Effect of the Magnetic Force on Ferrite Pendulum Oscillation Parameters: Parametric Analysis on Ferrite Pendulum
Abstract
Keywords
Full Text:
PDFReferences
G. Khomeriki, "Parametric Resonance Induced Chaos in the Magnetic Damped Driven Pendulum," Phys. Lett. A, vol. 380, no. 31–32, pp. 2382–2385, 2016.
J. Sanada, K. Furuno, H. Hirakawa, and T. Kato, “Application of the Magnetic Fluid as A Detector for Changing the Magnetic Field Application of the Magnetic Fluid as A Detector for Changing the Magnetic Field,” Int. Conf. "Cognitive Robot., vol. 363, no. 012023, pp. 6–12, 2018.
B. M. Teo, D. J. Young, and X. J. Loh, “Magnetic Anisotropic Particles : Toward Remotely Actuated Applications,” Part. Part. Syst. Charact., pp. 1–6, 2016.
K. A. Kumar, S. F. Ali, and A. Arockiarajan, “Magneto-elastic Oscillator: Modeling and Analysis with Nonlinear Magnetic Interaction,” J. Sound Vib., vol. 393, pp. 265–284, 2017.
A. I. Shumaev and Z. A. Maizelis, “Distribution Functions of Argumental Oscillations of the Duboshinskiy Pendulum,” Phys. Chem. Process., vol. 154902, no. 121, pp. 1–10, 2017.
Y. Uzun, E. Kurt, and H. H. Kurt, “Explorations of Displacement and Velocity Nonlinearities and Their Effects to Power of a Magnetically-Excited Piezoelectric Pendulum Sensors and Actuators A : Physical Explorations of displacement and velocity nonlinearities and their effects to power of,” Sensors Actuators A. Phys., vol. 224, pp. 119–130, 2018.
K. Polczyński, A. Wijata, and J. Awrejcewicz, “Theoretical and Numerical Analysis of Different Modes in a System of a ‘Kicked’ Magnetic Pendulum,” Theor. Approaches Non-Linear Dyn. Syst., pp. 431–440, 2019.
R. A. Serway and J. W. J. Jewett, Physics for Scientists and Engineers with Modern Phy. United States: Thomson, 2008.
E. I. Butikov, “Spring Pendulum with Dry and Viscous Damping,” Commun. Nonlinear Sci. Numer. Simul., vol. 20, no. 1, pp. 298–315, 2015.
G. D. Quiroga and Ospina-Henao, “Dynamics of Damped Oscillations: Physical Pendulum,” EJP, pp. 1–5, 2017.
G. L. Baker and J. A. Blackburn, “The Pendulum: a Case Study in Physics,” in The Pendulum: A Case Study in Physics, vol. 43, no. 06, New York: Oxford University Press, 2006, pp. 43-3440-43–3440.
D. C. Giancoli, Physics for Scientists and Engineers with Modern Physics, vol. 26, no. 4. New Jersey: Pearson Prentice Hall, 1988.
Y. Luo, W. Fan, C. Feng, S. Wang, and Y. Wang, “Subharmonic Frequency Response in a Magnetic Pendulum,” Am. J. Phys., vol. 88, no. 2, pp. 115–123, 2020.
K. W. Yung, P. B. Landecker, and D. D. Villani, “An Analytic Solution for the Force Between Two Magnetic Dipoles,” Magn. Electr. Sep., vol. 9, no. 1, pp. 39–52, 1998.
B. F. Edwards, D. M. Riffe, J.-Y. Ji, and W. A. Booth, “Interactions Between Uniformly Magnetized Spheres,” Am. J. Phys., vol. 85, no. 2, pp. 130–134, 2017.
A. A. Khajetoorians et al., “Tailoring the Chiral Magnetic Interaction Between Two Individual Atoms,” Nat. Commun., vol. 7, pp. 1–8, 2016.
L. P. Pook, Understanding Pendulum. Springer, 2011.
DOI: https://doi.org/10.12928/irip.v3i1.1836
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Universitas Ahmad Dahlan
License URL: https://creativecommons.org/licenses/by-sa/4.0/
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Review of Physics
Kampus 2 Universitas Ahmad Dahlan
Jalan Pramuka No. 42, Pandeyan, Umbulharjo, Yogyakarta - 55161
Telp. (0274) 563515, ext. 4902; Fax. (0274) 564604
Email: irip@mpfis.uad.ac.id
p-ISSN: 2621-3761 | e-ISSN: 2621-2889