Analysis of Land and Sea Temperatures Trend During 1985-2021 Period to Understand Local or Global Warming Effect in Bengkulu City

Authors

DOI:

https://doi.org/10.12928/irip.v5i1.6073

Keywords:

Global Warming Effect, Local Warming Effect, Land and Sea Temperature, Trendline

Abstract

Global warming is a phenomenon where the earth's temperature rises drastically. The temperature increase causes negative impacts on the environment globally. Bengkulu City, Indonesia, is situated with a growing population and land-use change that may cause temperature rise. This research aimed to analyze the temperature change in the land and sea area of Bengkulu City. To understand the local or global factors influencing temperature changes in Bengkulu City, we also studied the correlation between land and sea temperatures. The temperature data were obtained from BMKG and NOAA PSL. Firstly, we analyzed the temperature trendlines for the last 36 years. Then we evaluated the coefficient determination (R2) value to determine the correlation between sea and land temperatures. The results show that during the last 36 years, the sea temperature is increased by 0.40 °C, while the land temperature is increased by 1.07 °C. Moreover, we found a relatively weak correlation between sea and land temperature, with a 10.7% correlation. We argued that the increased temperature in Bengkulu City land is associated with land change use and rising population in the last few decades, which means the local factor affected the land temperature changes. On the other hand, global phenomena (IOD and ENSO) influenced sea temperature changes, which means the global factor affected the sea temperature changes. The rising land temperature is relatively high; hence it is necessary to understand better what parameters are causing temperature changes that may affect the physical environment in Bengkulu, Indonesia.

Author Biographies

Arya J Akbar, Universitas Bengkulu

Department of Physics, Faculty of Mathematics and Natural Sciences

Ashar Muda Lubis, Universitas Bengkulu

Department of Physics, Faculty of Mathematics and Natural Sciences

References

M. A. Palmer, D. P. Lettenmaier, N. L. Poff, S. L. Postel, B. Richter, and R. Warner, “Climate Change and River Ecosystems: Protection and Adaptation Options,” Environ. Manage., vol. 44, no. 6, pp. 1053–1068, 2009, doi: 10.1007/s00267-009-9329-1.

E. A. Kadir, S. L. Rosa, A. Syukur, M. Othman, and H. Daud, “Forest Fire Spreading and Carbon Concentration Identification in Tropical Region Indonesia,” Alexandria Eng. J., vol. 61, no. 2, pp. 1551–1561, 2022, doi: 10.1016/j.aej.2021.06.064.

V. S. J. Sunoj, K. J. Shroyer, S. V. K. Jagadish, and P. V. V. Prasad, “Diurnal Temperature Amplitude Alters Physiological and Growth Response of Maize (Zea Mays L.) During the Vegetative Stage,” Environ. Exp. Bot., vol. 130, pp. 113–121, 2016, doi: 10.1016/j.envexpbot.2016.04.007.

D. B. Lobell and S. Asseng, “Comparing Estimates of Climate Change Impacts from Process-Based and Statistical Crop Models,” Environ. Res. Lett., vol. 12, no. 1, 2017, doi: 10.1088/1748-9326/aa518a.

W. Lee et al., “Projections of Excess Mortality Related to Diurnal Temperature Range Under Climate Change Scenarios: A Multi-Country Modelling Study,” Lancet Planet. Heal., vol. 4, no. 11, pp. e512–e521, 2020, doi: 10.1016/S2542-5196(20)30222-9.

X. Sun et al., “Global Diurnal Temperature Range (DTR) Changes Since 1901,” Clim. Dyn., vol. 52, no. 5–6, pp. 3343–3356, 2019, doi: 10.1007/s00382-018-4329-6.

M. Qu, J. Wan, and X. Hao, “Analysis of Diurnal Air Temperature Range Change in the Continental United States,” Weather Clim. Extrem., vol. 4, pp. 86–95, 2014, doi: 10.1016/j.wace.2014.05.002.

A. Rai, M. K. Joshi, and A. C. Pandey, “Variations in Diurnal Temperature Range Over India: Under Global Warming Scenario,” J. Geophys. Res. Atmos., vol. 117, no. 2, pp. 1–12, 2012, doi: 10.1029/2011JD016697.

IPCC, Technical Summary. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 2021.

Q. U. Ying, L. I. U. Yonggang, S. Jevrejeva, and L. P. Jackson, “Future Sea Level Rise Along The Coast of China and Adjacent Region Under 1.5 C and 2.0 C Global Warming,” Adv. Clim. Chang. Res., vol. 11, no. 3, pp. 227–238, 2020, doi: 10.1016/j.accre.2020.09.001.

H. Tabari, “Climate Change Impact on Flood and Extreme Precipitation Increases with Water Availability,” Sci. Rep., pp. 1–10, 2020, doi: 10.1038/s41598-020-70816-2.

P. Lohmander, “Forest Fire Expansion Multivariate Under Global Warming Function Conditions: Multivariate Properties, Function Properties, and Predictions for 29 Countries,” Cent. Asian J. Enviromental Sci. Technol. Innov., vol. 5, pp. 262–276, 2020, doi: 10.22034/CAJESTI.2020.05.03

R. S. Ahima, “Global warming threatens human thermoregulation and survival Global warming threatens human thermoregulation and survival,” vol. 130, no. 2, pp. 559–561, 2020, doi: 10.1172/JCI135006.

X. Fan, C. Miao, Q. Duan, C. Shen, and Y. Wu, “Future Climate Change Hotspots Under Different 21st Century Warming Scenarios,” Earth’s Futur., vol. 9, no. 6, 2021, doi: 10.1029/2021EF002027.

M. Munawar, T. A. E. Prasetya, R. McNeil, and R. Jani, “Sumatra Land Surface Temperature Increase,” Proc. 1st Int. Conf. Math. Math. Educ. (ICMMEd 2020), vol. 550, no. May, 2021, doi: 10.2991/assehr.k.210508.047.

PASPI-Monitor, “Oil Palm Plantations Restores Degraded Land Into a New Economic Growth Center,” Palm Oil J., vol. II, no. 20, pp. 398–402, 2021, [Online]. Available: https://palmoilina.asia/palmoil-publication/oil-palm-plant-degraded-land/.

U. Skiba, K. Hergoualc’h, J. Drewer, A. Meijide, and A. Knohl, “Oil Palm Plantations are Large Sources of Nitrous Oxide, but Where are the Data to Quantify the Impact on Global Warming?,” Curr. Opin. Environ. Sustain., vol. 47, pp. 81–88, 2020, doi: 10.1016/j.cosust.2020.08.019.

C. B. S. Permana, H. I. Nur, and S. A. Fadhila, “Analysis of Supply and Demand of Coal Terminal in Sumatera,” Scitepress, no. Senta 2018, pp. 230–234, 2020, doi: 10.5220/0008543002300234.

K. O. Yoro and M. O. Daramola, CO2 Emission Sources, Greenhouse Gases, and the Global Warming Effect. Elsevier Inc., 2020.

S. Sunyoto, R. Situmorang and E. Sulihati, “Global Warming, Energy Conservation, Competence based Training and Competency Certification of Energy Auditor,” no. Icels 2019, pp. 627–635, 2020, doi: 10.5220/0009034706270635.

T. M. Letcher, Why Do We Have Global Warming? Elsevier Inc., 2018.

D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to Linear Regression Analysis, 6th ed. Wiley-Blackwell, 2021.

S. I. Bangdiwala, “Regression: Simple Linear,” Int. J. Inj. Contr. Saf. Promot., vol. 25, no. 1, pp. 113–115, 2018, doi: 10.1080/17457300.2018.1426702.

S. A. Alasadi and W. S. Bhaya, “Review of Data Preprocessing Techniques in Data Mining,” J. Eng. Appl. Sci., vol. 12, pp. 4102–4107, 2017, doi: 10.36478/jeasci.2017.4102.4107.

M. N. Maingi, “Survey on Data Preprocessing Concept Applicable in Data Mining,” Int. J. Sci. Res., vol. 4, no. 2, pp. 1901–1902, 2015, [Online]. Available: https://www.ijsr.net/archive/v4i2/SUB151633.pdf.

P. Baban, “Doctoral Symposium : Pre-processing and Data Validation in IoT Data Streams,” IOP Publ., vol. 2025, no. 1, pp. 226–229, 2020, doi: 10.1145/3401025.3406443.

T. G. Mesevage, “What Is Data Preprocessing & What Are The Steps Involved?,” monkeylearn.com, 2021. https://monkeylearn.com/blog/data-preprocessing/ (accessed Mar. 07, 2022).

B. Huang et al., “Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1,” J. Clim., vol. 34, pp. 2923–2939, 2021, doi: 10.1175/JCLI-D-20-0166.1.

R. W. Reynold, T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, “Daily High-Resolution-Blended Analyses for Sea Surface Temperature,” J. Clim., vol. 20, pp. 5473–5496, 2007, doi: 10.1175/2007JCLI1824.1.

F. Abdulla, “21st Century Climate Change Projections of Precipitation and Temperature in Jordan,” Procedia Manuf., vol. 44, no. 2019, pp. 197–204, 2020, doi: 10.1016/j.promfg.2020.02.222.

D. M. Levine and D. F. Stephan, Even You Can Learn Statistics and Analytics: An Easy to Understand Guide to Statistics and Analytics 3rd Edition. Pearson FT Press, 2014.

W. Wang and Y. Lu, “Analysis of the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) in Assessing Rounding Model,” IOP Conf. Ser. Mater. Sci. Eng., vol. 324, no. 1, 2018, doi: 10.1088/1757-899X/324/1/012049.

T. M. H. Hope, “Linear Regression,” in Machine Learning, Elsevier, 2020, pp. 67–81.

A. R. Sánchez, R. S. Gómez, and C. García, “The Coefficient of Determination in the Ridge Regression,” Commun. Stat. Simul. Comput., vol. 51, no. 1, pp. 201–219, 2022, doi: 10.1080/03610918.2019.1649421.

D. Zhang, “A Coefficient of Determination for Generalized Linear Models,” Am. Stat., vol. 71, no. 4, pp. 310–316, 2017, doi: 10.1080/00031305.2016.1256839.

M. Ahsanullah, B. M. G. Kibria, and M. Shakil, “Normal Distribution,” in Normal and Student st Distributions and Their Applications, vol. 4, Paris: Atlantis Press, 2014, pp. 7–50.

C. Goyal, “Why You Shouldn’t Just Delete Outliers,” www.analyticsvidhya.com, 2021. https://www.analyticsvidhya.com/blog/2021/05/why-you-shouldnt-just-delete-outliers/ (accessed Mar. 07, 2017).

S. Copiello and C. Grillenzoni, “Economic Development and Climate Change. Which is the Cause and Which the Effect?,” Energy Reports, vol. 6, no. April, pp. 49–59, 2020, doi: 10.1016/j.egyr.2020.08.024.

BPS Bengkulu Province, Portrait of the 2020 Population Census of Bengkulu Province Towards One Indonesian Population Data. BPS Bengkulu Province, 2020.

BPS Bengkulu Province, Population of Bengkulu Province Late 1986. BPS Bengkulu Province, 1986.

BPS Bengkulu Province, Bengkulu Province Population Profile 2015 Intercensus Population Survey Results. BPS, 2015.

BPS Bengkulu Province, 2010 Population Census Results Bengkulu Province Provisional Figures. BPS Bengkulu Province, 2010.

BPS Bengkulu Province, Voter Registration and Continuous Population Data Collection 2003. BPS Bengkulu Province, 2003.

BPS Bengkulu Province, Bengkulu Executive Report Intercensus Population Survey 1996. BPS Bengkulu Province, 1996.

BPS Bengkulu Province, Population of Bengkulu Province Result of Population Census 1990. BPS Bengkulu Province, 1991.

D. Susiloningtyas and S. A. A. Lesy, “Dynamic System Model of Land Use Affected by Sea Level Rise in the Coastal Area of Bengkulu City, Indonesia,” J. Hunan Univ. (Natural Sci., vol. 48, pp. 119–126, 2021, [Online]. Available: http://www.jonuns.com/index.php/journal/article/view/546.

D. A. Lestari, D. Susiloningtyas, and Supriatna, “Spatial Dynamics Model of Land Availability and Population Growth Prediction in Bengkulu City,” Indones. J. Geogr., vol. 52, no. 3, pp. 427–436, 2020, doi: 10.22146/ijg.44591.

N. S. Isa, M. F. Akhir, P. H. Kok, N. R. Daud, I. Khalil, and N. H. Roseli, “Spatial and Temporal Variability of Sea Surface Temperature During El-Niño Southern Oscillation and Indian Ocean Dipole in the Strait of Malacca and Andaman Sea,” Reg. Stud. Mar. Sci., vol. 39, p. 101402, 2020, doi: 10.1016/j.rsma.2020.101402.

S. Koesuma, R. D. Andriani, and B. Legowo, “Analyzing of the Indian Ocean Dipole (IOD) Phenomena in Relation to Climate Change in Indonesia: A review,” J. Phys. Conf. Ser., vol. 1918, no. 2, 2021, doi: 10.1088/1742-6596/1918/2/022030.

A. R. K. Nisa and I. M. Radjawane, “Evolution of Subsurface Temperatures in West Sumatra - Southern Java Waters During 2010–2014 Indian Ocean Dipole Events,” J. Segara, vol. 17, no. 1, p. 57, 2021, doi: 10.15578/segara.v17i1.10202.

R. Wang and H. L. Ren, “Understanding Key Roles of Two ENSO Modes in Spatiotemporal Diversity of ENSO,” J. Clim., vol. 33, no. 15, pp. 6453–6469, 2020, doi: 10.1175/JCLI-D-19-0770.1.

P. N. Vinayachandran, P. A. Francis, and S. A. Rao, “Indian Ocean Dipole: Processes and Impacts,” Curr. Trends Sci., pp. 569–589, 2009, [Online]. Available: http://moeseprints.incois.gov.in/97/.

K. Hamal et al., “Trends in the Diurnal Temperature Range Over the Southern Slope of Central Himalaya: Retrospective and Prospective Evaluation,” Atmosphere (Basel)., vol. 12, no. 12, p. 1683, 2021, doi: 10.3390/atmos12121683.

M. Domroes and A. El-Tantawi, “Recent temporal and spatial temperature changes in Egypt,” Int. J. Climatol., vol. 25, no. 1, pp. 51–63, 2005, doi: 10.1002/joc.1114.

M. D. Martínez, C. Serra, A. Burgueño, and X. Lana, “Time Trends of Daily Maximum and Minimum Temperatures in Catalonia (Ne Spain) for the Period 1975-2004,” Int. J. Climatol., vol. 30, no. 2, pp. 267–290, 2010, doi: 10.1002/joc.1884.

S. Shahid, S. Bin Harun, and A. Katimon, “Changes in Diurnal Temperature Range in Bangladesh During the Time Period 1961-2008,” Atmos. Res., vol. 118, pp. 260–270, 2012, doi: 10.1016/j.atmosres.2012.07.008.

Downloads

Published

2022-06-15

Issue

Section

Articles