Evaluation of STEM-Based Physics Learning on Students' Critical Thinking Skills: A Systematic Literature Review

Authors

DOI:

https://doi.org/10.12928/irip.v4i2.3814

Keywords:

Physics Learning, STEM-based Learning, Critical Thinking Skills, Misconceptions in Science

Abstract

This article discusses the importance of STEM learning in optimizing critical thinking skills in physics learning. It presents an overview of STEM learning to identify, train and improve students' critical thinking skills to assess misconceptions in the science education research literature since 2010. This study published articles in primary science education journals and indexed them in the leading research database to obtain data on STEM-based physics learning and critical thinking skills. To identify relevant studies in the literature, we conducted a systematic search of the two databases with the document analysis method. The investigation was limited to Indonesia's studies published between 2010 and 2020 for the most recent STEM-based physics learning studies and critical thinking skills based on the most recent findings. This study summarizes STEM learning at the high school and the undergraduate students. The implementation of the research related to STEM-based physics learning with critical thinking skills variables was in various teaching materials, learning models, and learning media. Teachers taught physics concepts using the STEM approach to improve critical thinking skills, including optical tools, thermodynamics, temperature and heat, dynamic fluids, and sound waves. The findings of this study can be used as a reference in the development of STEM learning patterns in the realm of science and physics education to improve students' critical thinking skills, which are the demands of skills in the 21st century that students must possess.

Author Biography

Winarti Winarti, Department of Physics Education, Universitas Islam Negeri Sunan Kalijaga

Faculty of Tarbiyah and Teacher Training

References

N. R. Council, “Successful K-12 STEM education: Identifying effective approaches in science, technology, engineering, and mathematics,” Washington, DC, 2011.

N. Khairiyah, Pendekatan science, technology, engineering dan mathematics (STEM). Bogor: Guepedia Publisher, 2019.

R. W. Bybee, The case for STEM education: Challenges and opportunities. Arlington: NSTA Press, 2013.

I. R. M. Association, STEM Education: Concepts, Methodologies, Tools, and Applications. Pennsylvania: IGI Global, 2014. https://doi.org/10.4018/978-1-4666-7363-2

R. M. Felder and R. Brent, Teaching and Learning STEM: A Practical Guide, San Franscisco: Jossey-Bass, 2016. https://doi.org/10.1063/PT.3.3556

A. E. Beaton, “Mathematics Achievement in the Middle School Years. IEA’s Third International Mathematics and Science Study (TIMSS),” Rockville, 1996.

L. Wößmann, “The Effect Of Heterogeneity Of Central Examinations: Evidence From TIMSS, TIMSS-Repeat and PISA,” Educ. Econ., vol. 13, no. 2, pp. 143–169, 2005. https://doi.org/10.1080/09645290500031165

OECD, “Learning for tomorrow’s world: First results from PISA 2003,” Paris, 2004.

OECD, “PISA 2012 results: Creative Problem Solving Students’ Skills in Tackling Real-Life Problems,” Paris, 2014. https://doi.org/10.1787/9789264208070-en

H. E. Chu, S. N. Martin, and J. Park, "A theoretical Framework for Developing an Intercultural STEAM Program for Australian and Korean Students to Enhance Science Teaching and Learning," Int. J. Sci. Math. Edu., vol. 17, no. 7, pp. 1251-1266, 2019. https://doi.org/10.1007/s10763-018-9922-y

J. M. G. Rodriguez, S. Santos-Diaz, K. Bain, and M. H. Towns, "Using Symbolic and Graphical Forms to Analyze Students’ Mathematical Reasoning in Chemical Kinetics," J. Chem. Edu., vol. 95, no. 12, pp. 2114-2125, 2018. https://doi.org/10.1021/acs.jchemed.8b00584

P. Dorouka, S. Papadakis, and M. Kalogiannakis, "The Contribution of the Health Crisis to Young Children’s Nano-Literacy Through STEAM Education," Hellenic J. STEM Edu., vol. 2, no. 1, pp. 1-7, 2021. https://doi.org/10.51724/hjstemed.v2i1.18

R. Hoffmann and J. P. Malrieu, "Simulation vs. Understanding: A tension, in Quantum Chemistry and Beyond. Part A. Stage setting," Angewandte Chem. Int. Ed., vol. 59, no. 31, pp. 12590-12610, 2020. https://doi.org/10.1002/anie.201902527

A. Nurwahyunani, "Literature Review: a STEM Approach to Improving the Quality of Science Learning in Indonesia," J. Edu. Gift. Young Sci., vol. 9, no. 1, pp. 11-17, 2021. https://doi.org/10.17478/jegys.853203

L. V. Shukshina, L. A. Gegel, M. A. Erofeeva, I. D. Levina, U. Y. Chugaeva, and O. D. Nikitin, "STEM and STEAM Education in Russian Education: Conceptual Framework," Eurasia J. Math. Sci. Tech. Edu., vol. 17, no. 10, pp. 234-239, 2021. https://doi.org/10.29333/ejmste/11184

A. Struyf, H. De Loof, J. Boeve-de Pauw, and P. Van Petegem, "Students’ Engagement in Different STEM Learning Environments: Integrated STEM Education as Promising Practice?," Int. J. Sci. Edu., vol. 41, no. 10, pp. 1387-1407, 2019. https://doi.org/10.1080/09500693.2019.1607983

B. Stein, A. Haynes, M. Redding, T. Ennis, and M. Cecil, “Assessing Critical Thinking in STEM and Beyond,” in Innov. E-learn. Instr. Tech. Assess. Eng. Edu., Dordrecht: Springer, 2007, pp. 79–82. https://doi.org/10.1007/978-1-4020-6262-9_14

M. Duran and S. Sendag, “A Preliminary Investigation Into Critical Thinking Skills of Urban High School Students: Role of an IT/STEM program,” J. Creat. Educ., vol. 3, no. 2, pp. 241–250, 2012. https://doi.org/10.4236/ce.2012.32038

A. J. Gottesman and S. G. Hoskins, “CREATE Cornerstone: Introduction to Scientific Thinking, a New Course for STEM-interested Freshmen, Demystifies Scientific Thinking Through Analysis Scientific Literature,” CBE Life Sci. Educ., vol. 12, no. 1, pp. 59–72, 2013. https://doi.org/10.1187/cbe.12-11-0201

K. L. Ramsey and B. Baethe, “The Keys to Future STEM Careers: Basic Skills, Critical Thinking, and Ethics,” Delta Kappa Gamma Bull., Austin, 2013.

S. F. Putri and E. Istiyono, “The Development of Performance Assessment of STEM Based Critical Thinking Skill in the High School Physics Lessons,” Int. J. Environ. Sci. Educ., vol. 12, no. 5, pp. 1269–1281, 2017.

N. Khoiriyah, A. Abdurrahman, and I. Wahyudi, “Implementasi Pendekatan Pembelajaran STEM untuk Meningkatkan Kemampuan Berpikir Kritis Siswa SMA Pada Materi Gelombang Bunyi [Implementation of STEM Learning Approach to Improve Critical Thinking Ability of High School Students on Sound Wave Material],” J. Ris. dan Kaji. Pendidik. Fis., vol. 5, no. 2, pp. 53–62, 2018. http://dx.doi.org/10.12928/jrkpf.v5i2.9977

A. Tiara, “Pengaruh Pendekatan STEM (Science,Technology, Engineering, and Mathematic) Terhadap Keterampilan Berpikir Kritis dan Sikap Ilmiah Siswa Kelas XI pada Mata Pelajaran Biologi di MAN 2 Bandar Lampung [The Effect of STEM Approach (Science, Technology, Engineering, and Mathematics) on Critical Thinking Skills and Scientific Attitudes of Class XI Students in Biology Subjects at MAN 2 Bandar Lampung],” UIN Raden Intan Lampung, 2019.

N. Hidayati, F. Irmawati, and T. A. Prayitno, “Peningkatan Keterampilan Berpikir Kritis Mahasiswa Biologi Melalui Multimedia STEM Education [Improving Critical Thinking Skills of Biology Students Through Multimedia STEM Education],” JPBIO (Jurnal Pendidik. Biol., vol. 4, no. 2, pp. 84–92, 2019. http://dx.doi.org/10.31932/jpbio.v4i2.536

S. H. Santoso and M. Mosik, “Keefektifan LKS berbasis STEM (Science, Technology, Engineering and Mathematic) untuk Melatih Keterampilan Berpikir Kritis Siswa pada Pembelajaran Fisika SMA [The effectiveness of STEM-based worksheets (Science, Technology, Engineering and Mathematics) to Train Students' Critical Thinking Skills in High School Physics Learning],” Unnes Phys. Educ. J., vol. 8, no. 3, pp. 248–253, 2019. https://doi.org/10.15294/upej.v8i3.35622

Y. Kurniasih, G. Hamdu, and D. A. M. Lidinillah, “Asesmen Kinerja Berpikir Kritis pada Pembelajaran STEM dengan Media Lightning Tamiya Car [Assessment of Critical Thinking Performance in STEM Learning with Lightning Tamiya Car Media],” J. Ilm. Sekol. Dasar, vol. 4, no. 2, p. 174, 2020. http://dx.doi.org/10.23887/jisd.v4i2.25172

I. Permana, “Pengaruh Pendekatan Science, Technology, Engineering, and Mathematics (STEM) Terhadap Peningkatan Keterampilan Berpikir Kritis Menggunakan Pembelajaran PBL pada Siswa Kelas X Materi Hukum Newton Tentang Gerak [The Effect of the Science, Technology, Engineering, and Mathematics (STEM) Approach on Improving Critical Thinking Skills Using PBL Learning in Class X Students of Newton's Law Of Motion],” Universitas Lampung, 2020.

H. R. Dewi, T. Mayasari, and H. Jeffry, “Peningkatan Ketrampilan Berfikir Kreatif Siswa Melalui Penerapan Inkuiri Terbimbing Berbasis STEM [Improving Students' Creative Thinking Skills Through the Application of STEM-Based Guided Inquiry],” in Sem. Nas. Pend. Fis. vol. 3, 2017, pp. 47–53.

K. D. Kristiani, T. Mayasari, and E. Kurniadi, “Pengaruh Pembelajaran STEM-PjBL Terhadap Keterampilan Berpikir Kreatif [The Effect of STEM-PjBL Learning on Creative Thinking Skills],” in Pros. Sem. Nas. Pend. Fis., 2017, pp. 266–274.

R. S. Pertiwi, “Pengembangan Lembar Kerja Siswa dengan Pendekatan STEM untuk Melatih Keterampilan Berpikir Kreatif Siswa pada Materi Fluida Statis [Development of Student Worksheets Using a STEM Approach to Train Students' Creative Thinking Skills on Static Fluids],” Universitas Lampung, 2017.

E. Triastuti, “Pembelajaran Berbasis STEM pada Materi Sel Volta untuk Meningkatkan Keterampilan Berfikir Kreatif Siswa [STEM-Based Learning on Voltaic Cells to Improve Students' Creative Thinking Skills],” J. Adi Karsa Teknol. Komun. Pendidik., vol. 15, no. 16, 2019.

Q. A’yun, A. Rusilowati, and L. Lisdiana, “Improving Students’ Critical Thinking Through STEM Digital Book,” J. Innov. Sci. Educ., vol. 10, no. 37, pp. 237–243, 2019. https://doi.org/10.15294/JISE.V8I3.35260

K. L. Nelson, C. M. Rauter, and C. E. Cutucache, “Life Science Undergraduate Mentors in NE STEM 4U Significantly Outperform Their Peers in Critical Thinking Skills,” CBE Life Sci. Educ., vol. 17, no. 4, pp. 1–7, 2018. https://doi.org/10.1187/cbe.18-03-0038

P. Onsee and P. Nuangchalerm, “Developing Critical Thinking of Grade 10 Students Through Inquiry-Based STEM Learning,” J. Penelit. dan Pembelajaran IPA, vol. 5, no. 2, p. 132, 2019. http://dx.doi.org/10.30870/jppi.v5i2.5486

Widya, R. Rifandi, and Y. Laila Rahmi, “STEM Education to Fulfil the 21st Century Demand: A Literature Review,” J. Phys. Conf. Ser., vol. 1317, no. 1, 2019. https://doi.org/10.1088/1742-6596/1317/1/012208

P. Y. Chen, G. J. Hwang, S. Y. Yeh, Y. T. Chen, T. W. Chen, and C. H. Chien, "Three decades of game-based learning in science and mathematics education: an integrated bibliometric analysis and systematic review," J. Comp. Edu., vol. 2, no. 1, pp. 1-22, 2021. https://doi.org/10.1007/s40692-021-00210-y

A. Bodzin, R. A. Junior, T. Hammond, and D. Anastasio, "Investigating engagement and flow with a placed-based immersive virtual reality game," J. Sci. Edu. Tech., vol. 30, no. 3, pp. 347-360, 2021. https://doi.org/10.1007/s10956-020-09870-4

A. C. Graesser, J. P. Sabatini, and H. Li, "Educational psychology is evolving to accommodate technology, multiple disciplines, and twenty-first-century skills," Ann. Rev. Psycho., vol. 73, no. 1, pp. 167-175, 2021. https://doi.org/10.1146/annurev-psych-020821-113042

S. Prayogi and L. Yuanita, "Critical inquiry based learning: A model of learning to promote critical thinking among prospective teachers of physic," J. Turkish Sci. Edu., vol. 15, no. 1, pp. 43-56, 2018. https://doi.org/10.12973/tused.10220a

K. C. Yu, P. H. Wu, and S. C. Fan, "Structural relationships among high school students’ scientific knowledge, critical thinking, engineering design process, and design product," Int. J. Sci. Math. Edu., vol. 2, no. 1, pp. 1-22, 2019. https://doi.org/10.1007/s10763-019-10007-2

S. Sutoyo, U. Azizah, and S. Allamin, “Effectiveness of guided inquiry model integrated with STEM to improve the student critical thinking skills in chemistry learning,” Int. J. Innov. Sci. Res. Technol., vol. 4, no. 12, 2019.

N. Q. Linh, N. M. Duc, and C. Yuenyong, “Developing critical thinking of students through STEM educational orientation program in Vietnam,” J. Phys. Conf. Ser., vol. 1340, no. 1, 2019. https://doi.org/10.1088/1742-6596/1340/1/012025

N. R. Mater et al., “The effect of the integration of STEM on Critical thinking and technology acceptance model,” Educ. Stud., pp. 1–17, 2020. https://doi.org/10.1080/03055698.2020.1793736

A. H. Prasadi, W. Wiyanto, and E. Suharini, “The implementation student worksheet based STEM and local wisdom to improve of critical thinking ability,” J. Prim. Educ., vol. 9, no. 3, pp. 227–237, 2020. https://doi.org/10.15294/JPE.V9I3.37712

S. A. Annisa, A. D. Lesmono, and Y. Yushardi, “Comic-based module development andro-web to improve problem solving ability in physics high school students,” Berk. Ilm. Pendidik. Fis., vol. 8, no. 1, p. 40, 2020. http://dx.doi.org/10.20527/bipf.v8i1.7641

A. Kholiq, “Development of B D F-AR 2 (physics digital book based augmented reality) to train students’ scientific literacy on global warming material,” Berk. Ilm. Pendidik. Fis., vol. 8, no. 1, p. 50, 2020. http://dx.doi.org/10.20527/bipf.v8i1.7881

S. Mystakidis, A. Christopoulos, and N. Pellas, "A systematic mapping review of augmented reality applications to support STEM learning higher education," Edu. Inform. Tech., vol. 1, no. 1, pp. 1-45, 2021. https://doi.org/10.1007/s10639-021-10682-1

D. F. Chang and H. C. ChangTzeng, "Patterns of gender parity in the humanities and STEM programs: The trajectory under the expanded higher education system," Stud. High. Edu., vol. 45, no. 6, pp. 1108-1120, 2020. https://doi.org/10.1080/03075079.2018.1550479

A. Abdurrahman, N. Nurulsari, H. Maulina, and F. Ariyani, "Design and validation of inquiry-based STEM learning strategy as a powerful alternative solution to facilitate gift students facing 21st century challenging," J. Edu. Gift. Young Sci., vol. 7, no. 1, pp. 33-56, 2019. https://doi.org/10.17478/jegys.513308

S. Ardianti, D. Sulisworo, Y. Pramudya, and W. Raharjo, "The impact of use STEM education approach on blended learning to improve student’s critical thinking skills," Univer. J. Edu. Res., vol. 8, no. 3B, pp. 24-32, 2020. https://doi.org/10.13189/ujer.2020.081503

E. D. Heba, N. Mansour, M. Alzaghibi, and K. Alhammad, "Context of STEM integration in schools: Views from in-service science teachers," Eurasia J. Math. Sci. Tech. Edu., vol. 13, no. 6, pp. 2459-2484, 2017. https://doi.org/10.12973/eurasia.2017.01235a

M. B. Ibáñez and C. Delgado-Kloos, "Augmented reality for STEM learning: A systematic review," Comp. Edu., vol. 123, no. 1, pp. 109-123, 2018. https://doi.org/10.1016/j.compedu.2018.05.002

D. Pertiwi, A. Suyatna, and E. Suyanto, “Enhancing critical thinking using LCDS-based interactive electronic school book in physics,” J. Pembelajaran Fis., vol. 7, no. 1, pp. 7–18, 2019. http://dx.doi.org/10.23960/jpf.v7.n1.201902

S. MacDonald, "Introducing the model of cognitive-communication competence: A model to guide evidence-based communication interventions after brain injury," Brain Inj., vol. 31, no. 13, pp. 1760-1780, 2017. https://doi.org/10.1080/02699052.2017.1379613

J. Afriana, A. Permanasari, and A. Fitriani, “Project based learning integrated to STEM to enhance elementary school’s students scientific literacy,” J. Pendidik. IPA Indones., vol. 5, no. 2, pp. 261–267, 2016. https://doi.org/10.15294/jpii.v5i2.5493

A. Syawaludin, Gunarhadi, and P. Rintayati, “Development of augmented reality-based interactive multimedia to improve critical thinking skills in science learning,” Int. J. Instr., vol. 12, no. 4, pp. 331–344, 2019. https://doi.org/10.29333/iji.2019.12421a

S. S. Handoyo, T. Iriani, and E. Septiandini, “Study of the analysis on the characteristics of learning style of the students of the vocational education of building construction study program, faculty of engineering, Jakarta State University,” in 3rd Int. Conf. Tech. Voc. Edu. Train., 2019, vol. 3, no. 12, p. 339. https://doi.org/10.18502/kss.v3i12.4100

S. Y. Foo and C. L. Quek, "Developing students' critical thinking through asynchronous online discussions: A literature review," Malaysian Online J. Edu. Tech., vol. 7, no. 2, pp. 37-58, 2019. https://doi.org/10.17220/mojet.2019.02.003

S. Cargas, S. Williams, and M. Rosenberg, "An approach to teaching critical thinking across disciplines using performance tasks with a common rubric," Think. Skills Creat., vol. 26, no. 1, pp. 24-37, 2017. https://doi.org/10.1016/j.tsc.2017.05.005

N. Maryanti, R. Rohana, and M. Kristiawan, "The principal’s strategy in preparing students ready to face the industrial revolution 4.0," Int. J. Edu. Rev., vol. 2, no. 1, pp. 54-69, 2020. https://doi.org/10.33369/ijer.v2i1.10628

L. Varenina, E. Vecherinina, E. Shchedrina, I. Valiev, and A. Islamov, "Developing critical thinking skills in a digital educational environment," Think. Skills Creat., vol. 41, no. 1, pp. 100-108, 2021. https://doi.org/10.1016/j.tsc.2021.100906

E. Cholisoh, “Upaya meningkatkan keterampilan berpikir kreatif dan keterampilan berpikir kritis ilmiah pada siswa dengan menggunakan model pembelajaran PJBL STEM pada materi termodinamika di kelas XI IPA 4 SMAN 10 Bandung semester ganjil tahun pelajaran 2018-2019,” in Pros. Sem. Nas. Fis. 5.0, 2019, pp. 59–73.

S. Han, R. Capraro, and M. M. Capraro, “How science, technology, engineering, and mathematics (STEM) project-based learning (PBL) affects high, middle, and low achievers differently: The impact of student factors on achievement,” Int. J. Sci. Math. Educ., vol. 13, no. 5, pp. 1089–1113, 2015. https://doi.org/10.1007/s10763-014-9526-0

A. K. Verma, D. Dickerson, and S. McKinne, “Engaging students STEM careers project-based learning-marinetech project,” Tech. Eng. Teach., vol. 71, no. 1, 2011.

D. A. budi Lestari, B. Astuti, and T. Darsono, “Implementasi LKS pendekatan STEM (science, technologi, engineering and matchmatic) untuk meningkatkan kemampuan berpikir kritis,” J. Pendidik. Fis. Dan Teknol., vol. 4, no. 2, pp. 202–207, 2018. http://dx.doi.org/10.29303/jpft.v4i2.809

H. P. Rivai, L. Yuliati, and Parno, “Penguasaan konsep pembelajaran STEM berbasis masalah materi fluida dinamis pada siswa SMA [Mastery of STEM learning concepts based on dynamic fluid problems in high school students],” J. Pendidik. Teor. Penelitian, dan Pengemb., vol. 3, no. 8, pp. 1080–1088, 2018. http://dx.doi.org/10.17977/jptpp.v3i8.11481

L. Wastiti and S. Sulur, “Pengaruh STEM- thinking maps pada model pembelajaran inkuiri terbimbing terhadap kemampuan berpikir kritis siswa kelas XI pada materi suhu dan kalor [The effect of STEM-thinking maps on the guided inquiry learning model on the critical thinking skills of class XI students on temperature and heat material],” J. Literasi Pendidik. Fis., vol. 4, no. 2, pp. 110–115, 2020. http://dx.doi.org/10.17977/um058v4i2p110-115

M. Milner-Bolotin, H. Fisher, and A. MacDonald, “Modeling active engagement pedagogy through classroom response systems in a physics teacher education course,” Lumat Int. J. Math, Sci. Technol. Educ., vol. 1, no. 5, pp. 523–542, 2013. https://doi.org/10.31129/lumat.v1i5.1088

O. Rogovaya, L. Larchenkova, and Y. Gavronskaya, “Critical thinking in STEM (science, technology, engineering, and mathematics),” Utop. y Prax. Latinoam., vol. 24, no. Extra 6, pp. 32–41, 2019.

R. Sagala, R. Umam, A. Thahir, A. Saregar, and I. Wardani, “The effectiveness of STEM-based gender differences: Impact of physics concept understanding,” Eur. J. Educ. Res., vol. 8, no. 3, pp. 753–761, 2019. https://doi.org/10.12973/eu-jer.8.3.753

D. T. Tiruneh, M. De Cock, A. G. Weldeslassie, J. Elen, and R. Janssen, “Measuring critical thinking in physics: Development and validation of a critical thinking test in electricity and magnetism,” Int. J. Sci. Math. Educ., vol. 15, no. 4, pp. 663–682, 2017. https://doi.org/10.1007/s10763-016-9723-0

A. Zollman, “Learning for STEM literacy: STEM literacy learning,” Sch. Sci. Math., vol. 112, no. 1, pp. 12–19, 2012. https://doi.org/10.1111/j.1949-8594.2012.00101.x

Downloads

Published

2021-12-31

Issue

Section

Articles