Implantable Antennas for Biomedical Purposes: State-of-the-Art, Challenges, and Future Directions
DOI:
https://doi.org/10.12928/irip.v7i1.9562Keywords:
Implantable Antennas, Implantable Medical Devices, Biomedical Engineering, Rectifier Antenna, Biocompatibility, Antenna Design, Miniaturized AntennaAbstract
This article provides a comprehensive review of implantable antennas in the context of their application within the biomedical field. Through a systematic exploration of cutting-edge developments and associated challenges, a thorough understanding of antenna design, performance considerations, and safety implications is obtained. The investigation thoroughly examines diverse antenna types, including planar, microstrip, fractal-geometry, and others, elucidating the design considerations that govern their suitability for a wide array of implantable medical devices (IMDs). Substrate and material choices are critical factors influencing antenna efficiency and biocompatibility. The utilization of available frequency bands is evaluated, highlighting the inherent tradeoffs that dictate their applicability in biomedical applications. Additionally, the promising domain of rectenna technology is explored for its potential in sustainable energy harvesting. The discourse on miniaturization techniques underscores their pivotal role in enabling the seamless integration of antennas within intricate implant structures. Safety aspects are paramount, encompassing metrics such as specific absorption range (SAR), maximum permissible exposure (MPE) limits, and thresholds for localized temperature changes. The intricate interplay between human body effects and antenna performance is briefly elaborated. Methodologies for thorough evaluation, spanning computer simulations, as well as experiments in in vivo and in vitro scenarios, are discussed for their pivotal role in iteratively refining antenna functionality.
References
F. Merli, “Implantable antennas for biomedical applications,” EPFL, 2011.
C. Liu, Y.-X. Guo, and S. Xiao, “A review of implantable antennas for wireless biomedical devices,” in Forum for electromagnetic research methods and application technologies (FERMAT), 2016, pp. 1–11.
M. M. Soliman et al., “Review on medical implantable antenna technology and imminent research challenges,” Sensors, vol. 21, no. 9, p. 3163, 2021.
C. and T. European Commission Directorate-General for Communications Networks, “Smart Wearables: Reflection and Orientation Paper,” Nov. 2016.
U. K. Hisan, L. Y. Sabila, and M. M. Amri, “Coil-based Wireless Power Transfer for Implanted Pacemakers: A Brief Review,” Jurnal Teknik Elektro, vol. 15, no. 1, pp. 1–7, 2023.
E. M. McGee and G. Q. Maguire, “Becoming borg to become immortal: regulating brain implant technologies,” Cambridge Quarterly of Healthcare Ethics, vol. 16, no. 3, pp. 291–302, 2007.
J. Shin et al., “Bioresorbable optical sensor systems for monitoring of intracranial pressure and temperature,” Sci Adv, vol. 5, no. 7, p. eaaw1899, 2019.
F.-G. Zeng, S. Rebscher, W. Harrison, X. Sun, and H. Feng, “Cochlear implants: system design, integration, and evaluation,” IEEE Rev Biomed Eng, vol. 1, pp. 115–142, 2008.
B. Mijnheer, “State of the art of in vivo dosimetry,” Radiat Prot Dosimetry, vol. 131, no. 1, pp. 117–122, 2008.
A. T. Chuang, C. E. Margo, and P. B. Greenberg, “Retinal implants: a systematic review,” British Journal of Ophthalmology, vol. 98, no. 7, pp. 852–856, 2014.
P. Rotter, B. Daskala, and R. Compano, “RFID implants: Opportunities and and challenges for identifying people,” IEEE Technology and Society Magazine, vol. 27, no. 2, pp. 24–32, 2008.
J. Lueke and W. A. Moussa, “MEMS-based power generation techniques for implantable biosensing applications,” Sensors, vol. 11, no. 2, pp. 1433–1460, 2011.
K. L. Baker, F. B. Bolger, and J. P. Lowry, “A microelectrochemical biosensor for real-time in vivo monitoring of brain extracellular choline,” Analyst, vol. 140, no. 11, pp. 3738–3745, 2015.
A. Kiourti and K. S. Nikita, “Miniature scalp-implantable antennas for telemetry in the MICS and ISM bands: Design, safety considerations and link budget analysis,” IEEE Trans Antennas Propag, vol. 60, no. 8, pp. 3568–3575, 2012.
R. Moore, “Effects of a surrounding conducting medium on antenna analysis,” IEEE Trans Antennas Propag, vol. 11, no. 3, pp. 216–225, 1963.
S. A. A. Shah and H. Yoo, “Scalp-implantable antenna systems for intracranial pressure monitoring,” IEEE Trans Antennas Propag, vol. 66, no. 4, pp. 2170–2173, 2018.
K. H. Yeap, E. M. F. Tan, T. Hiraguri, K. C. Lai, and K. Hirasawa, “A multi-band planar antenna for biomedical applications,” Frequenz, vol. 75, no. 5–6, pp. 221–228, 2021.
M. Ramzan, X. Fang, Q. Wang, N. Neumann, and D. Plettemeier, “Miniaturized planar implanted spiral antenna inside the heart muscle at MICS band for future leadless pacemakers,” in 2019 13th International Symposium on Medical Information and Communication Technology (ISMICT), IEEE, 2019, pp. 1–4.
S. Maity, K. R. Barman, and S. Bhattacharjee, “Silicon‐based technology: Circularly polarized microstrip patch antenna at ISM band with miniature structure using fractal geometry for biomedical application,” Microw Opt Technol Lett, vol. 60, no. 1, pp. 93–101, 2018.
R. Li, Y.-X. Guo, and G. Du, “A conformal circularly polarized antenna for wireless capsule endoscope systems,” IEEE Trans Antennas Propag, vol. 66, no. 4, pp. 2119–2124, 2018.
Y. Zhang, C. Liu, X. Liu, K. Zhang, and X. Yang, “A wideband circularly polarized implantable antenna for 915 MHz ISM-band biotelemetry devices,” IEEE Antennas Wirel Propag Lett, vol. 17, no. 8, pp. 1473–1477, 2018.
S. Das and D. Mitra, “A compact wideband flexible implantable slot antenna design with enhanced gain,” IEEE Trans Antennas Propag, vol. 66, no. 8, pp. 4309–4314, 2018.
C. Liu, Y. Zhang, and X. Liu, “Circularly polarized implantable antenna for 915 MHz ISM-band far-field wireless power transmission,” IEEE Antennas Wirel Propag Lett, vol. 17, no. 3, pp. 373–376, 2018.
A. E. Mohamed, M. S. Sharawi, and A. Muqaibel, “Implanted dual‐band circular antenna for biomedical applications,” Microw Opt Technol Lett, vol. 60, no. 5, pp. 1125–1132, 2018.
L.-J. Xu, Y. Bo, W.-J. Lu, L. Zhu, and C.-F. Guo, “Circularly polarized annular ring antenna with wide axial-ratio bandwidth for biomedical applications,” IEEE Access, vol. 7, pp. 59999–60009, 2019.
G. Samanta and D. Mitra, “Dual-band circular polarized flexible implantable antenna using reactive impedance substrate,” IEEE Trans Antennas Propag, vol. 67, no. 6, pp. 4218–4223, 2019.
F. Faisal and H. Yoo, “A miniaturized novel-shape dual-band antenna for implantable applications,” IEEE Trans Antennas Propag, vol. 67, no. 2, pp. 774–783, 2018.
R. Li, B. Li, G. Du, X. Sun, and H. Sun, “A compact broadband antenna with dual-resonance for implantable devices,” Micromachines (Basel), vol. 10, no. 1, p. 59, 2019.
N. Ganeshwaran, J. K. Jeyaprakash, M. G. N. Alsath, and V. Sathyanarayanan, “Design of a dual-band circular implantable antenna for biomedical applications,” IEEE Antennas Wirel Propag Lett, vol. 19, no. 1, pp. 119–123, 2019.
S. Bahrami, G. Moloudian, S. R. Miri-Rostami, and T. Björninen, “Compact microstrip antennas with enhanced bandwidth for the implanted and external subsystems of a wireless retinal prosthesi,” IEEE Trans Antennas Propag, vol. 69, no. 5, pp. 2969–2974, 2020.
Y. Feng, Z. Li, L. Qi, W. Shen, and G. Li, “A compact and miniaturized implantable antenna for ISM band in wireless cardiac pacemaker system,” Sci Rep, vol. 12, no. 1, p. 238, 2022.
P. Mohanraj and P. R. Selvakumaran, “Compact wideband implantable antenna for biomedical applications,” Current Applied Physics, vol. 43, pp. 50–56, 2022.
G. Wang, X. Xuan, D. Jiang, K. Li, and W. Wang, “A miniaturized implantable antenna sensor for wireless capsule endoscopy system,” AEU-International Journal of Electronics and Communications, vol. 143, p. 154022, 2022.
S. S. Mosavinejad, P. Rezaei, and A. A. Khazaei, “A miniaturized and biocompatible dual-band implantable antenna for fully-passive wireless signal monitoring,” AEU-International Journal of Electronics and Communications, vol. 154, p. 154303, 2022.
Y. E. Yamac, M. Ciflik, and S. C. Basaran, “Miniaturized multiband implantable antenna designs for in‐body compact medical devices,” International Journal of RF and Microwave Computer‐Aided Engineering, vol. 32, no. 11, p. e23335, 2022.
M. Matthaiou, S. Koulouridis, and S. Kotsopoulos, “A novel dual-band implantable antenna for pancreas telemetry sensor applications,” in Telecom, MDPI, 2022, pp. 1–16.
Y. Fan, X. Liu, and C. Xu, “A Broad Dual-Band Implantable Antenna for RF Energy Harvesting and Data Transmitting,” Micromachines (Basel), vol. 13, no. 4, p. 563, 2022.
S. Ahmad, B. Manzoor, S. Naseer, N. Santos-Valdivia, A. Ghaffar, and M. I. Abbasi, “X-shaped slotted patch biomedical implantable Antenna for wireless communication networks,” Wirel Commun Mob Comput, vol. 2022, pp. 1–11, 2022.
N. Abbas, S. A. A. Shah, A. Basir, Z. Bashir, A. Akram, and H. Yoo, “Miniaturized antenna for high data rate implantable brain-machine interfaces,” IEEE Access, vol. 10, pp. 66018–66027, 2022.
D. Jing, H. Li, X. Ding, W. Shao, and S. Xiao, “Compact and Broadband Circularly Polarized Implantable Antenna for Wireless Implantable Medical Devices,” IEEE Antennas Wirel Propag Lett, 2023.
A. D. Butt, J. Khan, S. Ahmad, A. Ghaffar, A. J. Abdullah Al-Gburi, and M. Hussein, “Single-fed broadband CPW-fed circularly polarized implantable antenna for sensing medical applications,” PLoS One, vol. 18, no. 4, p. e0280042, 2023.
A. Z. A. Zaki et al., “Design and Modeling of Ultra-Compact Wideband Implantable Antenna for Wireless ISM Band,” Bioengineering, vol. 10, no. 2, p. 216, 2023.
R. Kangeyan and M. Karthikeyan, “Miniaturized meander‐line dual‐band implantable antenna for biotelemetry applications,” ETRI Journal, 2023.
R. Kumar, S. Singh, and A. P. S. Chauhan, “Implantable antenna design based on gosper curve fractal geometry,” IETE J Res, vol. 69, no. 6, pp. 3583–3593, 2023.
N. Abbas, S. Ullah, Z. Bashir, A. Basir, and H. Yoo, “Design and Measurement of a Minuscule-Sized Implantable Antenna for Brain-Machine Interfaces,” IEEE Access, 2023.
S. Salama, D. Zyoud, and A. Abuelhaija, “A Compact-Size Multiple-Band Planar Inverted LC Implantable Antenna Used for Biomedical Applications,” Micromachines (Basel), vol. 14, no. 5, p. 1021, 2023.
S. M. A. Shah, M. Zada, J. Nasir, O. Owais, A. Iqbal, and H. Yoo, “Miniaturized Four-Port MIMO Implantable Antenna for High-Data-Rate Wireless-Capsule-Endoscopy Applications,” IEEE Trans Antennas Propag, vol. 71, no. 4, pp. 3123–3133, 2023.
I. A. Shah, M. Zada, and H. Yoo, “Design and analysis of a compact-sized multiband spiral-shaped implantable antenna for scalp implantable and leadless pacemaker systems,” IEEE Trans Antennas Propag, vol. 67, no. 6, pp. 4230–4234, 2019.
M. H. B. Ucar and E. Uras, “A Compact Modified Two-Arm Rectangular Spiral Implantable Antenna Design for ISM Band Biosensing Applications,” Sensors, vol. 23, no. 10, p. 4883, 2023.
B. B. Mandelbrot and B. B. Mandelbrot, The fractal geometry of nature, vol. 1. WH freeman New York, 1982.
R. Das and H. Yoo, “A multiband antenna associating wireless monitoring and nonleaky wireless power transfer system for biomedical implants,” IEEE Trans Microw Theory Tech, vol. 65, no. 7, pp. 2485–2495, 2017.
M. R. Robel, A. Ahmed, A. Alomainy, and W. S. T. Rowe, “Effect of A Superstrate on On-Head Matched Antennas for Biomedical Applications,” Electronics (Basel), vol. 9, no. 7, p. 1099, 2020.
R. P. Khokle, K. P. Esselle, M. Heimlich, and D. Bokor, “Design of a miniaturized bone implantable antenna for a wireless implant monitoring device,” 2017.
A. W. Damaj, H. M. El Misilmani, and S. Abou Chahine, “Implantable antennas for biomedical applications: An overview on alternative antenna design methods and challenges,” in 2018 International Conference on High Performance Computing & Simulation (HPCS), IEEE, 2018, pp. 31–37.
M. L. Scarpello et al., “Design of an implantable slot dipole conformal flexible antenna for biomedical applications,” IEEE Trans Antennas Propag, vol. 59, no. 10, pp. 3556–3564, 2011.
S. An et al., “A Water-Resistant, Self-Healing Encapsulation Layer for a Stable, Implantable Wireless Antenna,” Polymers (Basel), vol. 15, no. 16, p. 3391, 2023.
P. Woznowski et al., “A multi-modal sensor infrastructure for healthcare in a residential environment,” in 2015 IEEE International Conference on Communication Workshop (ICCW), IEEE, 2015, pp. 271–277.
O. Georgiou, K. Mimis, D. Halls, W. H. Thompson, and D. Gibbins, “How many Wi-Fi APs does it take to light a lightbulb?,” IEEE Access, vol. 4, pp. 3732–3746, 2016.
S. Naderiparizi, A. N. Parks, Z. Kapetanovic, B. Ransford, and J. R. Smith, “WISPCam: A battery-free RFID camera,” in 2015 IEEE International Conference on RFID (RFID), IEEE, 2015, pp. 166–173.
S. Bakogianni and S. Koulouridis, “A dual-band implantable rectenna for wireless data and power support at sub-GHz region,” IEEE Trans Antennas Propag, vol. 67, no. 11, pp. 6800–6810, 2019.
C. Xu, Y. Fan, and X. Liu, “A Circularly Polarized Implantable Rectenna for Microwave Wireless Power Transfer,” Micromachines (Basel), vol. 13, no. 1, p. 121, 2022.
C. Xu, X. Liu, and Z. Li, “Miniaturized implantable rectenna for far-field wireless power transfer,” in 2020 9th Asia-Pacific Conference on Antennas and Propagation (APCAP), IEEE, 2020, pp. 1–2.
S. A. A. Shah and H. Yoo, “Radiative near-field wireless power transfer to scalp-implantable biotelemetric device,” IEEE Trans Microw Theory Tech, vol. 68, no. 7, pp. 2944–2953, 2020.
S. Ding, S. Koulouridis, and L. Pichon, “Implantable rectenna system for biomedical wireless applications,” in 2019 IEEE Wireless Power Transfer Conference (WPTC), IEEE, 2019, pp. 454–457.
S. Ding, S. Koulouridis, and L. Pichon, “Implantable wireless transmission rectenna system for biomedical wireless applications,” IEEE Access, vol. 8, pp. 195551–195558, 2020.
U. C. Resende, J. L. Soares, S. T. M. Gonçalves, and I. V Soares, “Design of a Fully Printed Implantable Rectenna”.
A. Iqbal, P. R. Sura, M. Al-Hasan, I. Ben Mabrouk, and T. A. Denidni, “Wireless power transfer system for deep-implanted biomedical devices,” Sci Rep, vol. 12, no. 1, p. 13689, 2022.
A. Basir and H. Yoo, “Efficient wireless power transfer system with a miniaturized quad-band implantable antenna for deep-body multitasking implants,” IEEE Trans Microw Theory Tech, vol. 68, no. 5, pp. 1943–1953, 2020.
A. Abdi and H. Aliakbarian, “A miniaturized UHF-band rectenna for power transmission to deep-body implantable devices,” IEEE J Transl Eng Health Med, vol. 7, pp. 1–11, 2019.
J. Zhang et al., “Highly Integrated and Ultra-Compact Rectenna with Wireless Powering for Implantable Vascular Devices,” in 2023 21st IEEE Interregional NEWCAS Conference (NEWCAS), IEEE, 2023, pp. 1–5.
M. U. Khan, M. S. Sharawi, and R. Mittra, “Microstrip patch antenna miniaturisation techniques: a review,” IET Microwaves, Antennas & Propagation, vol. 9, no. 9, pp. 913–922, 2015.
D. Wang, H. Wong, and C. H. Chan, “Miniaturized circularly polarized patch antenna by substrate integrated irregular ground,” in 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), IEEE, 2011, pp. 1875–1877.
A. B. Mustafa and T. Rajendran, “An effective design of wearable antenna with double flexible substrates and defected ground structure for healthcare monitoring system,” J Med Syst, vol. 43, pp. 1–11, 2019.
S. H. Kim and J. H. Jang, “Compact folded monopole antenna with LC-loadings,” in 2010 International Workshop on Antenna Technology (iWAT), IEEE, 2010, pp. 1–4.
R. O. Ouedraogo, E. J. Rothwell, A. R. Diaz, K. Fuchi, and A. Temme, “Miniaturization of patch antennas using a metamaterial-inspired technique,” IEEE Trans Antennas Propag, vol. 60, no. 5, pp. 2175–2182, 2012.
E. J. Rothwell and R. O. Ouedraogo, “Antenna miniaturization: definitions, concepts, and a review with emphasis on metamaterials,” J Electromagn Waves Appl, vol. 28, no. 17, pp. 2089–2123, 2014.
D. Seabury, “An update on SAR standards and the basic requirements for SAR assessment,” Feature Article, Conformity, pp. 1–8, 2005.
S. Kovar, I. Spano, G. Gatto, J. Valouch, and M. Adamek, “SAR evaluation of wireless antenna on implanted cardiac pacemaker,” J Electromagn Waves Appl, vol. 31, no. 6, pp. 627–635, 2017.
M. Al-Hasan, P. R. Sura, A. Iqbal, J. J. Tiang, I. Ben Mabrouk, and M. Nedil, “Low-profile dual-band implantable antenna for compact implantable biomedical devices,” AEU-International Journal of Electronics and Communications, vol. 138, p. 153896, 2021.
H. M. Madjar, “Human radio frequency exposure limits: An update of reference levels in Europe, USA, Canada, China, Japan and Korea,” in 2016 International symposium on electromagnetic compatibility-EMC EUROPE, IEEE, 2016, pp. 467–473.
R. A. Bercich, D. R. Duffy, and P. P. Irazoqui, “Far-field RF powering of implantable devices: Safety considerations,” IEEE Trans Biomed Eng, vol. 60, no. 8, pp. 2107–2112, 2013.
C. Liu, Y.-X. Guo, H. Sun, and S. Xiao, “Design and safety considerations of an implantable rectenna for far-field wireless power transfer,” IEEE Trans Antennas Propag, vol. 62, no. 11, pp. 5798–5806, 2014.
S. Gabriel, R. W. Lau, and C. Gabriel, “The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz,” Phys Med Biol, vol. 41, no. 11, p. 2251, 1996.
Q. H. Abbasi, M. U. Rehman, K. Qaraqe, and A. Alomainy, Advances in body-centric wireless communication: Applications and state-of-the-art. Institution of Engineering and Technology, 2016.
M. Ur‐Rehman, Q. H. Abbasi, M. Akram, and C. Parini, “Design of band‐notched ultra wideband antenna for indoor and wearable wireless communications,” IET Microwaves, Antennas & Propagation, vol. 9, no. 3, pp. 243–251, 2015.
Foundation for Research on Information Technologies in Society (IT’IS), “Dielectric Properties of Human Tissues,” https://itis.swiss/virtual-population/tissue-properties/database/dielectric-properties/, 2023.
O. H. Murphy et al., “Continuous in vivo blood pressure measurements using a fully implantable wireless SAW sensor,” Biomed Microdevices, vol. 15, pp. 737–749, 2013.
S. Ma, T. Björninen, L. Sydänheimo, M. H. Voutilainen, and L. Ukkonen, “Double split rings as extremely small and tuneable antennas for brain implantable wireless medical microsystems,” IEEE Trans Antennas Propag, vol. 69, no. 2, pp. 760–768, 2020.
K. Yeap, C. Voon, T. Hiraguri, and H. Nisar, “A compact dual‐band implantable antenna for medical telemetry,” Microw Opt Technol Lett, vol. 61, no. 9, pp. 2105–2109, 2019.
N. Panunzio et al., “Cyber-tooth: Antennified dental implant for RFID wireless temperature monitoring,” in 2021 IEEE International Conference on RFID Technology and Applications (RFID-TA), IEEE, 2021, pp. 211–214.
J. Liska, M. Gao, L. Jelinek, E. R. Algarp, A. K. Skrivervik, and M. Capek, “Upper Bound on Implantable Antennas Considering Ohmic Loss,” arXiv preprint arXiv:2307.16466, 2023.
J. Kim, “Compact implantable antenna integrated with a wireless power transfer coil,” in 2020 Antenna Measurement Techniques Association Symposium (AMTA), IEEE, 2020, pp. 1–4.
S. A. Kumar and T. Shanmuganantham, “Scalp–Implantable Antenna for Biomedical Applications,” in 2020 URSI regional conference on radio science (URSI-RCRS), IEEE, 2020, pp. 1–4.
S. Manna, T. Bose, and R. Bera, “Microstrip patch antenna with fractal structure for on-body wearable medical devices,” in Biotechnology and Biological Sciences: Proceedings of the 3rd International Conference of Biotechnology and Biological Sciences (BIOSPECTRUM 2019), August 8-10, 2019, Kolkata, India, CRC Press, 2019, p. 25.
T. Sathiyapriya, V. Gurunathan, and J. Dhanasekar, “Design of an implantable antenna for biomedical applications,” 2021.
S. Hout and J.-Y. Chung, “Design and characterization of a miniaturized implantable antenna in a seven-layer brain phantom,” IEEE Access, vol. 7, pp. 162062–162069, 2019.
N. Saini, J. Pahuja, H. Yadav, S. Sharma, Y. S. Rawat, and R. K. Nehra, “Bandwidth Enhancement of Implantable Antenna using Sorting PIN and Slot for BMDs,” Research and Applications: Emerging Technologies, vol. 5, no. 2, pp. 1–6, 2023.
S. Shekhawat, G. Gunaram, V. Sharma, and D. Bhatnagar, “CPW fed implantable elliptical patch antenna for biomedical application,” in AIP Conference Proceedings, AIP Publishing, 2020.
R. Dubey, V. R. Gupta, and M. K. Meshram, “Implantable slot antenna for biomedical application,” International Journal of Advances in Microwave Technology, vol. 6, no. 3, pp. 264–268, 2021.
M. Zada, I. A. Shah, A. Basir, and H. Yoo, “Ultra-compact implantable antenna with enhanced performance for leadless cardiac pacemaker system,” IEEE Trans Antennas Propag, vol. 69, no. 2, pp. 1152–1157, 2020.
J. Xu, H. Sato, M. Motoyoshi, N. Suematsu, K. Yasui, and Q. Chen, “A low-loss and compact UHF RFID tag antenna for implanted denture,” IEEE Journal of Radio Frequency Identification, vol. 6, pp. 1–7, 2021.
A. Schiffmann, M. Clauss, and P. Honigmann, “Biohackers and Self-Made Problems: Infection of an Implanted RFID/NFC Chip: A Case Report,” JBJS Case Connect, vol. 10, no. 2, p. e0399, 2020.
C.-L. Yang, C.-L. Tsai, and S.-H. Chen, “Implantable high-gain dental antennas for minimally invasive biomedical devices,” IEEE Trans Antennas Propag, vol. 61, no. 5, pp. 2380–2387, 2013.
Published
Issue
Section
License
Copyright (c) 2024 Muhammad Miftahul Amri, Urfa Khairatun Hisan, Dwi Sulisworo
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish in IRiP agree to the following terms: Authors retain copyright and grant the IRiP right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share (copy and redistribute the material in any medium or format) and adapt (remix, transform, and build upon the material) the work for any purpose, even commercially with an acknowledgment of the work's authorship and initial publication in IRiP. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in IRiP. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).