Marital Status and Its Effect on Depression in Indonesia: A Case Study of the 2014 Indonesian Family Life Survey

Authors

  • Adrian Kevianta Anggana Universitas Padjajaran
  • Aviliani Aviliani Universitas Padjajaran
  • Patron Natadjaya Ramadhanu Badrudin Universitas Padjajaran
  • Estro Dariatno Sihaloho Universitas Padjajaran

DOI:

https://doi.org/10.12928/dpphj.v16i2.5337

Keywords:

Marital Status, Depression, IFLS 5

Abstract

Background: Depression is a mental health disorder that makes the sufferer unmotivated and unproductive. This is caused by some factors such as loneliness, perfectionism, and marital status. Riset Kesehatan Dasar (Riskesdas) in 2018 shows that 6.1 percent of the population aged 15 and above in Indonesia experienced depression. Therefore, this study aims to see how marital status affects depression in Indonesia. Method: This study uses logistic regression, marginal effect, and the Rasch model using data from the Indonesian Family Life Surveys (IFLS) in 2014/2015. Result: Analyses showed that married observations have a lower prevalence of depression compared to those who are not married, divorced, or widowed. Conclusion: Therefore, an increase in divorce cases will increase the prevalence of depression in Indonesia. More effort in educating marriage to young couples is needed to reduce the number of divorces in Indonesia.

Author Biographies

Adrian Kevianta Anggana, Universitas Padjajaran

Department of Economics & Development Studies, Faculty of Economics & Business

Aviliani Aviliani, Universitas Padjajaran

Department of Economics & Development Studies, Faculty of Economics & Business

Patron Natadjaya Ramadhanu Badrudin, Universitas Padjajaran

Department of Economics & Development Studies, Faculty of Economics & Business

Estro Dariatno Sihaloho, Universitas Padjajaran

Department of Economics & Development Studies, Faculty of Economics & Business

References

WHO. Depression [Internet]. World Health Organization. 2021 [cited 2021 Jan 21]. Available from: https://www.who.int/news-room/fact-sheets/detail/depression

Arcand M, Juster R-P, Lupien SJ, Marin M-F. Gender Roles in Relation to Symptoms of Anxiety and Depression Among Students and Workers. Anxiety, Stress Coping. 2020;33(6):661–74. doi: https://doi.org/10.1080/10615806.2020.1774560

Kemenkes. Situasi Kesehatan Jiwa di Indonesia [Internet]. Jakarta; 2019. Available from: https://pusdatin.kemkes.go.id/download.php?file=download/pusdatin/infodatin/InfoDatin-Kesehatan-Jiwa.pdf

Domènech-Abella J, Mundó J, Leonardi M, Chatterji S, Tobiasz-Adamczyk B, Koskinen S, et al. The Association Between Socioeconomic Status and Depression Among Older Adults in Finland, Poland and Spain: A Comparative Cross-Sectional Study of Distinct Measures and Pathways. J Affect Disord. 2018;241:311–8. doi: https://doi.org/10.1016/j.jad.2018.08.077

Goldfarb MR, Trudel G. Marital Quality and Depression: A Review. Marriage Fam Rev. 2019;55(8):737–63. doi: https://doi.org/10.1080/01494929.2019.1610136

Ernst M, Kallenbach-Kaminski L, Kaufhold J, Negele A, Bahrke U, Hautzinger M, et al. Suicide Attempts in Chronically Depressed Individuals: What are the Risk Factors? Psychiatry Res. 2020;287:112481. doi: https://doi.org/10.1016/j.psychres.2019.112481

Lawrence EM, Rogers RG, Zajacova A, Wadsworth T. Marital Happiness, Marital Status, Health, and Longevity. J Happiness Stud. 2019;20(5):1539–61. doi: https://doi.org/10.1007/s10902-018-0009-9

Jace CE, Makridis CA. Does Marriage Protect Mental Health? Evidence from the COVID‐19 Pandemic. Soc Sci Q. 2021; doi: https://doi.org/10.1111/ssqu.13063

Nicolini P, Abbate C, Inglese S, Rossi PD, Mari D, Cesari M. Different Dimensions of Social Support Differentially Predict Psychological Well‐Being in Late Life: Opposite Effects of Perceived Emotional Support and Marital Status on Symptoms of Anxiety and of Depression in Older Outpatients in Italy. Psychogeriatrics. 2021;21(1):42–53. doi: https://doi.org/10.1111/psyg.12633

Kojima G, Walters K, Iliffe S, Taniguchi Y, Tamiya N. Marital Status and Risk of Physical Frailty: A Systematic Review and Meta-Analysis. J Am Med Dir Assoc. 2020;21(3):322–30. doi: https://doi.org/10.1016/j.jamda.2019.09.017

BPS. Persentase Penduduk Berumur 10 Tahun ke Atas menurut Provinsi, Jenis Kelamin, dan Status Perkawinan, 2009-2018 [Internet]. Badan Pusat Statistik. 2019 [cited 2022 Jan 22]. Available from: https://www.bps.go.id/statictable/2012/04/19/1602/persentase-penduduk-berumur-10-tahun-ke-atas-menurut-provinsi-jenis-kelamin-dan-status-perkawinan-2009-2018.html

Niu L. A Review of the Application of Logistic Regression in Educational Research: Common Issues, Implications, and Suggestions. Educ Rev. 2020 Jan;72(1):41–67. doi: https://doi.org/10.1080/00131911.2018.1483892

Jain H, Khunteta A, Srivastava S. Churn Prediction in Telecommunication Using Logistic Regression and Logit Boost. Procedia Comput Sci. 2020;167:101–12. doi: https://doi.org/10.1016/j.procs.2020.03.187

Long JS, Mustillo SA. Using Predictions and Marginal Effects to Compare Groups in Regression Models for Binary Outcomes. Sociol Methods Res. 2021;50(3):1284–320.

Connelly L. Logistic regression. Medsurg Nurs. 2020;29(5):353–4.

Opic S. Specifics of Logit and Probit Regression in Education Sciences--Why Wouldn’t We Use It?. Cypriot J Educ Sci. 2020;15(6):1557–68.

Norton EC, Dowd BE, Maciejewski ML. Marginal Effects—Quantifying the Effect of Changes in Risk Factors in Logistic Regression Models. JAMA. 2019 Apr;321(13):1304–5. doi: https://doi.org/10.1177/0049124118799374

Islam AYMA, Gu X, Crook C, Spector JM. Assessment of ICT in Tertiary Education Applying Structural Equation Modeling and Rasch Model. SAGE Open. 2020;10(4):2158244020975409. doi: https://doi.org/10.1177/2158244020975409

Briggs DC. Interpreting and Visualizing the Unit of Measurement in the Rasch Model. Measurement. 2019;146:961–71. doi: https://doi.org/10.1016/j.measurement.2019.07.035

Padgett RN, Morgan GB. Using the eRm Package for Rasch Modeling. Meas Interdiscip Res Perspect. 2020;18(3):163–76. doi: https://doi.org/10.1080/15366367.2020.1732155

Christensen KS, Oernboel E, Nielsen MG, Bech P. Diagnosing Depression in Primary Care: A Rasch Analysis of the Major Depression Inventory. Scand J Prim Health Care. 2019;37(1):105–12. doi: https://doi.org/10.1080/02813432.2019.1608039

Fahmi M, Panjaitan NA, Habibie I, Siregar AYM, Amarullah G, Rahma, et al. Does Your Neighborhood Protect You From Being Depressed? A Study on Social Trust and Depression in Indonesia. BMC Public Health. 2019;19(1):1–8. doi: https://doi.org/10.1186/s12889-019-7657-5

Vaingankar JA, Abdin E, Chong SA, Shafie S, Sambasivam R, Zhang YJ, et al. The Association of Mental Disorders with Perceived Social Support, and the Role of Marital Status: Results From A National Cross-Sectional Survey. Arch Public Heal. 2020;78(1):1–11. doi: https://doi.org/10.1186/s13690-020-00476-1

Whitley R. Family Ties: Marriage, Divorce, and the Mental Health of Men and Boys. In: Men’s Issues and Men’s Mental Health. Springer; 2021. p. 207–34. doi: https://doi.org/10.1007/978-3-030-86320-3_9

YouGov. A Quarter of Indonesians Have Experienced Suicidal Thoughts. 2019.

Hyde JS, Mezulis AH. Gender Differences in Depression: Biological, Affective, Cognitive, and Sociocultural Factors. Harv Rev Psychiatry. 2020;28(1):4–13. doi: https://doi.org/10.1097/hrp.0000000000000230

Joffe H, de Wit A, Coborn J, Crawford S, Freeman M, Wiley A, et al. Impact of Estradiol Variability and Progesterone on Mood in Perimenopausal Women with Depressive Symptoms. J Clin Endocrinol Metab. 2020;105(3):e642–50. doi: https://doi.org/10.1210/clinem/dgz181

UNFPA. New Survey Shows Violence Against Women Widespread in Indonesia. 2017.

Richardson T, Maguire N. Poverty, Depression and Anxiety: The Role of Debt. Science (80-). 2021;

Patel V, Burns JK, Dhingra M, Tarver L, Kohrt BA, Lund C. Income Inequality and Depression: A Systematic Review and Meta-Analysis of the Association and A Scoping Review of Mechanisms. World Psychiatry. 2018;17(1):76–89. doi: https://doi.org/10.1002/wps.20492

Carstensen LL, DeLiema M. The Positivity Effect: A Negativity Bias in Youth Fades with Age. Curr Opin Behav Sci. 2018;19:7–12. doi: https://doi.org/10.1016/j.cobeha.2017.07.009

Baicker K, Allen HL, Wright BJ, Taubman SL, Finkelstein AN. The Effect of Medicaid on Management of Depression: Evidence From the Oregon Health Insurance Experiment. Milbank Q. 2018;96(1):29–56. doi: https://doi.org/10.1111/1468-0009.12311

Taple BJ, Chapman R, Schalet BD, Brower R, Griffith JW. The Impact of Education on Depression Assessment: Differential Item Functioning Analysis. Assessment. 2020;1073191120971357. doi: https://doi.org/10.1177/1073191120971357

Harithasan D, Mukari SZS, Ishak WS, Shahar S, Yeong WL. The Impact of Sensory Impairment on Cognitive Performance, Quality of Life, Depression, and Loneliness in Older Adults. Int J Geriatr Psychiatry. 2020;35(4):358–64. doi: https://doi.org/10.1002/gps.5237

Amiri S. Unemployment Associated with Major Depression Disorder and Depressive Symptoms: A Systematic Review and Meta-Analysis. Int J Occup Saf Ergon. 2021;1–13. Doi: https://doi.org/10.1080/10803548.2021.1954793

Downloads

Published

2022-08-19