Bevel Modification Effect on Rectangular Patch for UWB Using Theory Characteristics Mode
DOI:
https://doi.org/10.12928/biste.v4i2.6970Abstract
Ultra-wideband (UWB) is a communications technology that operates on frequencies between 3.1 and 10.6 GHz and has a wide bandwidth. This paper aims to look at the radiation characteristics of the structure using the Theory Characteristic Mode on a rectangular antenna with bevel modifications at the end of the patch. It can be seen from the active mode at the appropriate frequency to validate the antenna performance results. It was found that the proposed antenna has four operational modes in the antenna design before modification and seven active modes in the antenna design after modification. The antenna is made of FR-4 material with a thickness of 1.575 mm and a dielectric constant of 4.3. The bandwidth in the error measurement is around 7 GHz and a frequency range of 3.18 - 10.915 GHz with an S11 value of less than -10 and a VSWR value of less than 2.
Ultra-wideband (UWB) adalah teknologi komunikasi yang beroperasi pada frekuensi antara 3,1 dan 10,6 GHz dan memiliki bandwidth yang sangat lebar. Makalah ini bertujuan untuk melihat karakteristik struktur radiasi menggunakan Theory Characteristic Mode pada antena rectangular dengan modifikasi bevel diujung patch. Untuk validasi hasil performansi antena dapat dilihat dari mode aktif pada frekuensi yang sesuai. Ditemukan bahwa antena yang diusulkan memiliki 4 mode aktif pada desain antena sebelum modifikasi dan 7 mode aktif pada desain antena sesudah modifikasi.. Antena terbuat dari bahan FR-4 dengan ketebalan 1,575 mm dan konstanta dielektrik 4,3. Bandwidth yang dicapai pada pengukuran adalah disekitar 7 GHz dan rentang frekuensi 3,18 - 10,915 GHz dengan nilai S11 kurang dari -10 dan nilai VSWR kurang dari 2.
References
O. P. Kumar, P. Kumar, T. Ali, P. Kumar, and S. Vincent, “Ultrawideband Antennas: Growth and Evolution,” Micromachines, vol. 13, no. 1, 2022, https://doi.org/10.3390/mi13010060.
D. Minoli and B. Occhiogrosso, “Ultrawideband (UWB) Technology for Smart Cities IoT Applications,” 2018 IEEE Int. Smart Cities Conf. ISC2 2018, pp. 1–8, 2019, https://doi.org/10.1109/ISC2.2018.8656958.
N. Anveshkumar, A. S. Gandhi, and V. Dhasarathan, “Cognitive radio paradigm and recent trends of antenna systems in the UWB 3.1–10.6 GHz,” Wirel. Networks, vol. 26, no. 5, pp. 3257–3274, 2020, https://doi.org/10.1007/s11276-019-02245-7.
A. Basir and H. Yoo, “A Stable Impedance-Matched Ultrawideband Antenna System Mitigating Detuning Effects for Multiple Biotelemetric Applications,” IEEE Trans. Antennas Propag., vol. 67, no. 5, pp. 3416–3421, 2019, https://doi.org/10.1109/TAP.2019.2905891.
O. Manoochehri, A. Darvazehban, M. A. Salari, A. Emadeddin and D. Erricolo, "A Parallel Plate Ultrawideband Multibeam Microwave Lens Antenna," IEEE Transactions on Antennas and Propagation, vol. 66, no. 9, pp. 4878-4883, Sept. 2018, https://doi.org/10.1109/TAP.2018.2845548.
A. B. Dey, S. S. Pattanayak, D. Mitra, and W. Arif, “Investigation and design of enhanced decoupled UWB MIMO antenna for wearable applications,” Microw. Opt. Technol. Lett., vol. 63, no. 3, pp. 845–861, 2021, https://doi.org/10.1002/mop.32699.
S. C. Puri, S. Das, and M. G. Tiary, “UWB monopole antenna with dual-band-notched characteristics,” Microw. Opt. Technol. Lett., vol. 62, no. 3, pp. 1222–1229, 2020, https://doi.org/10.1002/mop.32112.
M. N. Hasan, S. Chu, and S. Bashir, “A DGS monopole antenna loaded with U-shape stub for UWB MIMO applications,” Microw. Opt. Technol. Lett., vol. 61, no. 9, pp. 2141–2149, 2019, https://doi.org/10.1002/mop.31877.
J. B. Kamili and A. Bhattacharya, “Design of a Novel Compact Bowtie Antenna and Analysis Using Characteristic Modes,” IEEE Reg. 10 Annu. Int. Conf. Proceedings/TENCON, vol. 2019-October, pp. 1903–1907, 2019, https://doi.org/10.1109/TENCON.2019.8929474.
H. Wallén, P. Ylä-Oijala, D. C. Tzarouchis, and A. Sihvola, “Mie Scattering and Characteristic Modes of Lossy Dielectric Objects,” 2018 2nd URSI Atl. Radio Sci. Meet. AT-RASC 2018, no. June, pp. 2–5, 2018, https://doi.org/10.23919/URSI-AT-RASC.2018.8471401.
A. Ghalib and M. S. Sharawi, “New antenna mode generation based on theory of characteristic modes,” Int. J. RF Microw. Comput. Eng., vol. 29, no. 6, pp. 1–8, 2019, https://doi.org/10.1002/mmce.21686.
M. Khan, “Feed based bandwidth enhancement of u-slot microstrip patch using theory of characteristic modes,” 2019 IEEE Int. Symp. Antennas Propag. Usn. Radio Sci. Meet. APSURSI 2019 - Proc., pp. 257–258, 2019, https://doi.org/10.1109/APUSNCURSINRSM.2019.8889327.
S. Huang, J. Pan, and D. Yang, “A Novel Electromagnetic Power-Based Characteristic Mode for Magnetodielectric Materials,” Radio Sci., vol. 53, no. 4, pp. 458–471, 2018, https://doi.org/10.1002/2018RS006532.
A. Ghalib, R. Hussain, and M. S. Sharawi, “Analysis of slot-based radiators using TCM and its application in MIMO antennas,” Int. J. RF Microw. Comput. Eng., vol. 29, no. 2, pp. 1–17, 2019, https://doi.org/10.1002/mmce.21544.
F. H. Lin and Z. N. Chen, “A Method of Suppressing Higher Order Modes for Improving Radiation Performance of Metasurface Multiport Antennas Using Characteristic Mode Analysis,” IEEE Trans. Antennas Propag., vol. 66, no. 4, pp. 1894–1902, 2018, https://doi.org/10.1109/TAP.2018.2806401.
T. K. Saha, C. Goodbody, T. Karacolak, and P. K. Sekhar, “A compact monopole antenna for ultra-wideband applications,” Microw. Opt. Technol. Lett., vol. 61, no. 1, pp. 182–186, 2019, https://doi.org/10.1002/mop.31519.
S. U. Rahman, Q. Cao, H. Ullah, and H. Khalil, “Compact design of trapezoid shape monopole antenna for SWB application,” Microw. Opt. Technol. Lett., vol. 61, no. 8, pp. 1931–1937, 2019, https://doi.org/10.1002/mop.31805.
P. Yla-Oijala, “Generalized Theory of Characteristic Modes,” IEEE Trans. Antennas Propag., vol. 67, no. 6, pp. 3915–3923, 2019, https://doi.org/10.1109/TAP.2019.2905794.
B. Xiao, H. Wong, D. Wu, and K. L. Yeung, “Design of Small Multiband Full-Screen Smartwatch Antenna for IoT Applications,” IEEE Internet Things J., vol. 8, no. 24, pp. 17724–17733, 2021, https://doi.org/10.1109/JIOT.2021.3082535.
P. Ylä-Oijala, A. Lehtovuori, H. Wallén, and V. Viikari, “Coupling of Characteristic Modes on PEC and Lossy Dielectric Structures,” IEEE Trans. Antennas Propag., vol. 67, no. 4, pp. 2565–2573, 2019, https://doi.org/10.1109/TAP.2019.2893300.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Liya Yusrina Sabila, Denti Agustina Damayanti
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
This journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.