Development of somatic cell nuclear transfer biotechnology for cloning of animals: a mini-review

Authors

DOI:

https://doi.org/10.26555/joubins.v1i1.3864

Keywords:

animal biotechnology, cloning, SCNT, somatic cell, threatened animal

Abstract

Somatic cell nuclear transfer (SCNT) in cloning animals is important for reproductive biotechnology, it can be used for the conservation of wild, endangered or critically endangered, and also to improve superior local livestock genetic resources. So many publications that show the success of animal cloning with SCNT for various purposes, as well as the development of animal cloning methods. This paper will attempt to review the results of successful and limited animal cloning research on the needs of non-threatened (livestock and wild animals) and threatened wildlife. This research was kind of literature review. The research was conduct several phase these are identification, abstract screening, full-text selection, and mini-review writing. The results of SCNT biotechnology for animal cloning can be used for the preservation of wild animal germplasm genetic resources, increasing the production of superior livestock and ways of conserving threatened animals.

Author Biographies

Rosyid Ridlo Al Hakim, Faculty of Biology, Universitas Jenderal Soedirman

Faculty of Biology, Universitas Jenderal Soedirman

Tegar Aldi Saputro, Faculty of Biology, Universitas Jenderal Soedirman

Faculty of Biology, Universitas Jenderal Soedirman

References

Arat, S., Caputcu, A. T., Akkoc, T., Pabuccuoglu, S., Sagirkaya, H., Cirit, U., Nak, Y., Koban, E., Bagis, H., Demir, K., Nak, D., Senunver, A., Kilicaslan, R., Tuna, B., Cetinkaya, G., Denizci, M., & Aslan, O. (2011). Using cell banks as a tool in conservation programmes of native domestic breeds: The production of the first cloned Anatolian Grey cattle. Reproduction, Fertility and Development, 23(8), 1012–1023. https://doi.org/10.1071/RD11026

Boquest, A. C., Grupen, C. G., Harrison, S. J., McIlfatrick, S. M., Ashman, R. J., D’Apice, A. J. F., & Nottle, M. B. (2002). Production of cloned pigs from cultured fetal fibroblast cells. Biology of Reproduction, 66(5), 1283–1287. https://doi.org/10.1095/biolreprod66.5.1283

Borges, A. A., & Pereira, A. F. (2019). Potential role of intraspecific and interspecific cloning in the conservation of wild mammals. Zygote, 27(3), 111–117. https://doi.org/10.1017/S0967199419000170

Chen, M., Zhu, Q., Li, C., Kou, X., Zhao, Y., Li, Y., Xu, R., Yang, L., Yang, L., Gu, L., Wang, H., Liu, X., Jiang, C., & Jiang, C. (2020). Chromatin architecture reorganization in murine somatic cell nuclear transfer embryos. Nature Communications, 11, 1813. https://doi.org/10.1038/s41467-020-15607-z

Ciptadi, G. (2007). Pemanfaatan teknologi kloning hewan untuk konservasi sumber genetik ternak lokal melalui realisasi bank sel somatis. J. Ternak Tropika, 6(2), 60–65.

Dantas, G. N., Santarosa, B. P., Santos, V. H., Hooper, H. B., Micai, R. A., Sinzato, Y. K., Damasceno, D. C., da Silva, A. A., Benesi, F. J., & Gonçalves, R. C. (2020). Oxidative stress biomarkers in newborn calves: Comparison among artificial insemination, in vitro fertilization and cloning. Animal Reproduction Science, 219(July). https://doi.org/10.1016/j.anireprosci.2020.106538

Deng, M., Liu, Z., Chen, B., Wan, Y., Yang, H., Zhang, Y., Cai, Y., Zhou, J., & Wang, F. (2020). Aberrant DNA and histone methylation during zygotic genome activation in goat cloned embryos. Theriogenology, 148, 27–36. https://doi.org/10.1016/j.theriogenology.2020.02.036

Fatira, E., Havelka, M., Labbé, C., Depincé, A., Pšenička, M., & Saito, T. (2019). A newly developed cloning technique in sturgeons; an important step towards recovering endangered species. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-019-46892-4

Hajian, M., Hosseini, S. M., Forouzanfar, M., Abedi, P., Ostadhosseini, S., Hosseini, L., Moulavi, F., Gourabi, H., Shahverdi, A. H., Taghi Dizaj, A. V., Kalantari, S. A., Fotouhi, Z., Iranpour, R., Mahyar, H., Amiri-Yekta, A., & Nasr-Esfahani, M. H. (2011). “Conservation cloning” of vulnerable Esfahan mouflon (Ovis orientalis isphahanica): In vitro and in vivo studies. European Journal of Wildlife Research, 57(4), 959–969. https://doi.org/10.1007/s10344-011-0510-5

Holt, W. V., Pickard, A. R., & Prather, R. S. (2004). Wildlife conservation and reproductive cloning. Reproduction, 127(3), 317–324. https://doi.org/10.1530/rep.1.00074

Hou, J., Wang, G., Zhang, X., Wang, Y., Sun, Z., Si, F., Jiang, X., & Liu, H. (2016). Production and verification of a 2nd generation clonal group of Japanese flounder, Paralichthys olivaceus. Scientific Reports, 6(December 2015), 1–8. https://doi.org/10.1038/srep35776

Kim, M. J., Oh, H. J., Kim, G. A., Setyawan, E. M. N., Choi, Y. Bin, Lee, S. H., Petersen-Jones, S. M., Ko, C. M. J., & Lee, B. C. (2017). Birth of clones of the world’s first cloned dog. Scientific Reports, 7(1), 3–6. https://doi.org/10.1038/s41598-017-15328-2

Lu, F., Luo, C., Li, N., Liu, Q., Wei, Y., Deng, H., Wang, X., Li, X., Jiang, J., Deng, Y., & Shi, D. (2018). Efficient Generation of Transgenic Buffalos (Bubalus bubalis) by Nuclear Transfer of Fetal Fibroblasts Expressing Enhanced Green Fluorescent Protein. Scientific Reports, 8(1), 1–10. https://doi.org/10.1038/s41598-018-25120-5

Ogura, A. (2020). How to improve mouse cloning. Theriogenology, 150(xxxx), 215–220. https://doi.org/10.1016/j.theriogenology.2020.01.038

Riaz, A., Zhao, X., Dai, X., Li, W., Liu, L., Wan, H., Yu, Y., Wang, L., & Zhou, Q. (2011). Mouse cloning and somatic cell reprogramming using electrofused blastomeres. Cell Research, 21(5), 770–778. https://doi.org/10.1038/cr.2010.180

Rojas, M., Venegas, F., Montiel, E., Servely, J. L., Vignon, X., & Guillomot, M. (2005). Attemps at applying cloning to the conservation of species in danger of extinction. Int. J. Morphol., 23(4), 329–336.

Selokar, N. L., Sharma, P., Saini, M., Sheoran, S., Rajendran, R., Kumar, D., Sharma, R. K., Motiani, R. K., Kumar, P., Jerome, A., Khanna, S., & Yadav, P. S. (2019). Successful cloning of a superior buffalo bull. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598-019-47909-8

Sinclair, K. D., Corr, S. A., Gutierrez, C. G., Fisher, P. A., Lee, J. H., Rathbone, A. J., Choi, I., Campbell, K. H. S., & Gardner, D. S. (2016). Healthy ageing of cloned sheep. Nature Communications, 7. https://doi.org/10.1038/ncomms12359

Song, S. H., Lee, K. L., Xu, L., Joo, M. D., Hwang, J. Y., Oh, S. H., & Kong, I. K. (2019). Production of cloned cats using additional complimentary cytoplasm. Animal Reproduction Science, 208(July), 106125. https://doi.org/10.1016/j.anireprosci.2019.106125

Song, S. H., Oh, S. H., Xu, L., Lee, K. L., Hwang, J. Y., Joo, M. D., & Kong, I. K. (2020). Effect of additional cytoplasm of cloned embryo on in vitro developmental competence and reprogramming efficiency in mice. Cellular Reprogramming, 22(5), 254–261. https://doi.org/10.1089/cell.2020.0022

Tajuddin, T., Moeis, M. R., Belu, W. O. H., Rupaedah, B., & Suyanto, S. (2015). Bioteknologi. Universitas Terbuka.

Wells, D. N., Misica, P. M., & Tervit, H. R. (1999). Production of cloned calves following nuclear transfer with cultured adult mural granulosa cells. Biology of Reproduction, 60(4), 996–1005. https://doi.org/10.1095/biolreprod60.4.996

Downloads

Published

2021-06-23

Issue

Section

Articles