Seawater Lamp: Utilization of Seawater as an Alternative Energy Source to Generate Electricity
DOI:
https://doi.org/10.12928/irip.v6i1.7070Keywords:
Seawater, Electrolytes, Renewable Energy, Electrical EnergyAbstract
Fishermen are the main livelihood for coastal communities in West Sulawesi. In fishing activities, especially at night, fishermen use lights to attract fish for a greater chance of catching fish. However, fishermen need a supply of electricity to turn on their lights when at sea. Fishermen usually use batteries. This is a significant problem for fishermen because batteries require a relatively high operational level. Researchers found the idea by developing a battery replacement tool to reduce high operating costs. This study aims to utilize seawater as an alternative energy source to overcome the problem of high operational costs for fishermen. The tool developed in this study uses two electrodes (Zn and Cu) placed vertically in a container and then filled with seawater. The two electrodes are connected in series, producing a high output voltage to light an LED. After the initial measurement, the resulting output voltage is 5V and can turn on the LED with a bright enough light. In periodic measurements for 96 hours with data collection every 4 hours, the voltage, current, and power do not decrease significantly, so the seawater lamp is suitable for coastal communities and fishermen's use as lighting when going to sea at night. Series and parallel combinations must be developed to achieve higher voltage and power values and obtain brighter light. The results of this research can be an alternative and renewable energy source that can be widely used.
References
I. Kholiq, “Pemanfaatan Energi Alternatif sebagai Energi Terbarukan untuk Mendukung Subtitusi BBM,” J. IPTEK, vol. 19, no. 2, pp. 75–91, 2015, https://doi.org/10.31284/j.iptek.2015.v19i2.12.
G. Ahmad Pauzi, A. Anjarwati, A. Saudi Samosir, S. Ratna Sulistiyanti, and W. Simanjuntak, “Analisis Pemanfaatan Jembatan Garam KCl dan NaCl terhadap Laju Korosi Elektroda Zn pada Sel Volta Menggunakan Air Laut sebagai Elektrolit,” Anal. Anal. Environ. Chem., vol. 4, no. 02, pp. 50–58, Oct. 2019, https://doi.org/10.23960/aec.v4.i2.2019.p50-58.
P. Puspitawati, R. Riswanto, and N. Suseno, “Variation of Mixed Banana peel Substrate and Cow Dung in Biogas Pressure as a Learning Source for Renewable Energy Sources,” Indones. Rev. Phys., vol. 2, no. 1, p. 1, Jul. 2019, https://doi.org/10.12928/irip.v2i1.855.
Kementerian ESDM, Indonesia Energy Outlook 2012. Jakarta: Kementerian ESDM, 2012.
E. B. Santoso and M. Mulyadi, “Baterai Air Laut Sebagai Sumber Energi Listrik Untuk Pemukiman dan Budidaya Perikanan,” Elektr. Borneo, vol. 6, no. 1, pp. 15–19, Apr. 2020, https://doi.org/10.35334/jeb.v6i1.1504.
A. Adriani, “Pemanfaatan Air Laut sebagai Sumber Cadangan Energi Listrik,” Vertex Elektro, vol. 12, no. 2, pp. 22–33, 2020, https://doi.org/10.26618/jte.v12i2.4019.
N. A. Bani et al., “Feasibility Study of a Low Cost Saltwater Lamp for Rural Area,” Int. J. Integr. Eng., vol. 10, no. 7, pp. 167–176, Nov. 2018, https://doi.org/10.30880/ijie.2018.10.07.016.
N. A. Bani et al., “Harvesting Sustainable Energy from Saltwater: Part II–Effect of Electrode Geometry,” Test Eng. Manag., vol. 81, pp. 5709–5717, 2019, [Online]. Available: http://testmagzine.biz/index.php/testmagzine/article/view/810.
S. Sanam, I. A. Azpah, M. Suhaedi, R. A. Guna, and D. Supriyatna, “Potensi Energi Laut di Indonesia sebagai Sumber Listrik Baru Terbarukan,” Inovtek Polbeng, vol. 12, no. 2, pp. 172–178, 2022, https://doi.org/10.35314/ip.v12i2.2862.
O. P. Prastuti, “Pengaruh Komposisi Air Laut dan Pasir Laut Sebagai Sumber Energi Listrik,” J. Tek. Kim. dan Lingkung., vol. 1, no. 1, pp. 35–41, Oct. 2017, https://doi.org/10.33795/jtkl.v1i1.13.
J. Votava, “Corrosion Resistance of Zinc-based Systems in NaCl Environment,” Acta Univ. Agric. Silvic. Mendelianae Brun., vol. 61, no. 5, pp. 1487–1495, Sep. 2013, https://doi.org/10.11118/actaun201361051487.
C. A. Miranda and J. Afrida, “Kuat Arus yang Dihasilkan dari Fermentasi Ekstrak Belimbing Wuluh,” J. Phi J. Pendidik. Fis. dan Fis. Terap., vol. 1, no. 1, pp. 18–21, 2018, [Online]. Available: https://jurnal.ar-raniry.ac.id/index.php/jurnalphi/article/view/7447/4415.
H. M. Waluyo, I. D. Faryuni, and A. Muid, “Analisis Pengaruh Ukuran Pori Terhadap Sifat Listrik Karbon Aktif dari Limbah Tandan Sawit pada Prototipe Baterai,” J. Fis. FLUX, vol. 14, no. 1, p. 27, Jul. 2017, https://doi.org/10.20527/flux.v14i1.3777.
S. Z. N. Haq, E. Kurniawan, and M. Ramdhani, “Analisis Pembangkit Elektrik Menggunakan Media Air Garam Sebagai Larutan Elektrolit,” in e-Proceeding of Engin, 2018, pp. 3830–3837, [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/8089.
A. Bachtiar et al., “Studi Analisis Pemanfaatan Air Garam Sebagai Sumber Energi Alternatif Menggunakan Elektroda Karbon Baterai Bekas,” Ensiklopedia J., vol. 5, no. 1, pp. 359–366, 2022, [Online]. Available: https://jurnal.ensiklopediaku.org/ojs-2.4.8-3/index.php/ensiklopedia/article/view/958.
Z. Anisa and D. Setyaningrum, “Pemanfaatan Elektrolit Air Laut Sebagai Sumber Energi Listrik Baterai Dengan Elektroda Tembaga - Aluminium,” Sainmatika J. Ilm. Mat. dan Ilmu Pengetah. Alam, vol. 19, no. 2, pp. 156–162, Dec. 2022, https://doi.org/10.31851/sainmatika.v19i2.9583.
A. Susanto, M. S. Baskoro, S. H. Wisudo, M. Riyanto, and F. Purwangka, “Seawater Battery with Al-Cu, Zn-Cu, Gal-Cu Electrodes for Fishing Lamp,” Int. J. Renew. Energy Res., vol. 7, no. 4, pp. 1857–1868, 2017, https://doi.org/10.20508/ijrer.v7i4.
DPR-RI, “Undang-Undang No. 33 Tahun 2007 tentang energi, Pasal 20 ayat 4.” Jakarta, 2007.
R. Rizal, “Perancangan Lampu LED Elektrolit Berbahan Bakar Air Laut Sebagai Sumber Energi,” Universitas Muhammadiyah Mataram, 2021.
I. Nuriskasari, D. Handaya, M. T. N. Ramadhan, H. Z. Alghifary, and P. Nuraisah, “Rancang Bangun Pembangkit Listrik Tenaga Air Gambut Menggunakan Logam Bekas sebagai Elektroda,” Austenit, vol. 13, no. 1, pp. 1–7, 2021, https://doi.org/10.5281/zenodo.4735749.
G. A. Pauzi, N. A. Pratiwi, A. Surtono, and S. W. Suciyati, “Analisis Pengaruh Variasi PH Larutan Acid Zinc Pada Sel Volta Dua Kompartemen dengan Elektrode Cu(Ag)-Zn,” J. Energy, Mater. Instrum. Technol., vol. 3, no. 1, pp. 21–30, Feb. 2022, https://doi.org/10.23960/jemit.v3i1.88.
R. N. Yudi, I. Yusuf, and A. Hiendro, “Studi Performa Baterai Air Laut dengan Membandingkan Elektrolit Larutan Garam dan Air Laut Untuk Menghasilkan Energi Listrik,” J. Tek. Elektro Univ. Tanjungpura, vol. 2, no. 1, pp. 1–10, 2019, [Online]. Available: https://jurnal.untan.ac.id/index.php/jteuntan/article/view/34942.
N. Ueoka, N. Sese, M. Sue, A. Kouzuma, and K. Watanabe, “Sizes of Anode and Cathode Affect Electricity Generation in Rice Paddy-Field Microbial Fuel Cells,” J. Sustain. Bioenergy Syst., vol. 06, no. 01, pp. 10–15, 2016, https://doi.org/10.4236/jsbs.2016.61002.
A. Satriady, W. Alamsyah, A. H. Saad, and S. Hidayat, “Pengaruh Luas Elektroda terhadap Karakteristik Baterai Lifepo4.,” J. Mater. dan Energi Indones., vol. 6, no. 2, pp. 43–48, 2016, https://doi.org/10.24198/jmei.v6i02.10959.
A. Susanto, M. S. Baskoro, S. H. Wisudo, M. Riyanto, and F. Purwangka, “Performance of Zn-Cu and Al-Cu Electrodes in Seawater Battery at Different Distance and Surface Area,” Int. J. Renew. Energy Res., vol. 7, no. 1, pp. 298–303, 2017, https://doi.org/10.20508/ijrer.v7i1.5506.g7018.
O. A. Rybalkina, M. V. Sharafan, V. V. Nikonenko, and N. D. Pismenskaya, “Two Mechanisms of H+/OH− Ion Generation in Anion-exchange Membrane Systems with Polybasic Acid Salt Solutions,” J. Memb. Sci., vol. 651, p. 120449, Jun. 2022, https://doi.org/10.1016/j.memsci.2022.120449.
M. N. Hidayat, F. Mayrullah, and Sapto Wibowo, “Pemodelan Baterai Air Garam dan Pengujian Salinitas Elektrolit Berbasis PLC,” J. ELTIKOM, vol. 6, no. 2, pp. 226–238, Nov. 2022, https://doi.org/10.31961/eltikom.v6i2.577.
Y. Umniyati, “Preliminary Experiments on Potential Use of Salt-Water Battery 4 for Cheap Electric Storage: Work In Progress,” J. Ilmu dan Inov. Fis., vol. 5, no. 1, pp. 74–81, Feb. 2021, https://doi.org/10.24198/jiif.v5i1.31282.
J.-K. Kim et al., “Eco-friendly Energy Storage System: Seawater and Ionic Liquid Electrolyte,” ChemSusChem, vol. 9, no. 1, pp. 42–49, Jan. 2016, https://doi.org/10.1002/cssc.201501328.
E. Morabet, K. R. A., K. A. R., and A. M., “Saltwater a Viable Source of Energy for Sustainable Rural Development,” in 16th International Conference on Environmental Science and Technology, 2019, pp. 205–206, [Online]. Available: https://cest2019.gnest.org/sites/default/files/presentation_file_list/cest2019_00205_oral_paper.pdf.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Muh. Ridwan Kadir, Nurul Afiqah Arsyad, Syarifah Nuraeni Alaydrus, Wenny Puspita, Sahrul, Muhammad Nurkhalis Agriawan, Hardi Hamzah
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish in IRiP agree to the following terms: Authors retain copyright and grant the IRiP right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share (copy and redistribute the material in any medium or format) and adapt (remix, transform, and build upon the material) the work for any purpose, even commercially with an acknowledgment of the work's authorship and initial publication in IRiP. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in IRiP. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).