Biogas: Strengthening Green Energy Infrastructure for a More Sustainable Future

Authors

  • Yatin Mulyono IAIN Palangka Raya
  • Suranto Universitas Sebelas Maret
  • Sri Yamtinah Universitas Sebelas Maret
  • Sarwanto Universitas Sebelas Maret
  • Abdul Jamil IAIN Palangka Raya

Keywords:

animal waste, biogas, green energy, renewable energy

Abstract

Biogas has been available as a renewable energy source to accelerate national economic development. This research aimed to analyze the potential of renewable energy production development in Indonesia and present the application of potential waste processing into biogas. This study fills the knowledge gap through a critical review of the potential for developing renewable energy from animal waste in Indonesia, including biogas, power generation, transportation, and value-added chemicals. This study was conducted using a critical review of research articles and is supported by other related literature. The result of the study showed that Indonesia has great potential to develop biogas production due to its substrate availability, particularly from farm animal waste or other organic waste, even though its utilization has not been maximized. The data showed that primary energy consumption, especially in the industrial and transportation sectors, was dominated by fossil fuels and coal. The production of biogas technology development comprehensively included the processes and techniques of waste handling from biogas production. Most of the biogas application approaches were still in the early stage. Identifying opportunities, obstacles, policies, research, and development is still needed, particularly in this relatively new sector.

References

Abdeshahian, P., Al-Shorgani, N. K. N., Salih, N. K. M., Shukor, H., Kadier, A., Hamid, A. A., & Kalil, M. S. (2014). The production of biohydrogen by a novel strain Clostridium sp. YM1 in dark fermentation process. International Journal of Hydrogen Energy, 39(24), 12524–12531. https://doi.org/10.1016/j.ijhydene.2014.05.081.

Abdeshahian, P., Lim, J. S., Ho, W. S., Hashim, H., & Lee, C. T. (2016). Potential of biogas production from farm animal waste in Malaysia. Renewable and Sustainable Energy Reviews, 60, 714–723. https://doi.org/10.1016/j.rser.2016.01.117.

Agustini, C., da Costa, M., & Gutterres, M. (2018). Biogas production from tannery solid wastes – Scale-up and cost saving analysis. Journal of Cleaner Production, 187, 158–164. https://doi.org/10.1016/j.jclepro.2018.03.185.

Ahmad, W., Sethupathi, S., Kanadasan, G., Lau, L. C., & Kanthasamy, R. (2019). A review on the removal of hydrogen sulfide from biogas by adsorption using sorbents derived from waste. Reviews in Chemical Engineering. https://doi.org/10.1515/revce-2018-0048.

Alonso-Vicario, A., Ochoa-Gómez, J. R., Gil-Río, S., Gómez-Jiménez-Aberasturi, O., Ramírez-López, C. A., Torrecilla-Soria, J., & Domínguez, A. (2010). Purification and upgrading of biogas by pressure swing adsorption on synthetic and natural zeolites. Microporous and Mesoporous Materials, 134(1–3), 100–107. https://doi.org/10.1016/j.micromeso.2010.05.014.

Ayodele, T. R., Ogunjuyigbe, A. S. O., & Alao, M. A. (2017). Life cycle assessment of waste-to-energy (WtE) technologies for electricity generation using municipal solid waste in Nigeria. Applied Energy, 201, 200–218. https://doi.org/10.1016/j.apenergy.2017.05.097.

Bagheri, Z., & Moradi, M. (2014). DFT study on the adsorption and dissociation of hydrogen sulfide on MgO nanotube. Structural Chemistry, 25(2), 495–501. https://doi.org/10.1007/s11224-013-0321-2.

Bajpai, P. (2017). Anaerobic Technology in Pulp and Paper Industry, 7–13, https://doi.org/10.1007/978-981-10-4130-3.

Bansal, S. K., Sreekrishnan, T. R., & Singh, R. (2013). Effect of heat pretreated consortia on fermentative biohydrogen production from vegetable waste. National Academy Science Letters, 36(2), 125–131. https://doi.org/10.1007/s40009-013-0124-4.

Belle, A. J., Lansing, S., Mulbry, W., & Weil, R. R. (2015). Methane and hydrogen sulfide production during co-digestion of forage radish and dairy manure. Biomass and Bioenergy, 80, 44–51. https://doi.org/10.1016/j.biombioe.2015.04.029.

Benito, M., Ortiz, I., Rodriguez, L., & Munoz, G. (2015). NieCo bimetallic catalyst for hydrogen production in sewage treatment plants: Biogas reforming and tars removal. International Journal of Hydrogen Energy, 40(42), 14456–14468. https://doi.org/10.1016/j.ijhydene.2015.06.163.

Bharathiraja, B., Sudharsana, T., Jayamuthunagai, J., Praveenkumar, R., Chozhavendhan, S., & Iyyappan, J. (2018). Biogas production – A review on composition, fuel properties, feed stock and principles of anaerobic digestion. Renewable and Sustainable Energy Reviews, 90(April), 570–582. https://doi.org/10.1016/j.rser.2018.03.093.

Carranza-Abaid, A., Wanderley, R. R., Knuutila, H. K., & Jakobsen, J. P. (2021). Analysis and selection of optimal solvent-based technologies for biogas upgrading. Fuel, 303, 121327. https://doi.org/10.1016/j.fuel.2021.121327.

Ch’ng, H. Y., Ahmed, O. H., Kassim, S., & Majid, N. M. A. (2013). Co-composting of pineapple leaves and chicken manure slurry. International Journal of Recycling of Organic Waste in Agriculture, 2(1), 1–8. https://doi.org/10.1186/2251-7715-2-23.

Ch’ng, H. Y., Ahmed, O. H., Kassim, S., & Majid, N. M. A. (2014). Recycling of sago (Metroxylon sagu) bagasse with chicken manure slurry through co-composting. Journal of Agricultural Science and Technology, 16(6), 1441–1454.

Chasnyk, O., Sołowski, G., & Shkarupa, O. (2015). Historical, technical and economic aspects of biogas development: Case of Poland and Ukraine. Renewable and Sustainable Energy Reviews, 52, 227–239. https://doi.org/10.1016/j.rser.2015.07.122.

Chowdhury, T., Chowdhury, H., Hossain, N., Ahmed, A., Hossen, M. S., Chowdhury, P., Thirugnanasambandam, M., & Saidur, R. (2020). Latest advancements on livestock waste management and biogas production: Bangladesh’s perspective. Journal of Cleaner Production, 272, 1–19. https://doi.org/10.1016/j.jclepro.2020.122818.

Chuayboon, S., Prasertsan, S., Theppaya, T., Maliwan, K., & Prasertsan, P. (2014). Effects of CH4, H2and CO2 mixtures on SI gas engine. Energy Procedia, 52, 659–665. https://doi.org/10.1016/j.egypro.2014.07.122.

Cozma, P., Wukovits, W., Mǎmǎligǎ, I., Friedl, A., & Gavrilescu, M. (2014). Modeling and simulation of high pressure water scrubbing technology applied for biogas upgrading. Clean Technologies and Environmental Policy, 17(2). https://doi.org/10.1007/s10098-014-0787-7.

Crookes, R. J. (2006). Comparative bio-fuel performance in internal combustion engines. Biomass and Bioenergy, 30(5), 461–468. https://doi.org/10.1016/j.biombioe.2005.11.022.

Dannesboe, C., Hansen, J. B., & Johannsen, I. (2019). Removal of sulfur contaminants from biogas to enable direct catalytic methanation. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-019-00570-7.

Deublein, D., & Steinhauser, A. (2011). Biogas from Waste and Renewable Resources: An Introduction. John Wiley & Sons. https://doi.org/10.1002/9783527621705.

Díaz, I., Lopes, A. C., Pérez, S. I., & Fdz-Polanco, M. (2010). Performance evaluation of oxygen, air and nitrate for the microaerobic removal of hydrogen sulphide in biogas from sludge digestion. Bioresource Technology, 101(20), 7724–7730. https://doi.org/10.1016/j.biortech.2010.04.062.

Dinopoulou, G., Rudd, T., & Lester, J. N. (1988). Anaerobic acidogenesis of a complex wastewater: I. The influence of operational parameters on reactor performance. Biotechnology and Bioengineering, 31(9), 958–968. https://doi.org/10.1002/bit.260310908.

Divya, D., Gopinath, L. R., & Merlin Christy, P. (2015). A review on current aspects and diverse prospects for enhancing biogas production in sustainable means. Renewable and Sustainable Energy Reviews, 42, 690–699. https://doi.org/10.1016/j.rser.2014.10.055.

Energi, N. D. (2016). Outlook Energi Indonesia 2015. Kementerian Energi dan Sumber Daya Mineral Republik Indonesia.

Enitan, A. M., Adeyemo, J., Swalaha, F. M., Kumari, S., & Bux, F. (2017). Optimization of biogas generation using anaerobic digestion models and computational intelligence approaches. Reviews in Chemical Engineering, 33(3), 309–335. https://doi.org/10.1515/revce-2015-0057.

Erinofiardi, Gokhale, P., Date, A., Akbarzadeh, A., Bismantolo, P., Suryono, A. F., Mainil, A. K., & Nuramal, A. (2017). A Review on Micro Hydropower in Indonesia. Energy Procedia, 110(December 2016), 316–321. https://doi.org/10.1016/j.egypro.2017.03.146.

Fontseré Obis, M., Germain, P., Troesch, O., Spillemaecker, M., & Benbelkacem, H. (2017). Valorization of MSWI bottom ash for biogas desulfurization: Influence of biogas water content. Waste Management, 60, 388–396. https://doi.org/10.1016/j.wasman.2016.06.013

Gao, M., Wang, D., Wang, H., Wang, X., & Feng, Y. (2019). Biogas potential, utilization and countermeasures in agricultural provinces: A case study of biogas development in Henan Province, China. Renewable and Sustainable Energy Reviews, 99(October 2018), 191–200. https://doi.org/10.1016/j.rser.2018.10.005.

Ghyoot, W., & Verstraete, W. (1997). Anaerobic digestion of primary sludge from chemical pre-precipitation. Water Science and Technology, 36(6–7), 357–365. https://doi.org/10.1016/S0273-1223(97)00543-X.

Guru, P. S., & Dash, S. (2014). Sorption on eggshell waste - A review on ultrastructure, biomineralization and other applications. Advances in Colloid and Interface Science, 209, 49–67. https://doi.org/10.1016/j.cis.2013.12.013.

Hadi Mousavi-Nasab, S., & Sotoudeh-Anvari, A. (2020). An extension of best-worst method with D numbers: Application in evaluation of renewable energy resources. Sustainable Energy Technologies and Assessments, 40(March), 100771. https://doi.org/10.1016/j.seta.2020.100771.

Hadidi, L. A., & Omer, M. M. (2017). A financial feasibility model of gasification and anaerobic digestion waste-to-energy (WTE) plants in Saudi Arabia. Waste Management, 59, 90–101. https://doi.org/10.1016/j.wasman.2016.09.030.

Hagos, K., Zong, J., Li, D., Liu, C., & Lu, X. (2017). Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives. Renewable and Sustainable Energy Reviews, 76(November), 1485–1496. https://doi.org/10.1016/j.rser.2016.11.184.

Halder, P. K., Paul, N., Joardder, M. U. H., Khan, M. Z. H., & Sarker, M. (2016). Feasibility analysis of implementing anaerobic digestion as a potential energy source in Bangladesh. Renewable and Sustainable Energy Reviews, 65, 124–134. https://doi.org/10.1016/j.rser.2016.06.094.

Hosseini, S. E., & Wahid, M. A. (2014). Development of biogas combustion in combined heat and power generation. Renewable and Sustainable Energy Reviews, 40, 868–875. https://doi.org/10.1016/j.rser.2014.07.204.

Hosseini, S. E., Wahid, M. A., & Aghili, N. (2013). The scenario of greenhouse gases reduction in Malaysia. Renewable and Sustainable Energy Reviews, 28(December 1997), 400–409. https://doi.org/10.1016/j.rser.2013.08.045.

Hung, C. Y., Tsai, W. T., Chen, J. W., Lin, Y. Q., & Chang, Y. M. (2017). Characterization of biochar prepared from biogas digestate. Waste Management, 66, 53–60. https://doi.org/10.1016/j.wasman.2017.04.034.

Igliński, B., Buczkowski, R., & Cichosz, M. (2015). Biogas production in Poland - Current state, potential and perspectives. Renewable and Sustainable Energy Reviews, 50(2015), 686–695. https://doi.org/10.1016/j.rser.2015.05.013.

Indrawan, N., Thapa, S., Wijaya, M. E., Ridwan, M., & Park, D. H. (2018). The biogas development in the Indonesian power generation sector. Environmental Development, 25(October 2017), 85–99. https://doi.org/10.1016/j.envdev.2017.10.003.

Jeníček, P., Horejš, J., Pokorná-Krayzelová, L., Bindzar, J., & Bartáček, J. (2017). Simple biogas desulfurization by microaeration – Full scale experience. Anaerobe, 46, 41–45. https://doi.org/10.1016/j.anaerobe.2017.01.002.

Kadam, R., & Panwar, N. L. (2017). Recent advancement in biogas enrichment and its applications. Renewable and Sustainable Energy Reviews, 73(February), 892–903. https://doi.org/10.1016/j.rser.2017.01.167.

Kapoor, R., Ghosh, P., Kumar, M., & Vijay, V. K. (2019). Evaluation of biogas upgrading technologies and future perspectives: a review. In Environmental Science and Pollution Research. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-019-04767-1.

Kapoor, R., Ghosh, P., Tyagi, B., Vijay, V. K. V., Vijay, V. K. V., Thakur, I. S., Kamyab, H., Nguyen, D. D., & Kumar, A. (2020a). Advances in biogas valorization and utilization systems: A comprehensive review. Journal of Cleaner Production, 273, 1–15. https://doi.org/10.1016/j.jclepro.2020.123052.

Kapoor, R., Ghosh, P., Tyagi, B., Vijay, V. K., Vijay, V., Thakur, I. S., Kamyab, H., Nguyen, D. D., & Kumar, A. (2020b). Advances in biogas valorization and utilization systems: A comprehensive review. Journal of Cleaner Production, 273, 1–15. https://doi.org/10.1016/j.jclepro.2020.123052.

Kerstens, S. M., Leusbrock, I., & Zeeman, G. (2015). Feasibility analysis of wastewater and solid waste systems for application in Indonesia. Science of the Total Environment, 530–531, 53–65. https://doi.org/10.1016/j.scitotenv.2015.05.077.

Khalil, M., Berawi, M. A., Heryanto, R., & Rizalie, A. (2019). Waste to energy technology: The potential of sustainable biogas production from animal waste in Indonesia. Renewable and Sustainable Energy Reviews, 105, 323–331. https://doi.org/10.1016/j.rser.2019.02.011.

Khan, M. D., Khan, N., Nizami, A. S., Rehan, M., Sabir, S., & Khan, M. Z. (2017). Effect of co-substrates on biogas production and anaerobic decomposition of pentachlorophenol. Bioresource Technology, 238, 492–501. https://doi.org/10.1016/j.biortech.2017.04.063.

Khan, M. U., Lee, J. T. E., Bashir, M. A., Dissanayake, P. D., Ok, Y. S., Tong, Y. W., & Ahring, B. K. (2021). Current status of biogas upgrading for direct biomethane use: A review. Renewable and Sustainable Energy Reviews, 149, 111343. https://doi.org/10.1016/j.rser.2021.111343.

Khatib, H. (2014). Oil and natural gas prospects: Middle East and North Africa. Energy Policy, 64, 71–77. https://doi.org/10.1016/j.enpol.2013.07.091.

Kuhn, J. N., Elwell, A. C., Elsayed, N. H., & Joseph, B. (2017). Requirements, techniques, and costs for contaminant removal from landfill gas. Waste Management, 63, 246–256. https://doi.org/10.1016/j.wasman.2017.02.001.

Lee, E., Rout, P. R., Kyun, Y., & Bae, J. (2020). Process optimization and energy analysis of vacuum degasifier systems for the simultaneous removal of dissolved methane and hydrogen sulfide from anaerobically treated wastewater. Water Research, 182, 115965. https://doi.org/10.1016/j.watres.2020.115965.

Lewis, R. J., & Copley, G. B. (2015). Chronic low-level hydrogen sulfide exposure and potential effects on human health: A review of the epidemiological evidence. Critical Reviews in Toxicology, 45(2), 93–123. https://doi.org/10.3109/10408444.2014.971943.

Li, J. R., Kuppler, R. J., & Zhou, H. C. (2009). Selective gas adsorption and separation in metal-organic frameworks. Chemical Society Reviews, 38(5), 1477–1504. https://doi.org/10.1039/b802426j.

Li, J., Wei, L., Duan, Q., Hu, G., & Zhang, G. (2014). Semi-continuous anaerobic co-digestion of dairy manure with three crop residues for biogas production. Bioresource Technology, 156, 307–313. https://doi.org/10.1016/j.biortech.2014.01.064.

Lindkvist, E., & Karlsson, M. (2018). Biogas production plants; existing classifications and proposed categories. Journal of Cleaner Production, 174, 1588–1597. https://doi.org/10.1016/j.jclepro.2017.10.317.

Marín, D., Vega, M., Lebrero, R., & Muñoz, R. (2020). Optimization of a chemical scrubbing process based on a Fe-EDTA-carbonate based solvent for the simultaneous removal of CO2 and H2S from biogas. Journal of Water Process Engineering, 37(July), 101476. https://doi.org/10.1016/j.jwpe.2020.101476.

Merlin Christy, P., Gopinath, L. R., & Divya, D. (2014). A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renewable and Sustainable Energy Reviews, 34, 167–173. https://doi.org/10.1016/j.rser.2014.03.010.

Miltner, M., Makaruk, A., & Harasek, M. (2017). Review on available biogas upgrading technologies and innovations towards advanced solutions. Journal of Cleaner Production, 161, 1329–1337. https://doi.org/10.1016/j.jclepro.2017.06.045.

Mulka, R., Szulczewski, W., Szlachta, J., & Prask, H. (2016). The influence of carbon content in the mixture of substrates on methane production. Clean Technologies and Environmental Policy, 18(3), 807–815. https://doi.org/10.1007/s10098-015-1057-z.

Nasir, I. M., Mohd Ghazi, T. I., & Omar, R. (2012). Anaerobic digestion technology in livestock manure treatment for biogas production: A review. Engineering in Life Sciences, 12(3), 258–269. https://doi.org/10.1002/elsc.201100150.

Nasir, I. M., Omar, R., & Idris, A. (2013). Anaerobic Digestion of Cattle Manure : Influence of Inoculum Concentration Pome Inoculum Lab-Scale Bioreactor System And Operation, 10(1), 22–26.

Ngumah, C. C., Ogbulie, J. N., Orji, J. C., & Amadi, E. S. (2013). Biogas potential of organic waste in Nigeria. Journal of Urban and Environmental Engineering, 7(1), 110–116. https://doi.org/10.4090/juee.2013.v7n1.110116.

Noorollahi, Y., Kheirrouz, M., Farabi-Asl, H., Yousefi, H., & Hajinezhad, A. (2015). Biogas production potential from livestock manure in Iran. Renewable and Sustainable Energy Reviews, 50, 748–754. https://doi.org/10.1016/j.rser.2015.04.190.

Ounnar, A., Benhabyles, L., & Igoud, S. (2012). Energetic valorization of biomethane produced from cow-dung. Procedia Engineering, 33, 330–334. https://doi.org/10.1016/j.proeng.2012.01.1211.

Ozekmekci, M., Salkic, G., & Fellah, M. F. (2015). Use of zeolites for the removal of H2S: A mini-review. Fuel Processing Technology, 139, 49–60. https://doi.org/10.1016/j.fuproc.2015.08.015.

Ozturk, M., & Dincer, I. (2019). Comparative environmental impact assessment of various fuels and solar heat for a combined cycle. International Journal of Hydrogen Energy, 44(10), 5043–5053. https://doi.org/10.1016/j.ijhydene.2019.01.003.

Pagés-Díaz, J., Pereda-Reyes, I., Taherzadeh, M. J., Sárvári-Horváth, I., & Lundin, M. (2014). Anaerobic co-digestion of solid slaughterhouse wastes with agro-residues: Synergistic and antagonistic interactions determined in batch digestion assays. Chemical Engineering Journal, 245, 89–98. https://doi.org/10.1016/j.cej.2014.02.008.

Patel, P., Patel, B., Vekaria, E., & Shah, M. (2020). Biophysical economics and management of biodiesel, a harbinger of clean and sustainable energy. International Journal of Energy and Water Resources, 4(4), 411–423. https://doi.org/10.1007/s42108-020-00087-0.

Pelletier, C., Rogaume, Y., Dieckhoff, L., Bardeau, G., Pons, M. N., & Dufour, A. (2019). Effect of combustion technology and biogenic CO2 impact factor on global warming potential of wood-to-heat chains. Applied Energy, 235(November 2018), 1381–1388. https://doi.org/10.1016/j.apenergy.2018.11.060.

Polychronopoulou, K., Cabello Galisteo, F., López Granados, M., Fierro, J. L. G., Bakas, T., & Efstathiou, A. M. (2005). Novel Fe-Mn-Zn-Ti-O mixed-metal oxides for the low-temperature removal of H2S from gas streams in the presence of H2, CO 2, and H2O. Journal of Catalysis, 236(2), 205–220. https://doi.org/10.1016/j.jcat.2005.10.001.

Qasim, S. R. (2017). Wastewater Treatment Plants: Planning, Design, and Operation. Routledge.

Qian, Z., Xu, L. Bin, Li, Z. H., Li, H., & Guo, K. (2010). Selective absorption of H2S from a gas mixture with CO 2 by aqueous N -methyldiethanolamine in a rotating packed bed. Industrial and Engineering Chemistry Research, 49(13), 6196–6203. https://doi.org/10.1021/ie100678c.

Rahimnejad, M., Adhami, A., Darvari, S., Zirepour, A., & Oh, S. E. (2015). Microbial fuel cell as new technol ogy for bioelectricity generation: A review. Alexandria Engineering Journal, 54(3), 745–756. https://doi.org/10.1016/j.aej.2015.03.031.

Rajagopal, R., Choudhury, M. R., Anwar, N., Goyette, B., & Rahaman, M. S. (2019). Influence of pre-hydrolysis on sewage treatment in an Up-Flow Anaerobic Sludge BLANKET (UASB) reactor: A review. Water (Switzerland), 11(2), 3–7. https://doi.org/10.3390/w11020372.

Rasi, S., Läntelä, J., & Rintala, J. (2011). Trace compounds affecting biogas energy utilisation - A review. Energy Conversion and Management, 52(12), 3369–3375. https://doi.org/10.1016/j.enconman.2011.07.005.

Renjun, R., Jiashun, C., Qin, Z., Yang, W., Changshuang, Z., Jingyang, L., Zhaoxia, X., Publications, D., Treatment, W., Jiashun, C., Qin, Z., Yang, W., Changshuang, Z., Jingyang, L., & Zhaoxia, X. (2020). Exported Abstract record ( s ). 1–2.

Rodriguez, J. A., Chaturvedi, S., Kuhn, M., & Hrbek, J. (1998). Reaction of H2S and S2 with metal/oxide surfaces: Band-gap size and chemical reactivity. Journal of Physical Chemistry B, 102(28), 5511–5519. https://doi.org/10.1021/jp9815208.

Ryckebosch, E., Drouillon, M., & Vervaeren, H. (2011). Techniques for transformation of biogas to biomethane. Biomass and Bioenergy, 35(5), 1633–1645. https://doi.org/10.1016/j.biombioe.2011.02.033.

Santos, R. O. dos, Santos, L. de S., & Prata, D. M. (2018). Simulation and optimization of a methanol synthesis process from different biogas sources. Journal of Cleaner Production, 186, 821–830. https://doi.org/10.1016/j.jclepro.2018.03.108.

Shah, M. S., Tsapatsis, M., & Siepmann, J. I. (2017). Hydrogen Sulfide Capture: From Absorption in Polar Liquids to Oxide, Zeolite, and Metal-Organic Framework Adsorbents and Membranes. Chemical Reviews, 117(14), 9755–9803. https://doi.org/10.1021/acs.chemrev.7b00095.

Shen, Y., Linville, J. L., Urgun-Demirtas, M., Mintz, M. M., & Snyder, S. W. (2015). An overview of biogas production and utilization at full-scale wastewater treatment plants (WWTPs) in the United States: Challenges and opportunities towards energy-neutral WWTPs. Renewable and Sustainable Energy Reviews, 50, 346–362. https://doi.org/10.1016/j.rser.2015.04.129.

Song, J., Niu, X., Ling, L., & Wang, B. (2013). A density functional theory study on the interaction mechanism between H2S and the α-Fe2O3(0001) surface. Fuel Processing Technology, 115, 26–33. https://doi.org/10.1016/j.fuproc.2013.04.003.

Sun, Q., Li, H., Yan, J., Liu, L., Yu, Z., & Yu, X. (2015). Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation. Renewable and Sustainable Energy Reviews, 51, 521–532. https://doi.org/10.1016/j.rser.2015.06.029.

Surendra, K. C., Takara, D., Hashimoto, A. G., & Khanal, S. K. (2014). Biogas as a sustainable energy source for developing countries: Opportunities and challenges. Renewable and Sustainable Energy Reviews, 31, 846–859. https://doi.org/10.1016/j.rser.2013.12.015.

Taki, M., Soheili-Fard, F., Rohani, A., Chen, G., & Yildizhan, H. (2018). Life cycle assessment to compare the environmental impacts of different wheat production systems. Journal of Cleaner Production, 197, 195–207. https://doi.org/10.1016/j.jclepro.2018.06.173.

Wang, X. L., Fan, H. L., Tian, Z., He, E. Y., Li, Y., & Shangguan, J. (2014). Adsorptive removal of sulfur compounds using IRMOF-3 at ambient temperature. Applied Surface Science, 289, 107–113. https://doi.org/10.1016/j.apsusc.2013.10.115.

Wiheeb, A. D., Martunus, Helwani, Z., Shamsudin, I. K., Kim, J., & Othman, M. R. (2013). Pore morphological identification of hydrotalcite from nitrogen adsorption. Chaos, Solitons and Fractals, 49(1), 7–15. https://doi.org/10.1016/j.chaos.2013.02.001.

Yong, Z., Dong, Y., Zhang, X., & Tan, T. (2015). Anaerobic co-digestion of food waste and straw for biogas production. Renewable Energy, 78, 527–530. https://doi.org/10.1016/j.renene.2015.01.033.

Downloads

Published

2024-06-22

Issue

Section

Articles