocomputing, vol. 332, no. 7, pp. 137-148, 2019. doi: 10.1016/j.neucom.2018.12.025.
Z. Liu, J. Tian, Q. Cai, et al, “Multi-Task Recommendations with Reinforcement Learning”, Proceedings of the ACM Web Conference 2023, Austin, TX, USA, 2023. doi: 10.1145/3543507.3583467.
G. Bansal, K. Rajgopal, V. Chamola, et al, “Healthcare in Metaverse: A Survey on Current Metaverse Applications in Healthcare”, IEEE Access, vol. 10, pp. 119914-119946, 2022. doi: 10.1109/ACCESS.2022.3219845.
Z. Wang, “Intelligent Recommendation Model of Tourist Places Based on Collaborative Filtering and User Preferences”, Applied Artificial Intelligence, vol. 37, no. 1, pp. 1202-1224, 2023. doi: 10.1080/08839514.2023.2203574.
J. Omara, E. Talavera, D. Otim, et al, “A Field-Based Recommender System for Crop Disease Detection Using Machine Learning”, Frontiers in Artificial Intelligence, vol. 6, pp. 1010804, 2023. doi: 10.3389/frai.2023.1010804.
D. Rad, L.D. Cuc, A. Feher, et al, “The Influence of Social Stratification on Trust in Recommender Systems”, Electronics, vol. 12, no. 10, pp. 2160, 2023. doi: 10.3390/electronics12102160.
R. Kuo, H. Cheng, “A Content-Based Recommender System with Consideration of Repeat Purchase Behavior”, Applied Soft Computing, vol. 127, pp. 109361, 2022. doi: 10.1016/j.asoc.2022.109361.
W. Ali, J. Kumar, C. Mawuli, et al, “Dynamic Context Management in Context-Aware Recommender Systems”, Computers and Electrical Engineering, vol. 107, pp. 108622, 2023. doi: 10.1016/j.compeleceng.2023.108622.
T.N. Thanh, N. Quach, T. Nguyen, et al, “Poisoning GNN-Based Recommender Systems with Generative Surrogate-Based Attacks”, ACM Transactions on Information Systems, vol. 41, no. 3, pp. 108622, 2023. doi: 10.1016/j.compeleceng.2023.108622.
Z. Lv, Z. Chen, S. Zhang, et al, “Ideal: Toward High-Efficiency Device-Cloud Collaborative and Dynamic Recommendation System”, arXiv preprint, arXiv: 2023.230207335. doi: 10.48550/arXiv.2302.07335.
Z. Chen, F. Sun, Y. Tang, et al, “Studying the Impact of Data Disclosure Mechanism in Recommender Systems via Simulation”, ACM Transactions on Information Systems, vol. 41, no. 3, pp. 1-26, 2023. doi: 10.1145/3569452.
C. Zhang, X. Duan, F. Liu, et al, “Three-Way Naive Bayesian Collaborative Filtering Recommendation Model for Smart City”, Sustainable Cities and Society, vol. 76, no. 1, pp. 103373, 2022. doi: 10.1016/j.scs.2021.103373.
J. Li, K. Zhang, X. Yang, et al, “Category Preferred Canopy–K-Means Based Collaborative Filtering Algorithm”, Future Generation Computer Systems, vol. 93, pp. 1046-1054, 2019. doi: 10.1016/j.future.2018.04.025.
Q. Zhang, J. Liu, Y. Dai, et al, “Multi-Task Fusion Via Reinforcement Learning for Long-Term User Satisfaction in Recommender Systems”, Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington DC, USA, 2022, pp. 4510-4520. doi: 10.1145/3534678.3539040.
D. Mogaveera, V. Mathur, S. Waghela, “E-Health Monitoring System with Diet and Fitness Recommendation Using Machine Learning”, Proceedings of the 2021 6th International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 2021, pp. 694-700. doi: 10.1109/ICICT50816.2021.9358605.
R. Wang, Y. Jiang, J. Lou, “ADCF: Attentive Representation Learning and Deep Collaborative Filtering Model”, Knowledge-Based Systems, vol. 227, no. 5, pp. 107194, 2021. doi: 10.1016/j.knosys.2021.107194.
Z. Zhu, J. Caverlee, “Fighting Mainstream Bias in Recommender Systems Via Local Fine Tuning”, Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, AZ, USA, 2022, pp. 1497-1506. doi: 10.1145/3488560.3498427.
N. Kermany, W. Zhao, T. Batsuuri, et al, “Incorporating User Rating Credibility in Recommender Systems”, Future Generation Computer Systems, vol. 147, pp. 30-43, 2023. doi: 10.1016/j.future.2023.04.029.
M. Elahi, D. Kholgh, M. Kiarostami, et al, “Hybrid Recommendation by Incorporating the Sentiment of Product Reviews”, Information Sciences, vol. 625, pp. 738-756, 2023. doi: 10.1016/j.ins.2023.01.051.
H. Basha, S. Sangeetha, S. Sasikumar, et al, “A Proficient Video Recommendation Framework Using Hybrid Fuzzy C Means Clustering and Kullback-Leibler Divergence Algorithms”, Multimedia Tools and Applications, vol. 82, no. 14, pp. 20989-21004, 2023. doi: 10.1007/s11042-023-14460-8.
M. Ibrahim, I. Bajwa, N. Sarwar, et al, “Improved Hybrid Deep Collaborative Filtering Approach for True Recommendations”, Computers, Materials & Continua, vol. 74, no. 3, pp. 5301-5317, 2023. doi: 10.32604/cmc.2023.032856.
F. Wayesa, M. Leranso, G. Asefa, et al, “Pattern-Based Hybrid Book Recommendation System Using Semantic Relationships”, Scientific Reports, vol. 13, no. 1, pp. 3693, 2023. doi: 10.1038/s41598-023-30987-0.
C. Channarong, C. Paosirikul, S. Maneeroj, et al, “HybridBERT4Rec: A Hybrid (Content-Based Filtering and Collaborative Filtering) Recommender System Based on BERT”, IEEE Access, vol. 10, pp. 56193-56206, 2022. doi: 10.1109/ACCESS.2022.3177610.
L. Berkani, N. Boudjenah, “S-SNHF: Sentiment Based Social Neural Hybrid Filtering”, International Journal of General Systems, vol. 52, no. 3, pp. 297-325, 2023. doi: 10.1080/03081079.2023.2200248.
J. Zhou, Q. Yu, C. Luo, et al, “Feature Decomposition for Reducing Negative Transfer: A Novel Multi-Task Learning Method for Recommender System”, Proceedings of the AAAI Conference on Artificial Intelligence, Harvard, USA, 2023, vol. 37, no. 13, pp. 16390-16391. doi: 10.1609/aaai.v37i13.27055.
W. Wang, X. Lin, F. Feng, et al, “Generative Recommendation: Towards Next-Generation Recommender Paradigm”, arXiv preprint, arXiv:2023.230403516. doi: 10.48550/arXiv.2304.03516.
Y. Gao, T. Sheng, Y. Xiang, et al, “Chat-Rec: Towards Interactive and Explainable LLMs-Augmented Recommender System”, arXiv preprint, arXiv:2023.230314524. doi: 10.48550/arXiv.2303.14524.
J. Yao, F. Wang, X. Ding, et al, “Device-Cloud Collaborative Recommendation Via Meta Controller”, Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington DC, USA, 2022, pp. 4353-4362. doi: 10.1145/3534678.353918.
M. Ludewig, D. Jannach, “Learning to Rank Hotels for Search and Recommendation from Session-Based Interaction Logs and Meta Data”, Proceedings of the Workshop on ACM Recommender Systems Challenge, Singapore, Singapore, 2019, pp. 1-5. doi: 10.1145/3359555.3359561.
K. Yousaf, T. Nawaz, A. Habib, “Using Two-Stream EfficientNet-BiLSTM Network for Multiclass Classification of Disturbing YouTube Videos”, Multimedia Tools and Applications, vol. 83, no. 12, pp. 36519-36546, 2023. doi: 10.1007/s11042-023-15774-3.
X. Li, Y. Zhang, E. Malthouse, “PBNR: Prompt-Based News Recommender System”, arXiv preprint, arXiv:2023.230407862. doi: 10.48550/arXiv.2304.07862.
S. Sridhar, D. Dhanasekaran, G. Latha, “Content-Based Movie Recommendation System Using MBO with DBN”, Intelligent Automation & Soft Computing, vol. 35, no. 3, pp. 3241-3257, 2023. doi: 10.32604/iasc.2023.030361.
Q. Shambour, “A deep learning based algorithm for multi-criteria recommender systems”, Knowledge-based systems, vol. 211, no. 9, pp. 106545, 2021. DOI: 10.1016/j.knosys.2020.106545.
S. Vu, Q. Le, “A Deep Learning Based Approach for Context-Aware Multi-Criteria Recommender Systems”, Computer Systems Science & Engineering, vol. 44, no. 1, pp. 471–483, 2022. doi: 10.32604/csse.2023.025897.
H. Wang, “PowerMat: Context-Aware Recommender System Without User Item Rating Values That Solves the Cold-Start Problem”, Proceedings of the International Conference on Artificial Intelligence and Industrial Design (AIID 2022), Zhuhai, China, 2023, pp. 274-277. doi: 10.1117/12.2673085.
Y. Gong, Z. Jiang, Y. Feng, et al, “EdgeRec: Recommender System on Edge in Mobile Taobao”, Proceedings of the 29th ACM International Conference on Information & Knowledge Management, Birmingham, United Kingdom, 2020, pp. 2477-2484. doi: 10.1145/3340531.3412700.
Z. Lyu, Y. Wu, J. Lai, et al, “Knowledge Enhanced Graph Neural Networks for Explainable Recommendation”, IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 5, pp. 4954-4968, 2022. doi: 10.1109/TKDE.2022.3142260.
H. Yang, M. Anbarasan, T. Vadivel, “Knowledge-Based Recommender System Using Artificial Intelligence for Smart Education”, Journal of Interconnection Networks, vol. 22, no. Supp02, pp. 2143031, 2022. doi: 10.1142/S0219265921430313.
C. Wu, S. Liu, Z. Zeng, et al, “Knowledge Graph-Based Multi-Context-Aware Recommendation Algorithm”, Information Sciences, vol. 595, pp. 179-194, 2022. doi: 10.1016/j.ins.2022.02.054.
H. Shu, J. Huang, “Multi-Task Feature and Structure Learning for User-Preference Based Knowledge-Aware Recommendation”, Neurocomputing, vol. 532, pp. 43-55, 2023. doi: 10.1016/j.neucom.2023.02.023.
Y. Xu, C. Zhu, R. Xu, et al, “Fusing Context into Knowledge Graph for Commonsense Question Answering”, ArXiv preprint, arXiv:2020.201204808. doi: 10.48550/arXiv.2012.04808.
A. Agarwal, D. Mishra, S. Kolekar, “Knowledge-Based Recommendation System Using Semantic Web Rules Based on Learning Styles for MOOCs”, Cogent Engineering, vol. 9, no. 1, pp. 2022568, 2022. doi: 10.1080/23311916.2021.2022568.
B. Heinrich, M. Hopf, D. Lohninger, et al, “Data Quality in Recommender Systems: The Impact of Completeness of Item Content Data on Prediction Accuracy of Recommender Systems”, Electronic Markets, vol. 31, pp. 389-409, 2021. doi: 10.1007/s12525-019-00366-7.
H. Zhou, X. Zhou, Z. Zeng, et al, “A Comprehensive Survey on Multimodal Recommender Systems: Taxonomy, Evaluation, and Future Directions”, arXiv preprint, arXiv:2023.230204473. doi: 10.48550/arXiv.2302.04473.
Z. Huang, X. Xu, J. Ni, et al, “Multimodal Representation Learning for Recommendation in Internet of Things”, IEEE Internet of Things Journal, vol. 6, no. 6, pp. 10675-10685, 2019. doi: 10.1109/JIOT.2019.2940709.
K. Dudekula, H. Syed, M. Basha, et al, “Convolutional Neural Network-Based Personalized Program Recommendation System for Smart Television Users”, Sustainability, vol. 15, no. 3, pp. 2206-2223, 2023. doi: 10.3390/su15032206.
R. Manna, A. Singh, M. Apte, “Demystifying metaverse data from user-technology interaction”, Applied Marketing Analytics, vol. 9, no. 4, pp. 357-374, 2024. Available: https://www.ingentaconnect.com/.
J. Jia, Y. Liu, Y. Hu, et al, “PORE: Provably Robust Recommender Systems Against Data Poisoning Attacks”, 32nd USENIX Security Symposium (USENIX Security 23), 2023, pp. 1703-1720. Available: usenixsecurity23-jia.pdf.
T. Kaya, E. Yalcin, C. Kaleli, “A Novel Classification-Based Shilling Attack Detection Approach for Multi-Criteria Recommender Systems”, Computational Intelligence, vol. 39, no. 3, pp. 499-528, 2023. doi: 10.1111/coin.12579.
A. Li, Y. Ji, G. Chu, et al, “Clustering-Based Supervised Contrastive Learning for Identifying Risk Items on Heterogeneous Graph”, Proceedings of the ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 2023, pp. 1-5. doi: 10.1109/ICASSP49357.2023.10094817.
H. Zhang, Y. Li, B. Ding, et al, “LOKI: A Practical Data Poisoning Attack Framework Against Next Item Recommendations”, IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 5, pp. 5047-5059, 2022. doi: 10.1109/TKDE.2022.3181270.
J. Li, Y. Yang, Z. Wu, et al, “ChatGPT as An Attack Tool: Stealthy Textual Backdoor Attack Via Blackbox Generative Model Trigger”, arXiv preprint, arXiv:2023.230414475. doi: 10.48550/arXiv.2304.14475.
G. Waghmare, B. Posinasetty, M. Shabaz, et al, “Supervised context-aware Latent Dirichlet allocation-based drug recommendation model”, Proceedings of the 2nd International Conference on Next Generation Computing and Information Systems (ICNGCIS 2023), Jammu, J&K, India, 2024, pp. 25-32. doi: 10.1201/9781003466383-8.
G. Yuan, F. Yuan, Y. Li, et al, “Tenrec: A Large-Scale Multipurpose Benchmark Dataset for Recommender Systems”, Advances in Neural Information Processing Systems, vol. 35, pp. 11480-11493, 2022. Available at: neurips.cc.
F. Zhu, Y. Wang, C. Chen, et al, “Cross-Domain Recommendation: Challenges, Progress, and Prospects”, arXiv preprint, arXiv:2021.210301696. doi: 10.48550/arXiv.21403.01696.
S. Dai, N. Shao, H. Zhao, et al, “Uncovering ChatGPT's Capabilities in Recommender Systems”, Proceedings of the 17th ACM Conference on Recommender Systems, Singapore, Singapore, 2023, pp. 1126-1132. doi: 10.1145/3604915.3610646.
J. Yao, F. Wang, K. Jia, et al, “Device-Cloud Collaborative Learning for Recommendation”, Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Long Beach, CA, USA, 2021, pp. 3865-3874. doi: 10.1145/3447548.3467097.
Z. Zou, Y. Jin, P. Nevalainen, et al, “Edge and Fog Computing Enabled AI for IoT-An Overview”, Proceedings of the 2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), Ambassador Hotel Hsinchu, Taiwan, 2019, pp. 51-56. doi: 10.1109/AICAS.2019.8771621.
Y. Zhu, J. Ma, J. Li, “Causal Inference in Recommender Systems: A Survey of Strategies for Bias Mitigation, Explanation, And Generalization”, arXiv preprint, arXiv:2023.230100910. doi: 10.48550/arXiv.2301.00910.
C. Gao, Y. Zheng, W. Wang, et al, “Causal Inference in Recommender Systems: A Survey and Future Directions”, ACM Transactions on Information Systems, vol. 42, no. 4, pp. 1-32, 2024. doi: 10.1145/3639048.
X. He, Y. Zhang, F. Feng, et al., “Addressing Confounding Feature Issue for Causal Recommendation”, ACM Transactions on Information Systems, vol. 41, no. 3, pp. 1-23, 2023. doi: 10.1145/3559757.
N. Ranjbar, S. Momtazi, M. Homayounpour, “Explaining Recommendation System Using Counterfactual Textual Explanations”, Machine Learning, vol. 113, no. 4, pp. 1989-2012, 2024. doi: 10.1007/s10994-023-06390-1.
R. Caruana, “Multitask Learning: A Knowledge-Based Source of Inductive Bias”, Proceedings of the Tenth International Conference on Machine Learning, pp. 41-48, 1993. Available: document (psu.edu).
W. Li, W. Zheng, X. Xiao, et al, “STAN: Stage-Adaptive Network for Multi-Task Recommendation by Learning User Lifecycle-Based Representation”, Proceedings of the 17th ACM Conference on Recommender Systems, Singapore, Singapore, pp. 602-612, 2023. doi: 10.1145/3604915.3608796.
B. Alhijawi, A. Awajan, S. Fraihat, “Survey on The Objectives of Recommender System: Measures, Solutions, Evaluation Methodology, And New Perspectives”, ACM Computing Surveys, vol. 55, no. 5, pp. 1-38, 2022. doi: 10.1145/3527449.
J. Beel, S. Langer, M. Genzmehr, et al, “Research Paper Recommender System Evaluation: A Quantitative Literature Survey”, Proceedings of the International Workshop on Reproducibility and Replication in Recommender Systems Evaluation, Hong Kong, China, 2013, pp. 15-22. doi: 10.1145/2532508.2532512.
Y. Ji, A. Sun, J. Zhang, et al, “A Critical Study on Data Leakage in Recommender System Offline Evaluation”, ACM Transactions on Information Systems, vol. 41, no. 3, pp. 1-27, 2023. doi: 10.1145/3569930.
D. Margaris, K. Sgardelis, D. Spiliotopoulos, et al, “Exploiting Rating Prediction Certainty for Recommendation Formulation in Collaborative Filtering”, Big Data and Cognitive Computing, vol. 8, no. 6, pp. 53, 2024. doi: 10.3390/bdcc8060053.
X. Ma, M.Y. Li, “Exploration and Reflection on Precise Recommendation in Complex Information Environments: Boundaries, Challenges, And Future Prospects”, Proceedings of the 2023 9th International Conference on Systems and Informatics (ICSAI), Changsha, China, 2023, pp. 1-6. doi: 10.1109/ICSAI61474.2023.10423324.
A. Sun, “Take A Fresh Look at Recommender Systems from An Evaluation Standpoint”, Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, Taipei, Taiwan, 2023, pp. 2629-2638. doi: 10.1145/3539618.3591931.
A. Sun, “On challenges of evaluating recommender systems in an offline setting”, Proceedings of the 17th ACM Conference on Recommender Systems, Singapore, Singapore, 2023, pp. 1284-1285. doi: 10.1145/3604915.3609495.
J.L. Herlocker, J.A. Konstan, J. Riedl, “Explaining Collaborative Filtering Recommendations”, Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work, Minneapolis, MN, USA, 2000, pp. 241-250. doi: 10.1145/358916.358995.
D. Jannach, “Multi-Objective Recommender Systems: Survey and Challenges”, arXiv preprint, arXiv:2022.221010309. doi: 10.48550/arXiv.2210.10309.
S.M. Mcnee, J. Riedl, J.A. Konstan, “Being accurate is not enough: how accuracy metrics have hurt recommender systems”, Proceedings of the CHI'06 Extended Abstracts on Human Factors in Computing Systems, Stratford, ON, Canada, 2006, pp. 1097-1101. doi: 10.1145/1125451.1125659.
B. Alhijawi, A. Awajan, S. Fraihat, “Survey on The Objectives of Recommender Systems: Measures, Solutions, Evaluation Methodology, And New Perspectives”, ACM Computing Surveys, vol. 55, no. 5, pp. 1-38, 2022. doi: 10.1145/3527449.
A. Smets, J. Vannieuwenhuyze, P. Ballon, “Serendipity in The City: User Evaluations of Urban Recommender Systems”, Journal of the Association for Information Science and Technology, vol. 73, no. 1, pp. 19-30, 2022. doi: 10.1002/asi.24552.
E. Zangerle, C. Bauer, “Evaluating Recommender Systems: Survey and Framework”, ACM Computing Surveys, vol. 55, no. 8, pp. 1-38, 2022. doi: 10.1145/3556536.
Z. Gao, W. Dang, X. Wang, et al, “Complex Networks and Deep Learning for EEG Signal Analysis”, Cognitive Neurodynamics, vol. 15, no. 3, pp. 369-388, 2021. doi: 10.1007/s11571-020-09626-1.
G. He, Y. Kang, Z. Gao, et al, “Finding Camouflaged Needle in A Haystack? Pornographic Products Detection via Berrypicking Tree Model”, Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, France, 2019, pp. 365-374. doi: 10.1145/3331184.3331197.
M.J. Bates, “The Design of Browsing and Berrypicking Techniques for The Online Search Interface”, Online Review, vol. 13, no. 5, pp. 407-424. doi: 10.1108/eb024320.
X. Jin, “Reasoning solution of Pangu grand model: Incremental reasoning + distributed reasoning”. Available at: zhihu.com.
S. Zhu, I. Ng, Z. Chen, “Causal Discovery with Reinforcement Learning”, arXiv preprint, arXiv:2019.190604477. doi: 10.48550/arXiv.1906.04477.
A. Purpura, G. Silvello, G.A. Susto, “Learning to Rank from Relevance Judgments Distributions”, Journal of the Association for Information Science and Technology, vol. 73, no. 9, pp. 1236-1252, 2022. doi: 10.1002/asi.24629.
H. Ghomeshi, M. Gaber, Y. Kovalchuk, “A Non-Canonical Hybrid Metaheuristic Approach to Adaptive Data Stream Classification”, Future Generation Computer Systems, vol. 102, pp. 127-139, 2020. doi: 10.1016/j.future.2019.07.067.
B. Alcaraz, N. Hosseini-Kivanani, A. Najjar, et al, “User Requirement Analysis for A Real-Time NLP-Based Open Information Retrieval Meeting Assistant”, Proceedings of the European Conference on Information Retrieval, Dublin, Ireland, 2023, pp. 18-32. doi: 10.1007/978-3-031-28244-7_2.

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Xin Ma, Mingyue Li, Xuguang Liu

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
License and Copyright Agreement
In submitting the manuscript to the journal, the authors certify that:
- They are authorized by their co-authors to enter into these arrangements.
- The work described has not been formally published before, except in the form of an abstract or as part of a published lecture, review, thesis, or overlay journal. Please also carefully read the International Journal of Industrial Optimization (IJIO) Author Guidelines at http://journal2.uad.ac.id/index.php/ijio/about/submissions#onlineSubmissions
- That it is not under consideration for publication elsewhere,
- That its publication has been approved by all the author(s) and by the responsible authorities tacitly or explicitly of the institutes where the work has been carried out.
- They secure the right to reproduce any material that has already been published or copyrighted elsewhere.
- They agree to the following license and copyright agreement.
Copyright
Authors who publish with the International Journal of Industrial Optimization (IJIO) agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.