Deteksi Anomali Konduktivitas Air Menggunakan Kalman Filter
DOI:
https://doi.org/10.12928/biste.v4i1.6188Abstract
Water quality is an essential part of shrimp farming. Data integrity is one of the challenges in building a water conductivity monitoring system. Data read by the sensor should represent the physical conditions that occur. However, some factors can cause abnormal data changes. This abnormal data change can occur due to sensor damage or an attempt to sabotage the pool. In this study, a data anomaly detection algorithm was built using the Kalman filter and standard deviation to solve the problem of determining the normal range of data. The designed algorithm was then tested and evaluated using Arduino nano, Arduino mega, and Wemos D1 Microcontrollers to determine the algorithm's performance on limited computing devices. Based on the data analysis that has been carried out, it is found that the anomaly detection algorithm based on the Kalman filter has an accuracy of 92.5% and can detect anomaly data that occurs with TPF = 1 and FNR = 0 values. The implementation of the detection algorithm on the microcontroller shows that WEMOS D1 (ESP8266) has an excellent average computational speed of 27.99 us. As for the stability of the Arduino Nano (ATMEGA328) and Arduino Mega 2560 (ATMEGA 2560) microcontrollers, the computation time deviation is about 2.8 us.
Kualitas air merupakan bagian penting pada budidaya udang. Salah satu tantangan dalam membangun sebuah sistem monitoring konduktivitas air adalah Keutuhan data. Suatu data yang terbaca oleh sensor seharusnya mewakili kondisi fisik yang terjadi. Akan tetapi ada faktor-faktor dapat menyebabkan perubahan data yang tidak wajar. Perubahan data yang tidak wajar ini dapat terjadi karena disebabkan kerusakan sensor maupun adanya upaya sabotase pada kolam. Pada penelitian ini dibangun sebuah algoritma deteksi anomali data menggunakan Kalman filter dan standar deviasi untuk mengatasi masalah penentuan rentang data normal. Algoritma yang dirancang kemudian diuji dan dievaluasi dengan menggunakan Mikrokontroller Arduino nano, Arduino mega dan Wemos D1 untuk mengetahui performa algoritma yang dirancang pada perangkat komputasi terbatas. Berdasarkan analisis data yang telah dilakukan didapatkan hasil bahwa algoritma deteksi anomali berbasis kalman filter memiliki akurasi 92,5% dan dapat mendeteksi data anomali yang terjadi dengan nilai TPF =1 dan FNR=0. Implementasi algoritma deteksi pada mikrokontroller menunjukkan bahwa WEMOS D1 (ESP8266) memiliki rata-rata kecepatan komputasi yang baik yaitu 27,99 us. Sedangkan untuk kestabilan mikrokontroller Arduino Nano (ATMEGA328) dan Arduino Mega 2560 (ATMEGA 2560) memiliki deviasi waktu komputasi sekitar 2,8 us.
References
O. Mina, H. E. Gall, J. W. Chandler, J. Harper, and M. Taylor, “Continuous hydrologic and water quality monitoring of vernal ponds,” J. Vis. Exp., vol. 2017, no. 129, pp. 1–9, 2017, https://doi.org/10.3791/56466.
J. Huan, H. Li, F. Wu, and W. Cao, “Design of water quality monitoring system for aquaculture ponds based on NB-IoT,” Aquac. Eng., vol. 90, p. 102088, 2020, https://doi.org/10.1016/j.aquaeng.2020.102088.
K. Saravanan, E. Anusuya, R. Kumar, and L. H. Son, “Real-time water quality monitoring using Internet of Things in SCADA,” Environ. Monit. Assess., vol. 190, no. 9, 2018, https://doi.org/10.1007/s10661-018-6914-x.
W. Boonsong et al., “Real-time water quality monitoring of aquaculture pond using wireless sensor network and internet of things,” J. Theor. Appl. Inf. Technol., vol. 98, no. 22, pp. 3573–3582, 2020.
S. Pasika and S. T. Gandla, “Smart water quality monitoring system with cost-effective using IoT,” Heliyon, vol. 6, no. 7, p. e04096, 2020, https://doi.org/10.1016/j.heliyon.2020.e04096.
S. J. Yue, C. Hairu, M. Hanafi, S. M. Shafie, and N. A. Salim, “IoT Based Automatic Water Level and Electrical Conductivity Monitoring System,” Proceeding - 2020 IEEE 8th Conf. Syst. Process Control. ICSPC 2020, no. December, pp. 95–100, 2020, https://doi.org/10.1109/ICSPC50992.2020.9305768.
G. Cario, A. Casavola, P. Gjanci, M. Lupia, C. Petrioli, and D. Spaccini, “Long lasting underwater wireless sensors network for water quality monitoring in fish farms,” Ocean. 2017 - Aberdeen, vol. 2017-Octob, pp. 1–6, 2017, https://doi.org/10.1109/OCEANSE.2017.8084777.
K. A. Rasheed and A. T. Dawood, “Conversion Coefficient for Salinity Measurement in Fresh Water in Terms of Electrical Conductivity,” Plant Arch., vol. 19, no. 1967, pp. 2051–2052, 2019, http://www.plantarchives.org/SPL%20ISSUE%20SUPP%202,2019/355%20(2051-2052).pdf.
M. Manoj, V. D. Kumar, M. Arif, E. R. Bulai, P. Bulai, and O. Geman, “State of the Art Techniques for Water Quality Monitoring Systems for Fish Ponds Using IoT and Underwater Sensors: A Review,” Sensors, vol. 22, no. 6, 2022, https://doi.org/10.3390/s22062088.
V. H. A. Ribeiro and G. Reynoso-Meza, “Online anomaly detection for drinking water quality using a multi-objective machine learning approach,” GECCO 2018 Companion - Proc. 2018 Genet. Evol. Comput. Conf. Companion, pp. 1–2, 2018, https://doi.org/10.1145/3205651.3208202.
F. Muharemi, D. Logofătu, and F. Leon, “Machine learning approaches for anomaly detection of water quality on a real-world data set,” J. Inf. Telecommun., vol. 3, no. 3, pp. 294–307, 2019, https://doi.org/10.1080/24751839.2019.1565653.
C. Bourelly et al., “A Preliminary Solution for Anomaly Detection in Water Quality Monitoring,” Proc. - 2020 IEEE Int. Conf. Smart Comput. SMARTCOMP 2020, pp. 410–415, 2020, https://doi.org/10.1109/SMARTCOMP50058.2020.00086.
V. H. Alves Ribeiro, S. Moritz, F. Rehbach, and G. Reynoso-Meza, “A novel dynamic multi-criteria ensemble selection mechanism applied to drinking water quality anomaly detection,” Sci. Total Environ., vol. 749, p. 142368, 2020, https://doi.org/10.1016/j.scitotenv.2020.142368.
A. G. Hernandez-Ramirez et al., “Detection, provenance and associated environmental risks of water quality pollutants during anomaly events in River Atoyac, Central Mexico: A real-time monitoring approach,” Sci. Total Environ., vol. 669, pp. 1019–1032, 2019, https://doi.org/10.1016/j.scitotenv.2019.03.138.
K. Shaukat et al., “A Review of Time-Series Anomaly Detection Techniques: A Step to Future Perspectives,” Adv. Intell. Syst. Comput., vol. 1363 AISC, no. April, pp. 865–877, 2021, https://doi.org/10.1007/978-3-030-73100-7_60.
F. W. Wibowo and W. Sukestyastama Putra, “Sensor Array Fault Detection Technique using Kalman Filter,” 2019 2nd Int. Semin. Res. Inf. Technol. Intell. Syst. ISRITI 2019, pp. 124–128, 2019, https://doi.org/10.1109/ISRITI48646.2019.9034591.
M. Saqib, E. Şentürk, S. A. Sahu, and M. A. Adil, “Ionospheric anomalies detection using autoregressive integrated moving average (ARIMA) model as an earthquake precursor,” Acta Geophys., vol. 69, no. 4, pp. 1493–1507, 2021, https://doi.org/10.1007/s11600-021-00616-3.
W. S. Putra, “Implementasi Algoritma 2 Step Kalman Filter Untuk Mengurangi Noise Pada Estimasi Data Accelerometer,” J-SAKTI (Jurnal Sains Komput. dan Inform., vol. 3, no. 1, pp. 142–151, 2019, https://doi.org/10.30645/j-sakti.v3i1.108.
W. S. Putra, J. Kuswanto, W. M. Ashari, and M. Koprawi, “Comparative Study of Kalman Filter and H infinity Filter for Current Sensorless Battery Health Analysis,” 2021 4th Int. Conf. Inf. Commun. Technol., pp. 92–97, 2021, https://doi.org/10.1109/ICOIACT53268.2021.9563993.
A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, “Survey of intrusion detection systems: techniques, datasets and challenges,” Cybersecurity, vol. 2, no. 1, 2019, https://doi.org/10.1186/s42400-019-0038-7.
L. Ahmedi, Figene; Ahmedi, “InWaterSense Dataset: Data from a wireless sensor network on water quality monitoring in a river in Kosovo.” Mendeley Data, 2021.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Wahyu Sukestyastama Putra
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
This journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.