Bevel Modification Effect on Rectangular Patch for UWB Using Theory Characteristics Mode

Authors

  • Liya Yusrina Sabila Universitas Ahmad Dahlan
  • Denti Agustina Damayanti Universitas Diponegoro

DOI:

https://doi.org/10.12928/biste.v4i2.6970

Abstract

Ultra-wideband (UWB) is a communications technology that operates on frequencies between 3.1 and 10.6 GHz and has a wide bandwidth. This paper aims to look at the radiation characteristics of the structure using the Theory Characteristic Mode on a rectangular antenna with bevel modifications at the end of the patch. It can be seen from the active mode at the appropriate frequency to validate the antenna performance results. It was found that the proposed antenna has four operational modes in the antenna design before modification and seven active modes in the antenna design after modification. The antenna is made of FR-4 material with a thickness of 1.575 mm and a dielectric constant of 4.3. The bandwidth in the error measurement is around 7 GHz and a frequency range of 3.18 - 10.915 GHz with an S11 value of less than -10 and a VSWR value of less than 2.

Ultra-wideband (UWB) adalah teknologi komunikasi yang beroperasi pada frekuensi antara 3,1 dan 10,6 GHz dan memiliki bandwidth yang sangat lebar. Makalah ini bertujuan untuk melihat karakteristik struktur radiasi menggunakan Theory Characteristic Mode pada antena rectangular dengan modifikasi bevel diujung patch. Untuk validasi hasil performansi antena dapat dilihat dari mode aktif pada frekuensi yang sesuai. Ditemukan bahwa antena yang diusulkan memiliki 4 mode aktif pada desain antena sebelum modifikasi dan 7 mode aktif pada desain antena  sesudah modifikasi.. Antena terbuat dari bahan FR-4 dengan ketebalan 1,575 mm dan konstanta dielektrik 4,3. Bandwidth yang dicapai pada pengukuran adalah disekitar 7 GHz dan rentang frekuensi 3,18 - 10,915 GHz dengan nilai S11 kurang dari -10 dan nilai VSWR kurang dari 2.

References

O. P. Kumar, P. Kumar, T. Ali, P. Kumar, and S. Vincent, “Ultrawideband Antennas: Growth and Evolution,” Micromachines, vol. 13, no. 1, 2022, https://doi.org/10.3390/mi13010060.

D. Minoli and B. Occhiogrosso, “Ultrawideband (UWB) Technology for Smart Cities IoT Applications,” 2018 IEEE Int. Smart Cities Conf. ISC2 2018, pp. 1–8, 2019, https://doi.org/10.1109/ISC2.2018.8656958.

N. Anveshkumar, A. S. Gandhi, and V. Dhasarathan, “Cognitive radio paradigm and recent trends of antenna systems in the UWB 3.1–10.6 GHz,” Wirel. Networks, vol. 26, no. 5, pp. 3257–3274, 2020, https://doi.org/10.1007/s11276-019-02245-7.

A. Basir and H. Yoo, “A Stable Impedance-Matched Ultrawideband Antenna System Mitigating Detuning Effects for Multiple Biotelemetric Applications,” IEEE Trans. Antennas Propag., vol. 67, no. 5, pp. 3416–3421, 2019, https://doi.org/10.1109/TAP.2019.2905891.

O. Manoochehri, A. Darvazehban, M. A. Salari, A. Emadeddin and D. Erricolo, "A Parallel Plate Ultrawideband Multibeam Microwave Lens Antenna," IEEE Transactions on Antennas and Propagation, vol. 66, no. 9, pp. 4878-4883, Sept. 2018, https://doi.org/10.1109/TAP.2018.2845548.

A. B. Dey, S. S. Pattanayak, D. Mitra, and W. Arif, “Investigation and design of enhanced decoupled UWB MIMO antenna for wearable applications,” Microw. Opt. Technol. Lett., vol. 63, no. 3, pp. 845–861, 2021, https://doi.org/10.1002/mop.32699.

S. C. Puri, S. Das, and M. G. Tiary, “UWB monopole antenna with dual-band-notched characteristics,” Microw. Opt. Technol. Lett., vol. 62, no. 3, pp. 1222–1229, 2020, https://doi.org/10.1002/mop.32112.

M. N. Hasan, S. Chu, and S. Bashir, “A DGS monopole antenna loaded with U-shape stub for UWB MIMO applications,” Microw. Opt. Technol. Lett., vol. 61, no. 9, pp. 2141–2149, 2019, https://doi.org/10.1002/mop.31877.

J. B. Kamili and A. Bhattacharya, “Design of a Novel Compact Bowtie Antenna and Analysis Using Characteristic Modes,” IEEE Reg. 10 Annu. Int. Conf. Proceedings/TENCON, vol. 2019-October, pp. 1903–1907, 2019, https://doi.org/10.1109/TENCON.2019.8929474.

H. Wallén, P. Ylä-Oijala, D. C. Tzarouchis, and A. Sihvola, “Mie Scattering and Characteristic Modes of Lossy Dielectric Objects,” 2018 2nd URSI Atl. Radio Sci. Meet. AT-RASC 2018, no. June, pp. 2–5, 2018, https://doi.org/10.23919/URSI-AT-RASC.2018.8471401.

A. Ghalib and M. S. Sharawi, “New antenna mode generation based on theory of characteristic modes,” Int. J. RF Microw. Comput. Eng., vol. 29, no. 6, pp. 1–8, 2019, https://doi.org/10.1002/mmce.21686.

M. Khan, “Feed based bandwidth enhancement of u-slot microstrip patch using theory of characteristic modes,” 2019 IEEE Int. Symp. Antennas Propag. Usn. Radio Sci. Meet. APSURSI 2019 - Proc., pp. 257–258, 2019, https://doi.org/10.1109/APUSNCURSINRSM.2019.8889327.

S. Huang, J. Pan, and D. Yang, “A Novel Electromagnetic Power-Based Characteristic Mode for Magnetodielectric Materials,” Radio Sci., vol. 53, no. 4, pp. 458–471, 2018, https://doi.org/10.1002/2018RS006532.

A. Ghalib, R. Hussain, and M. S. Sharawi, “Analysis of slot-based radiators using TCM and its application in MIMO antennas,” Int. J. RF Microw. Comput. Eng., vol. 29, no. 2, pp. 1–17, 2019, https://doi.org/10.1002/mmce.21544.

F. H. Lin and Z. N. Chen, “A Method of Suppressing Higher Order Modes for Improving Radiation Performance of Metasurface Multiport Antennas Using Characteristic Mode Analysis,” IEEE Trans. Antennas Propag., vol. 66, no. 4, pp. 1894–1902, 2018, https://doi.org/10.1109/TAP.2018.2806401.

T. K. Saha, C. Goodbody, T. Karacolak, and P. K. Sekhar, “A compact monopole antenna for ultra-wideband applications,” Microw. Opt. Technol. Lett., vol. 61, no. 1, pp. 182–186, 2019, https://doi.org/10.1002/mop.31519.

S. U. Rahman, Q. Cao, H. Ullah, and H. Khalil, “Compact design of trapezoid shape monopole antenna for SWB application,” Microw. Opt. Technol. Lett., vol. 61, no. 8, pp. 1931–1937, 2019, https://doi.org/10.1002/mop.31805.

P. Yla-Oijala, “Generalized Theory of Characteristic Modes,” IEEE Trans. Antennas Propag., vol. 67, no. 6, pp. 3915–3923, 2019, https://doi.org/10.1109/TAP.2019.2905794.

B. Xiao, H. Wong, D. Wu, and K. L. Yeung, “Design of Small Multiband Full-Screen Smartwatch Antenna for IoT Applications,” IEEE Internet Things J., vol. 8, no. 24, pp. 17724–17733, 2021, https://doi.org/10.1109/JIOT.2021.3082535.

P. Ylä-Oijala, A. Lehtovuori, H. Wallén, and V. Viikari, “Coupling of Characteristic Modes on PEC and Lossy Dielectric Structures,” IEEE Trans. Antennas Propag., vol. 67, no. 4, pp. 2565–2573, 2019, https://doi.org/10.1109/TAP.2019.2893300.

Downloads

Published

2022-12-16

How to Cite

[1]
L. Y. Sabila and D. A. Damayanti, “Bevel Modification Effect on Rectangular Patch for UWB Using Theory Characteristics Mode”, Buletin Ilmiah Sarjana Teknik Elektro, vol. 4, no. 2, pp. 86–93, Dec. 2022.

Issue

Section

Artikel

Most read articles by the same author(s)