Probability and Heisenberg Uncertainty of He+ at Quantum Numbers n≤3

Authors

  • Bambang Supriadi Physics Education, Faculty of Teacher Training and Education, University of Jember, Indonesia https://orcid.org/0000-0002-0308-986X
  • Zidan Afidah Physics Education, Faculty of Teacher Training and Education, University of Jember, Indonesia
  • Maya Arsita Physics Education, Faculty of Teacher Training and Education, University of Jember, Indonesia
  • Simatun Ni’mah Physics Education, Faculty of Teacher Training and Education, University of Jember, Indonesia
  • Merry Merry Khanza Kusuma Wardhany Physics Education, Faculty of Teacher Training and Education, University of Jember, Indonesia
  • Moh Dimas Feri Hermansyah Physics Education, Faculty of Teacher Training and Education, University of Jember, Indonesia

DOI:

https://doi.org/10.12928/irip.v7i1.11939

Keywords:

Helium Ion, Probability, Uncertainty

Abstract

The purpose of this study is to analyze the probability and uncertainty of electron linear momentum in with the Heisenberg uncertainty approach. Measurement of the position and momentum of atomic electrons is probabilistic. The probability and uncertainty of electron linear momentum are carried out analytically and simulations of the normalized radial wave function of hydrogenic atoms. have only one electron orbital so they can be viewed as hydrogenic atoms. The probability and uncertainty of electron linear momentum in decrease with increasing values of the principal quantum number n≤3. While the uncertainty of the electron position is increasing.  The results of this study are in accordance with the characteristics of position and linear momentum that are not commutable. The increase in the value of the main quantum number means that the position of the electron against this is getting farther and the speed in the orbital is getting smaller.

References

Krane, K. S. (2019). Modern Physics. 3rd Ed. New York: John Wiley & Sons.

Bezverkhniy, V. (2021). Heisenberg's Uncertainty Principle and Wave-Particle Dualism. Available at SSRN 3865301.

Supriadi, B., Lorensia, S. L., Shahira, F., Prabandari, A. M., & Putri, A. A. W. (2023). Probability of Deuterium Atom Electrons in Momentum Space at Quantum Numbers n≤ 3. Aceh International Journal of Science and Technology, 12(2), 239-245.

Christianto, V. (2014). A Review of Schrödinger Equation and Classical Wave Equation. Prespacetime Journal, 5(5).

Supriadi, B., Mardhiana, H., Kristiawan, W. I., Kamalia, D., dan I. K. Sari. (2023). Expected Value of Helium Ion Electron Momentum in Momentum Space with Primary Quantum Number n ≤ 3. Jurnal Penelitian Pendidikan IPA. 9(10):8467-8472.

Supriadi, B., Kinanti, A.Z.L., Pitri, E. E., Rosyidan, A.R., Natasya D, dan Sutantri., C. Application Of Laguerre Polynomial EquationIn Solving Schrodinger Equation Radial Section Of Helium Ion. Journal Of Applied Physics. 16(1):22-31.

Dürr, S., & Rempe, G. (2000). Can Wave-Particle Duality be Based on The Uncertainty Relation? American Journal of Physics, 68(11), 1021-1024.

Pandu, G., Pingak, R. K., Johannes, A. Z., & Ngara, Z. S. (2022). A Study on Radial Properties of Hydrogenic Ions using Laguerre Polynomials. Buletin Fisika Vol, 23(2), 78-84.

Supriadi, B., & Nuraini, L. (2019). Fisika Atom Teori & Aplikasinya. Jember, UPT Percetakan & Penerbitan Universitas Jember.

Borrelli, P., & L. M. (2020). Helium Ion Microscopy: Principles and Applications. Cambridge University Press.

Varilla, L. A., Pitalua, D. P., & Hoyos, F. T. (2019, November). Modeling a helium atom from a collision of an electron with an ionized helium atom. In Journal of Physics: Conference Series (Vol. 1386, No. 1, p. 012119). IOP Publishing.

Chappel, E. (2023). Physical Properties of Helium and Application in Respiratory Care. Encyclopedia, 3(4), 1373-1386.

Rillo, C., Gabal., Lozano, M. P., Sesé, J., Spagna, S., Diederichs, J., Sager, R., Chialvo, C., Terry, J., Rayner, G., Warburton, R, & Reineman, R. (2015). Enhancement of the Liquefaction Rate in Small-Scale Helium Liquefiers Working Near and Above the Critical Point. Physical Review Applied, 3(5), 37. https://doi.org/10.1103/PhysRevApplied.3.051001

Li, D., Jiang, J., Wang, J., & Jian, Y. (2019). Sputtering behavior of beryllium materials irradiated by hydrogen-helium ions. Nucl. Sci. Technol., 7(3), 73-77.

Nuryono, N. (2018). Kimia Anorganik: Struktur dan Ikatan. Yogyakarta: Gajah Mada University Press.

Supriadi, B., Anggraeni, S. N. H., Wardhany, M. K. K., Iswardani, F. A., Rosyidah, N. A., & Pangesti, D. (2024). Probability of He+ Ion at Quantum Number 3≤ n≤ 4 in Momentum Space. Jurnal Penelitian Pendidikan IPA, 10(5), 2545-2551.

Subagyo, L., & Nuryadin, A. (2018). Pengantar Fisika Kuantum (1st ed.). Mulawarman University Press.

Poojary, B. B. (2015). Origin of Heisenberg's Uncertainty Principle. American Journal of Modern Physics, 4(4), 203-211.

Griffiths, D. J., & Schroeter, D. F. (2018). Introduction to Quantum Mechanics (3rd ed.). Cambridge University Press.

Halka, M., & Nordstrom, B. (2010). Halogens and noble gases. Infobase publishing.

Fitri, Z. (2019). Kimia Unsur Golongan Utama (1st ed.). Syiah Kuala University Press.

Makmun, M. S., Supriadi, B., & Prihandono, T. (2020). Fungsi Gelombang Ion Helium dalam Representasi Ruang Posisi Menggunakan Persamaan Schrodinger. Jurnal Pembelajaran Fisika, 9(4), 152–159

Supriadi, B., & Nuraini, L. (2019). Fisika Atom Teori & Aplikasinya. Jember, UPT Percetakan & Penerbitan Universitas Jember.

Papadopoulos, P. G., Koutitas, C. G., Dimitropoulos, Y. N., & Aifantis, E. C. (2018). Simplified Step-by-Step Nonlinear Static Program Investigating Equilibrium Conditions of Electrons in Atom and Ionization Energies: Case Study on Argon.

Sunarmi, N. (2023). Distribusi probabilitas radial elektron sistem molekul dalam pengaruh potensial kratzer dengan metode parametrik nikiforov-uvarov. Jurnal Inovasi Pendidikan dan Sains, 4(3), 151-158. https://doi.org/10.51673/jips.v4i3.1794.

Pratikha, A. R., Supriadi, B., & Handayani, R. D. (2022). Electron’s Position Expectation Values and Energy Spectrum of Lithium Ion (Li^(2+)) on Principal Quantum Number n≤3. Jurnal Penelitian Pendidikan IPA, 8(1), 252–256. https://doi.org/10.29303/jppipa.v8i1.840

Bouaziz, D. (2015). Kratzer’s molecular potential in quantum mechanics with a generalized uncertainty principle. Annals of Physics, 355, 269-281.

Supriadi, B., Prihandono, T., Rizqiyah, V., Ridlo, Z. R., Faroh, N., & Andika, S. (2019, April). Angular momentum operator commutator against position and Hamiltonian of a free particle. In Journal of Physics: Conference Series (Vol. 1211, No. 1, p. 012051). IOP Publishing.

Guasti, M. F. (2022). Quantum uncertainty: ΔxΔp experimental evaluation and direct visualization. Physics Letters A, 448, 128332.

Published

2024-06-29

Issue

Section

Articles