Analisis Dampak Perubahan Iklim Terhadap Efisiensi Pembangkit Listrik Tenaga Surya FTI UII

Authors

  • Husein Mubarok Universitas Islam Indonesia
  • Mohd. Brado Frasetyo Universitas Islam Indonesia
  • Etika Nur’Aini Universitas Islam Indonesia

DOI:

https://doi.org/10.12928/biste.v4i2.6487

Abstract

Global warming is one of the problems facing the world today. One solution to this problem is to utilize new and renewable energy-based power plants (EBT). The contribution of this research is to analyze the use of energy produced by PLTS FTI UII, as well as the effect of climate change on the production of PLTS FTI UII. The research steps are collecting data, calculating the value of PV mini-grid efficiency, and conducting climate change analysis on PV mini-grid production. The research data is the amount of energy production and energy consumption of PLTS FTI UII for the period March 2017 to July 2022. Efficiency calculations are carried out by calculating the ratio of production and total capacity of PLTS. Analysis of the effect of climate change on PV mini-grid energy production is to compare the GHI potential data with the total production of PV mini-grid each year. The results of the study show that the lowest level of production and efficiency of PLTS is in 2018 and the highest is in 2019. The factor that affects the low efficiency is the occurrence of many problems in 2018 so that it requires a lot of maintenance processes. This process will affect the production of PLTS so that the conversion process of solar energy decreases. Furthermore, the factor that causes the low efficiency is due to global warming which causes the climate to become uncertain and the production of carbon dioxide increases. Thus, energy production in PLTS decreases. From some of these analyzes, it can be concluded that the factors causing the decline in production and efficiency in the PLTS FTI UII system are the excessive and long maintenance process of the PLTS system, as well as climate change that occurs around the PLTS FTI UII system. The results of this study can be used for the evaluation process of the development of the PLTS FTI UII system in the future.

Pemanasan global merupakan salah satu permasalahan yang dihadapi dunia saat ini. Salah satu solusi terhadap permasalahan tersebut adalah dengan memanfaatkan pembangkit listrik berbasis energi baru dan terbarukan (EBT). Kontribusi penelitian ini adalah menganalisis pemanfaatan energi yang dihasilkan oleh PLTS FTI UII, serta pengaruh perubahan iklim terhadap produksi PLTS FTI UII. Langkah penelitian yaitu pengumpulan data, perhitungan nilai efisiensi PLTS, serta melakukan analisis perubahan iklim terhadap produksi PLTS. Data penelitian adalah jumlah produksi energi serta konsumsi energi PLTS FTI UII dengan periode Maret 2017 sampai Juli 2022. Perhitungan efisiensi dilakukan dengan cara menghitung rasio produksi dan total kapasitas PLTS. Analisis pengaruh perubahan iklim terhadap produksi energi PLTS adalah membandingkan data potensi GHI dengan total produksi PLTS di setiap tahun. Hasil dari penelitian menunjukkan tingkat produksi dan efisiensi terendah PLTS adalah tahun 2018 dan tertinggi tahun 2019. Faktor yang mempengaruhi rendahnya efisiensi adalah terjadinya banyak masalah pada tahun 2018 sehingga mengharuskan banyak proses pemeliharaan. Proses tersebut akan mempengaruhi produksi PLTS sehingga proses konversi energi matahari menjadi menurun. Selanjutnya, faktor yang menyebabkan rendahnya efisiensi tersebut dikarenakan adanya pemanasan global yang mengakibatkan iklim menjadi tidak menentu dan meningkatnya produksi karbon dioksida. Sehingga, produksi energi pada PLTS menjadi menurun. Dari beberapa analisis tersebut, dapat disimpulkan bahwa faktor-faktor penyebab menurunnya produksi dan efisiensi pada sistem PLTS FTI UII adalah proses pemeliharaan sistem PLTS yang terlalu banyak dan lama, serta perubahan iklim yang terjadi di sekitar sistem PLTS FTI UII. Hasil dari penelitian ini dapat digunakan untuk proses evaluasi pembangunan sistem PLTS FTI UII di masa depan.

References

M. A. Russo, D. Carvalho, N. Martins, and A. Monteiro, “Forecasting the inevitable: A review on the impacts of climate change on renewable energy resources,” Sustain. Energy Technol. Assessments, vol. 52, no. PC, p. 102283, 2022, https://doi.org/10.1016/j.seta.2022.102283.

H. Acaroğlu and M. Güllü, “Climate change caused by renewable and non-renewable energy consumption and economic growth: A time series ARDL analysis for Turkey,” Renew. Energy, vol. 193, pp. 434–447, 2022, https://doi.org/10.1016/j.renene.2022.04.138.

PLN, “Rencana Usaha Penyediaan Tenaga Listrik (RUPTL) PT PLN (Persero) 2021-2030.,” Rencana Usaha Penyediaan Tenaga List. 2021-2030, pp. 2019–2028, 2021.

ESDM, “Peraturan Menteri ESDM Nomor 49 Thn 2018 Tentang Penggunaan Sistem Pembangkit LIstrik Tenaga Surya Atap oleh Konsumen PT. PLN (Persero),” p. 18, 2018.

Y. R. Golive et al., “Analysis of Field Degradation Rates Observed in All-India Survey of Photovoltaic Module Reliability 2018,” IEEE J. Photovoltaics, vol. 10, no. 2, pp. 560–567, 2020, https://doi.org/10.1109/JPHOTOV.2019.2954777.

G. G. Kim et al., “Prediction Model for PV Performance with Correlation Analysis of Environmental Variables,” IEEE J. Photovoltaics, vol. 9, no. 3, pp. 832–841, 2019, https://doi.org/10.1109/JPHOTOV.2019.2898521.

G. G. Kim, W. Lee, B. G. Bhang, J. H. Choi, and H. K. Ahn, “Fault Detection for Photovoltaic Systems Using Multivariate Analysis with Electrical and Environmental Variables,” IEEE J. Photovoltaics, vol. 11, no. 1, pp. 202–212, 2021, https://doi.org/10.1109/JPHOTOV.2020.3032974.

A. De Araujo Cavalcanti, F. De Assis Dos Santos Neves, G. M. De Souza Azevedo, and A. T. De Almeida Filho, “Performance Evaluation of Micro- And Minidistributed Photovoltaic Systems Using Data Envelopment Analysis,” IEEE J. Photovoltaics, vol. 9, no. 6, pp. 1806–1814, 2019, https://doi.org/10.1109/JPHOTOV.2019.2930053.

A. Sinha et al., “Prediction of Climate-Specific Degradation Rate for Photovoltaic Encapsulant Discoloration,” IEEE J. Photovoltaics, vol. 10, no. 4, pp. 1093–1101, 2020, https://doi.org/10.1109/JPHOTOV.2020.2989182.

A. L. Figueroa-Acevedo et al., “Visualizing the impacts of renewable energy growth in the U.S. Midcontinent,” IEEE Open Access J. Power Energy, vol. 7, no. 1, pp. 91–99, 2020, https://doi.org/10.1109/OAJPE.2020.2967292.

Q. Hou, E. Du, N. Zhang, and C. Kang, “Impact of High Renewable Penetration on the Power System Operation Mode: A Data-Driven Approach,” IEEE Trans. Power Syst., vol. 35, no. 1, pp. 731–741, 2020, https://doi.org/10.1109/TPWRS.2019.2929276.

S. Fan, Z. Li, Z. Li, and G. He, “Evaluating and Increasing the Renewable Energy Share of Customers’ Electricity Consumption,” IEEE Access, vol. 7, pp. 129200–129214, 2019, https://doi.org/10.1109/ACCESS.2019.2940149.

S. Carley, S. Lawrence, A. Brown, A. Nourafshan, and E. Benami, “Energy-based economic development,” Renew. Sustain. Energy Rev., vol. 15, no. 1, pp. 282–295, 2011, https://doi.org/10.1016/j.rser.2010.08.006.

A. Phinikarides, G. Makrides, B. Zinsser, M. Schubert, and G. E. Georghiou, “Analysis of photovoltaic system performance time series: Seasonality and performance loss,” Renew. Energy, vol. 77, pp. 51–63, 2015, https://doi.org/10.1016/j.renene.2014.11.091.

M. Boulaid, R. Oaddi, A. TIhane, A. Elfanaui, and A. Ihlal, “Energy Yield and Efficiency Assessment of Photovoltaic Grid-Tied System: Outdoor Approach,” 6th Int. Renew. Sustain. Energy Conf., 2018, https://doi.org/10.1109/IRSEC.2018.8702911.

K. Hermawan, “Design analysis of photovoltaic systems as renewable energy resource in airport,” Proc. - 2017 4th Int. Conf. Inf. Technol. Comput. Electr. Eng. ICITACEE 2017, pp. 113–116, 2017, https://doi.org/10.1109/ICITACEE.2017.8257686.

Y. Zhang, W. Zhang, and C. Gao, “Optimization analysis of photovoltaic solar energy stent,” Proc. - 2020 7th Int. Forum Electr. Eng. Autom. IFEEA 2020, pp. 1030–1034, 2020, https://doi.org/10.1109/IFEEA51475.2020.00215.

M. Usman, A. Munir, F. Asghar, M. H. Latif, and R. A. Ali, “Achieving Sustainability in the Academic Institutes of Pakistan: A Techno-economic Analysis of 40 kWp Rooftop Photovoltaic Grid-Tied System at University of Agriculture, Faisalabad,” 2022 5th Int. Conf. Energy Conserv. Effic. ICECE 2022 - Proc., 2022, https://doi.org/10.1109/ICECE54634.2022.9758954.

K. G. Gabrovska-Evstatieva, B. I. Evstatiev, A. Evtimov, and N. P. Mihailov, “Opportunities to Use Photovoltaic Energy in Residential Buildings,” 2018 10th Electr. Eng. Fac. Conf. BulEF 2018, no. 2, pp. 2–5, 2019, https://doi.org/10.1109/BULEF.2018.8646927.

A. Deo and G. N. Tiwari, “Performance analysis of 1.8 kWp rooftop photovoltaic system in India,” 2014 2nd Int. Conf. Green Energy Technol. ICGET 2014, pp. 87–90, 2014, https://doi.org/10.1109/ICGET.2014.6966669.

N. Manoj Kumar, S. S. Chopra, A. A. Chand, R. M. Elavarasan, and G. M. Shafiullah, “Hybrid renewable energy microgrid for a residential community: A techno-economic and environmental perspective in the context of the SDG7,” Sustain., vol. 12, no. 10, pp. 1–30, 2020, https://doi.org/10.3390/su12103944.

Downloads

Published

2022-11-11

How to Cite

[1]
H. Mubarok, M. B. Frasetyo, and E. Nur’Aini, “Analisis Dampak Perubahan Iklim Terhadap Efisiensi Pembangkit Listrik Tenaga Surya FTI UII”, Buletin Ilmiah Sarjana Teknik Elektro, vol. 4, no. 2, pp. 51–61, Nov. 2022.

Issue

Section

Artikel