Trends and Challenges in Forensic Image Processing: A Bibliometric Study

Authors

  • Idha Arfianti WIraagni Faculty of Medicine, Health Science and Nursing,Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Komang Saputra Yadnya Faculty of Medicine, Health Science and Nursing,Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Dewi Widiningsih Faculty of Medicine, Health Science and Nursing,Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Adhitya Bhima Nareshwara Faculty of Medicine, Health Science and Nursing,Universitas Gadjah Mada, Yogyakarta, Indonesia
  • I Putu Eka Ganda Winata Faculty of Medicine, Health Science and Nursing,Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Florantia Setya Nugroho Faculty of Medicine, Health Science and Nursing,Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Refly Dwi Angesti Putri Faculty of Medicine, Health Science and Nursing,Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Syukriadi Hidayat Faculty of Medicine, Health Science and Nursing,Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Elvira Sukma Wahyuni Faculty of Industrial Technology,Universitas Islam Indonesia, Yogyakarta, Indonesia
  • Firdaus Faculty of Industrial Technology,Universitas Islam Indonesia, Yogyakarta, Indonesia
  • Didi Erwandi Mohamad Haron Shimadzu Universiti Malaya High Impact Research Testing and Research Analytical Laboratory (SUTRALAB)Deputy Vice-Chancellor (Research and Renovation), Universiti Malaya, Kuala Lumpur, Malaysia

DOI:

https://doi.org/10.12928/admj.v6i2.14221

Keywords:

Forensic image processing, Forensic artificial intelligence, Criminal investigations;, Forensic mechine learning, Research trends

Abstract

Forensic image processing plays a pivotal role in modern criminal investigations by enhancing, analyzing, and interpreting visual evidence. This bibliometric study aims to evaluate the research trends, influential publications, and collaborative networks in forensic image processing over the past two decades. This study analyzes global research trends in forensic entomology using data from the Scopus database spanning 1962 to 2024, with data visualized through VOSviewer. A total of 4,463 articles were identified, with an average productivity of 72 papers per year. Results reveal a significant increase in research outputs, with dominant contributions from countries excelling in advanced computational technologies. Current hot topics in the field include  digital forensic, deep learning, convolutional neural network, and diagnostic imaging. This study provides valuable insights into the evolution of forensic image processing research and identifies future directions for technological advancements and interdisciplinary collaborations.

References

Kapoor N, Sulke P, Pardeshi P, Kakad R, Badiye A. Textbook of Forensic Science. Singapore: Springer Nature Singapore; 2023. doi:10.1007/978-981-99-1377-0

Shipra G, Indu B. Crime scene investigation and forensic evidence: forensic analysis and tools. J Pharm Negat Results. 2023;14:3661-3667. doi:10.47750/pnr.2023.14.02.432

Chavarín Á, Cuevas E, Avalos O, Gálvez J, Pérez-Cisneros M. Contrast enhancement in images by homomorphic filtering and cluster-chaotic optimization. IEEE Access. 2023;11:73803-73822. doi:10.1109/ACCESS.2023.3287559

Mahmood T, Rehman A, Saba T, Nadeem L, Bahaj SAO. Recent advancements and future prospects in active deep learning for medical image segmentation and classification. IEEE Access. 2023;11:113623-113652. doi:10.1109/ACCESS.2023.3313977

Kundu A. Forensic odontology: bridging the gap between dental science and criminal investigation. Int J Ethics Trauma Victimol. 2024:18-27. Available from: https://ijetv.org/index.php/IJETV/article/view/1180. Accessed January 31, 2025.

Sessa F, Esposito M, Cocimano G, Sablone S, Karaboue MAA, Chisari M, et al. Artificial intelligence and forensic genetics: current applications and future perspectives. Appl Sci. 2024;14:2113. doi:10.3390/app14052113

Vodanović M, Subašić M, Milošević DP, Galić I, Brkić H. Artificial intelligence in forensic medicine and forensic dentistry. J Forensic Odontostomatol. 2023;41:30-41.

Khan MS, Afridi U, Ahmed MJ, Zeb B, Ullah I, Hassan MZ. Comprehensive evaluation of artificial intelligence applications in forensic odontology: a systematic review and meta-analysis. IECE Trans Intell Syst. 2024;1:176-189. doi:10.62762/TIS.2024.818917

Kausar S, Khanzada R, Sherazi MA. Comparative study of forensic face recognition and fingerprint during crime scene investigation and the role of artificial intelligence tools in forensics. J Dev Soc Sci. 2024;5. doi:10.47205/jdss.2024(5-I)54

Muthukumaran B, Harshavarthanan L, Dhyaneshwar S, Sharief MZ. Face and iris-based human authentication using deep learning. In: 2023 4th International Conference on Electronics and Sustainable Communication Systems (ICESC). IEEE; 2023:841-846. doi:10.1109/ICESC57686.2023.10193230

Renukadevi P, John S, Shivani N. Forensic science: AI-powered image and audio analysis. In: 2024 5th International Conference on Smart Electronics and Communication (ICOSEC). IEEE; 2024:1519-1525. doi:10.1109/ICOSEC61587.2024.10722068

Zimmermann N, Sieberth T, Dobay A. Automated wound segmentation and classification of seven common injuries in forensic medicine. Forensic Sci Med Pathol. 2023;20:443-451. doi:10.1007/s12024-023-00668-5

Carew RM, Errickson D. Imaging in forensic science: five years on. J Forensic Radiol Imaging. 2019;16:24-33. doi:10.1016/j.jofri.2019.01.002

Wilkinson C, Pizzolato M, De Angelis D, Mazzarelli D, D’Apuzzo A, Liu JC, et al. Post-mortem to ante-mortem facial image comparison for deceased migrant identification. Int J Legal Med. 2024;138:2691-2706. doi:10.1007/s00414-024-03286-0

Queiroz Nogueira Lira R, Geovana Motta de Sousa L, Memoria Pinho ML, Pinto da Silva Andrade de Lima RC, Garcia Freitas P, Scholles Soares Dias B, et al. Deep learning-based human gunshot wounds classification. Int J Legal Med. 2024. doi:10.1007/s00414-024-03355-4

Piraianu AI, Fulga A, Musat CL, Ciobotaru OR, Poalelungi DG, Stamate E, et al. Enhancing the evidence with algorithms: how artificial intelligence is transforming forensic medicine. Diagnostics (Basel). 2023;13:2992. doi:10.3390/diagnostics13182992

Sathyavathi S, Baskaran KR. Human age estimation using deep convolutional neural network based on dental images (orthopantomogram). IETE J Res. 2024;70:1585-1592. doi:10.1080/03772063.2023.2165177

Kumar D, Pandey RC, Mishra AK. A review of image features extraction techniques and their applications in image forensic. Multimed Tools Appl. 2024;83:87801-87902. doi:10.1007/s11042-023-17950-x

S R, U S, Rao SS, Sawkar NP, Devi MS. Image reconstruction and facial feature extraction for criminal identification using machine intelligence (Epic Vision). In: 2024 IEEE International Conference on Contemporary Computing and Communications (InC4). IEEE; 2024:1-6. doi:10.1109/InC460750.2024.10649104

Wahyuni ES, Putri AWK, Pelu NAP, Firdaus, Wiraagni IA. Image processing-based application for determining wound types in forensic medical cases. Jurnal Nasional Teknik Elektro. 2024:12-19. doi:10.25077/jnte.v13n1.1148.2024

Dulla N, Priyadarshini S, Mishra S, Swain SC. Global exploration on bibliometric research articles: a bibliometric analysis. Library Philosophy and Practice. 2021;2021:1-26.

Girish Savadatti S, Srinivasan K, Hu YC. A bibliometric analysis of agent-based systems in cybersecurity and broader security domains: trends and insights. IEEE Access. 2025;13:90-119. doi:10.1109/ACCESS.2024.3520583

Wiraagni IA, Rezadhini M, Setiawan J, Sofyantoro F, Priyono DS, Septriani NI, et al. Research trends on forensic entomology for five decades worldwide. Leg Med (Tokyo). 2024;71:102539. doi:10.1016/j.legalmed.2024.102539

Baas J, Schotten M, Plume A, Côté G, Karimi R. Scopus as a curated, high-quality bibliometric data source for academic research in quantitative science studies. Quant Sci Stud. 2020;1:377-386. doi:10.1162/qss_a_00019

Kirillova OV. Scopus database as a source of representing Bulgarian science to the international academic community: the present and future prospects. Digit Present Preserv Cult Sci Herit. 2017;7:69-78. doi:10.55630/dipp.2017.7.6

van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010;84:523-538. doi:10.1007/s11192-009-0146-3

Waltman L, van Eck NJ, Noyons ECM. A unified approach to mapping and clustering of bibliometric networks. J Informetr. 2010;4:629-635. doi:10.1016/j.joi.2010.07.002

Ding Y, Chowdhury GG, Foo S. Bibliometric cartography of information retrieval research by using co-word analysis. Inf Process Manag. 2001;37:817-842. doi:10.1016/S0306-4573(00)00051-0

Mielenz RC. Petrography applied to Portland-cement concrete. In: Reviews in Engineering Geology. Geological Society of America; 1962:1-38. doi:10.1130/REG1-p1

Manaswini D, Ghanta SSV, Manogna TL, Kolakalapudi LNK, Chaitanya GK, Kumar AD. A survey of forensic applications using digital image processing: image improvement case study. In: 2023 7th International Conference on Computing Methodologies and Communication (ICCMC). IEEE; 2023:696-702. doi:10.1109/ICCMC56507.2023.10084079

Russ JC. Forensic Uses of Digital Imaging. 2nd ed. CRC Press; 2016. doi:10.1201/b19159

Dalrymple BE, Smith EJ. Forensic Digital Image Processing: Optimization of Impression Evidence. CRC Press; 2018. doi:10.4324/9781351112239

Amrouni N, Benzaoui A, Bouaouina R, Khaldi Y, Adjabi I, Bouglimina O. Contactless palmprint recognition using binarized statistical image features-based multiresolution analysis. Sensors (Basel). 2022;22:9814. doi:10.3390/s22249814

Lukáš J, Fridrich J, Goljan M. Digital camera identification from sensor pattern noise. IEEE Trans Inf Forensics Secur. 2006;1:205-214. doi:10.1109/TIFS.2006.873602

Popescu AC, Farid H. Exposing digital forgeries by detecting traces of resampling. IEEE Trans Signal Process. 2005;53:758-767. doi:10.1109/TSP.2004.839932

Yang X, Li Y, Lyu S. Exposing deep fakes using inconsistent head poses. 2018.

Chen M, Fridrich J, Goljan M, Lukas J. Determining image origin and integrity using sensor noise. IEEE Trans Inf Forensics Secur. 2008;3:74-90. doi:10.1109/TIFS.2007.916285

Christlein V, Riess C, Jordan J, Riess C, Angelopoulou E. An evaluation of popular copy-move forgery detection approaches. IEEE Trans Inf Forensics Secur. 2012;7:1841-1854. doi:10.1109/TIFS.2012.2218597

Khan MJ, Khan HS, Yousaf A, Khurshid K, Abbas A. Modern trends in hyperspectral image analysis: a review. IEEE Access. 2018;6:14118-14129. doi:10.1109/ACCESS.2018.2812999

Thali MJ, Yen K, Schweitzer W, Vock P, Boesch C, Ozdoba C, et al. Virtopsy, a new imaging horizon in forensic pathology: virtual autopsy by postmortem multislice computed tomography (MSCT) and magnetic resonance imaging (MRI)—a feasibility study. J Forensic Sci. 2003;48:386-403.

Gat N. Imaging spectroscopy using tunable filters: a review. In: Szu HH, Vetterli M, Campbell WJ, Buss JR, eds. Proceedings of SPIE. 2000:50-64. doi:10.1117/12.381686

Popescu AC, Farid H. Exposing digital forgeries in color filter array interpolated images. IEEE Trans Signal Process. 2005;53:3948-3959. doi:10.1109/TSP.2005.855406

Dong J, Wang W, Tan T. CASIA image tampering detection evaluation database. In: 2013 IEEE China Summit and International Conference on Signal and Information Processing. IEEE; 2013:422-426. doi:10.1109/ChinaSIP.2013.6625374

Mahdian B, Saic S. Detection of copy-move forgery using a method based on blur moment invariants. Forensic Sci Int. 2007;171:180-189. doi:10.1016/j.forsciint.2006.11.002

Thali M, Yen K, Schweitzer W, Vock P, Boesch C, Ozdoba C, et al. Virtopsy, a new imaging horizon in forensic pathology: virtual autopsy by postmortem multislice computed tomography (MSCT) and magnetic resonance imaging (MRI)—a feasibility study. J Forensic Sci. 2003;48:1-18. doi:10.1520/jfs2002166

Masi I, Killekar A, Mascarenhas RM, Gurudatt SP, AbdAlmageed W. Two-branch recurrent network for isolating deepfakes in videos. In: Lecture Notes in Computer Science. Vol 12352. Springer; 2020:667-684. doi:10.1007/978-3-030-58571-6_39

Thurzo A, Kosnáčová HS, Kurilová V, Kosmeľ S, Beňuš R, Moravanský N, et al. Use of advanced artificial intelligence in forensic medicine, forensic anthropology and clinical anatomy. Healthcare (Basel). 2021;9:1545. doi:10.3390/healthcare9111545

Jerian M, Paolino S, Cervelli F, Carrato S, Mattei A, Garofano L. A forensic image processing environment for investigation of surveillance video. Forensic Sci Int. 2007;167:207-212. doi:10.1016/j.forsciint.2006.06.048

Zemin C, Xiaoxin L, Jianhuang L, Jun C. Robust optical flow estimation method based on structure-texture aware retinex model and its application on face anti-spoofing. J Image Graph. 2023;28:1445-1461. doi:10.11834/jig.220778

Zheng K, Li B, Zeng J. Document image forgery localization and desensitization localization using the attention mechanism. J Xidian Univ. 2023;50:207-218. doi:10.19665/j.issn1001-2400.20230105

Di Palma A, Bianchi I, Focardi M, Cioffi C, Bonetti S, Dalessandri D. Bitemark analysis comparing the use of digital scans and 3D resin casts. J Forensic Odonto-Stomatol. 2024;42:76-86. doi:10.5281/zenodo.13474602

Cannas ED, Mandelli S, Bestagini P, Tubaro S. Investigating translation invariance and shiftability in CNNs for robust multimedia forensics: a JPEG case study. In: Proceedings of the 2024 ACM Workshop on Information Hiding and Multimedia Security (IH MMSec). ACM; 2024:53-63. doi:10.1145/3658664.3659644

Purnekar N, Abady L, Tondi B, Barni M. Improving the robustness of synthetic images detection by means of print and scan augmentation. In: Proceedings of the 2024 ACM Workshop on Information Hiding and Multimedia Security (IH MMSec). ACM; 2024:65-73. doi:10.1145/3658664.3659635

Epain M, Valette S, Zou K, Faisan S, Heitz F, Croisille P, et al. Sex estimation from coxal bones using deep learning in a population balanced by sex and age. Int J Legal Med. 2024. doi:10.1007/s00414-024-03268-2

Chen J, Liao X, Qian Z, Qin Z. Multi-domain probability estimation network for forgery detection over online social network shared images. In: Proceedings of the IEEE International Conference on Multimedia and Expo (ICME). IEEE; 2024. doi:10.1109/ICME57554.2024.10687645

Weyermann C, Willis S, Margot P, Roux C. Towards more relevance in forensic science research and development. Forensic Sci Int. 2023;348:111592. doi:10.1016/j.forsciint.2023.111592

Gokhale A, Mulay P, Pramod D, Kulkarni R. A bibliometric analysis of digital image forensics. Sci Technol Libr. 2020;39:96-113. doi:10.1080/0194262X.2020.1714529

Koundinya AK, Dixit S, Mahesh G, Sneha S. Characteristic overview of digital image forensics tools. In: Lecture Notes in Networks and Systems. Vol 237. Springer; 2022. doi:10.1007/978-981-16-6407-6_15

Hashmi MF, Keskar AG. Block and fuzzy techniques based forensic tool for detection and classification of image forgery. J Electr Eng Technol. 2015;10:1887-1899. doi:10.5370/JEET.2015.10.4.1887

Shi GF, Huang P, Liu NG, Yu XT, Zhang H, Li SY, et al. Analysis of forensic sciences literature in SCIE from 2008 to 2017. J Forensic Med. 2019;35:30-38. doi:10.12116/j.issn.1004-5619.2019.01.006

Farid H. Image forensics. Annu Rev Vis Sci. 2019;5:549-573. doi:10.1146/annurev-vision-091718-014827

Yu H, Fan B, Xu B, Zhu X. SharpenNet: detecting anti-forensics USM sharpening adversarial examples based on ConvNeXt. J Circuits Syst Comput. 2023. doi:10.1142/S0218126624300034

Beck TS. Image manipulation in scholarly publications: are there ways to an automated solution? J Doc. 2022;78:1184-1198. doi:10.1108/JD-06-2021-0113

Menon V, Prasad B, Kaur M, Kaur H, Pandey D, Dogiwal SR. The Impact of Thrust Technologies on Image Processing. Nova Science Publishers; 2023. doi:10.52305/ATJL4552

Gokhale A, Mulay P, Pramod D, Kulkarni R. A bibliometric analysis of digital image forensics. Sci Technol Libr. 2020;39:96-113. doi:10.1080/0194262X.2020.1714529

Zhang Y. Image engineering in China: 2019. J Image Graph. 2020;25:864-878. doi:10.11834/jig.200102

Shi GF, He XD. Metrological analysis of the projects in the field of forensic science funded by the National Natural Science Foundation of China between 2000 and 2019. Fa Yi Xue Za Zhi. 2020;36:772-773. doi:10.12116/j.issn.1004-5619.2020.06.006

Shueb S, Gul S. Measuring the research funding landscape: a case study of BRICS nations. Glob Knowl Mem Commun. 2025;74:346-369. doi:10.1108/GKMC-08-2022-0192

Xiang D. Analyzing international scientific collaboration in materials science through co-authorship. In: Proceedings of the 19th International Conference on Industrial Engineering and Engineering Management. Springer; 2013:73-83. doi:10.1007/978-3-642-38427-1_9

Randeberg LL, Skallerud B, Langlois NEI, Haugen OA, Svaasand LO. The optics of bruising. In: Welch AJ, van Gemert MJC, eds. Optical-Thermal Response of Laser-Irradiated Tissue. Springer; 2011:825-858. doi:10.1007/978-90-481-8831-4_22

Balhareth AAS, Jamesh M, Zabarah GA, Almotlaq MM, Alabaaltahin MAM, Al Jaarah AHA, et al. The role of forensic medicine in modern criminal justice: a review of current practices and innovations. J Ecohumanism. 2024;3:2699-2707. doi:10.62754/joe.v3i7.4669

Oesterhelweg L. Atmosphere of departure in forensic medicine? Virtopsy basic course. Rechtsmedizin. 2007;17:40-43. doi:10.1007/s00194-006-0425-8

Bruce C, Prassas I, Mokhtar M, Clarke B, Youssef E, Wang C, et al. Transforming diagnostics: the implementation of digital pathology in clinical laboratories. Histopathology. 2024;85:207-214. doi:10.1111/his.15178

Verma A, Chouhan APS, Singh V. Role of artificial intelligence in forensic radiology. Int J Med Toxicol Legal Med. 2023;26:42-48. doi:10.5958/0974-4614.2023.00043.8

Tyagi AK, Kumari S. Artificial intelligence-based cyber security and digital forensics: a review. In: Artificial Intelligence-Enabled Digital Twin for Smart Manufacturing. Wiley; 2025:391-419. doi:10.1002/9781394303601.ch18

Karakuş S, Kaya M, Tuncer SA. Real-time detection and identification of suspects in forensic imagery using advanced YOLOv8 object recognition models. Trait Signal. 2023;40:2029-2039. doi:10.18280/ts.400521

Dunsin D, Ghanem MC, Ouazzane K, Vassilev V. A comprehensive analysis of the role of artificial intelligence and machine learning in modern digital forensics and incident response. Forensic Sci Int Digit Investig. 2024;48:301675. doi:10.1016/j.fsidi.2023.301675

Pappachan P, Adi NS, Firmansyah G, Rahaman M. Deep learning-based forensics and anti-forensics. In: Digital Forensics and Cyber Crime Investigation: Recent Advances and Future Directions. CRC Press; 2024:211-240. doi:10.1201/9781003207573-11

Reedy P. Artificial intelligence in digital forensics. In: Siegel J, Saukko P, Houck M, eds. Encyclopedia of Forensic Sciences. 3rd ed. Vol 1. Elsevier; 2022:170-192. doi:10.1016/B978-0-12-823677-2.00236-1

Path to intellectual revolution in digital forensics. In: AI and Emerging Technologies: Automated Decision-Making, Digital Forensics, and Ethical Considerations. CRC Press; 2024:85-102. doi:10.1201/9781003501152-6

Grispos G, Bastola K. Cyber autopsies: the integration of digital forensics into medical contexts. In: De HAG S, RG A, Santosh KC, Temesgen Z, Kane B, Soda P, eds. Proceedings of the IEEE Symposium on Computer-Based Medical Systems (CBMS). IEEE; 2020:510-513. doi:10.1109/CBMS49503.2020.00102

Bertozzi G, Maglietta F, Salerno M, Caffarelli FP. Forensic radiology: penetrating versus non-penetrating trauma. In: Cattaneo C, Grabherr S, eds. Radiology in Forensic Medicine: From Identification to Post-mortem Imaging. Springer; 2019:157-168. doi:10.1007/978-3-319-96737-0_14

Constanzo B, Di Iorio AH, Greco F, Trigo S. Considerations on digital forensic analysis of medical devices and equipment. In: Pino E, Magjarevic R, De Carvalho P, eds. IFMBE Proceedings. Vol 108. Springer; 2024:235-242. doi:10.1007/978-3-031-59216-4_26

Galante N, Cotroneo R, Furci D, Lodetti G, Casali MB. Applications of artificial intelligence in forensic sciences: current potential benefits, limitations and perspectives. Int J Legal Med. 2023;137:445-458. doi:10.1007/s00414-022-02928-5

Renukadevi P, John S, Shivani N. Forensic science: AI-powered image and audio analysis. In: Proceedings of the 5th International Conference on Smart Electronics and Communication (ICOSEC). IEEE; 2024:1519-1525. doi:10.1109/ICOSEC61587.2024.10722068

Chakraborty S, Mali K. An overview of biomedical image analysis from the deep learning perspective. In: Research Anthology on Improving Medical Imaging Techniques for Analysis and Intervention. IGI Global; 2022:43-59. doi:10.4018/978-1-6684-7544-7.ch003

Bernacki J. Digital camera identification based on analysis of optical defects. Multimed Tools Appl. 2020;79:2945-2963. doi:10.1007/s11042-019-08182-z

Lukáš J, Fridrich J, Goljan M. Digital camera identification from sensor pattern noise. IEEE Trans Inf Forensics Secur. 2006;1:205-214. doi:10.1109/TIFS.2006.873602

Li CT, Satta R. Empirical investigation into the correlation between vignetting effect and the quality of sensor pattern noise. IET Comput Vis. 2012;6:560-566. doi:10.1049/iet-cvi.2012.0044

Wang JL, Li X, Fan JR, Yan JP, Gong ZM, Zhao Y, et al. Integrity of the editing and publishing process is the basis for improving an academic journal’s impact factor. World J Gastroenterol. 2022;28:6168-6202. doi:10.3748/wjg.v28.i43.6168

Campisi P. Editorial. IEEE Trans Inf Forensics Secur. 2018;13:5. doi:10.1109/TIFS.2017.2788318

Campisi P, Kundur D. WIFS 2012 – Proceedings of the 2012 IEEE International Workshop on Information Forensics and Security: Preface. In: WIFS 2012 Proceedings. IEEE; 2012. doi:10.1109/WIFS.2012.6412611

Lukáš J, Fridrich J, Goljan M. Digital “bullet scratches” for images. In: Proceedings of the IEEE International Conference on Image Processing (ICIP). Vol 3. IEEE; 2005:65-68. doi:10.1109/ICIP.2005.1530329

Cattaneo G, Faruolo P, Petrillo UF. Experiments on improving sensor pattern noise extraction for source camera identification. In: Proceedings of the 6th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS). IEEE; 2012:609-616. doi:10.1109/IMIS.2012.35

Honeywell. The future is what we make it. Available from: https://www.honeywell.com/us/en. Accessed January 24, 2025.

Binghamton University. Available from: https://www.binghamton.edu/. Accessed January 24, 2025.

Remya RS, Beevi AB. Novel video camera authentication based on peak to correlation energy of clustered sensor pattern noise. In: Proceedings of the IEEE International Conference on Engineering and Technology (ICETECH). IEEE; 2015. doi:10.1109/ICETECH.2015.7274998

Dafale NN, Naskar R. Sensor pattern noise based source anonymization. In: Proceedings of the 3rd IEEE International Conference on Sensing, Signal Processing and Security (ICSSS). IEEE; 2017:93-98. doi:10.1109/SSPS.2017.8071572

Tubaro S. Research profile. ResearchGate. Available from: https://www.researchgate.net/profile/Stefano-Tubaro. Accessed January 24, 2025.

Liu KJR. Academic and industrial experiences. University of Maryland. Available from: http://www.cspl.umd.edu/kjrliu/academic/. Accessed January 24, 2025.

Jones AW. Bibliometric evaluation of Forensic Science International as a scholarly journal within the subject category legal medicine. Forensic Sci Int Synerg. 2023;7:100438. doi:10.1016/j.fsisyn.2023.100438

Jones AW. The distribution of forensic journals, reflections on authorship practices, peer-review and role of the impact factor. Forensic Sci Int. 2007;165:115-128. doi:10.1016/j.forsciint.2006.05.013

Jesubright JJ, Saravanan P. A scientometric analysis of global forensic science research publications. Library Philosophy and Practice. 2014;2014.

Arthur RM, Humburg PJ, Hoogenboom J, Baiker M, Taylor MC, de Bruin KG. An image-processing methodology for extracting bloodstain pattern features. Forensic Sci Int. 2017;277:122-132. doi:10.1016/j.forsciint.2017.05.022

Wiraagni IA, Trissanto S, Utomo AP, Wahyuni ES, Firdaus, Putri AWK, et al. An application for wound type determination based on image processing in forensic cases. Int J Med Toxicol Forensic Med. 2024;14. doi:10.32598/ijmtfm.v14i02.43899

Goljan M, Fridrich J, Filler T. Large scale test of sensor fingerprint camera identification. In: Proceedings of SPIE. Vol 7254. 2009. doi:10.1117/12.805701

Gloe T, Borowka K, Winkler A. Efficient estimation and large-scale evaluation of lateral chromatic aberration for digital image forensics. In: Proceedings of SPIE. Vol 7541. 2010. doi:10.1117/12.839034

Sharma M, Jha S. Uses of software in digital image analysis: a forensic report. In: Proceedings of SPIE. Vol 7546. 2010. doi:10.1117/12.856292

Kirchner M, Fridrich J. On detection of median filtering in digital images. In: Proceedings of SPIE. Vol 7541. 2010. doi:10.1117/12.839100

Vasilaras A, Papadoudis N, Rizomiliotis P. Artificial intelligence in mobile forensics: a survey of current status, a use case analysis and AI alignment objectives. Forensic Sci Int Digit Investig. 2024;49:301737. doi:10.1016/j.fsidi.2024.301737

Zhang CM. Reform and innovation for development in cross-leap type. Zhongshan Daxue Xuebao/Acta Sci Nat Univ Sunyatseni. 2005;44:124-128.

Zhai W, Zhang N, Hua F. The development of forensic science standards in China. Forensic Sci Int Synerg. 2020;2:187-193. doi:10.1016/j.fsisyn.2020.06.001

Zhai W, Zhang N, Hua F, Han K, Xie Q. China forensic science standards: current situation and problems. Forensic Sci Technol. 2020;45:341-347. doi:10.16467/j.1008-3650.2020.04.003

Schwarck E. Intelligence and informatization: the rise of the ministry of public security in intelligence work in China. China J. 2018;80:1-23. doi:10.1086/697089

Bernot A. Police cloud: functional modularity in China’s cloud public security infrastructure. Regul Gov. 2024. doi:10.1111/rego.12604

Jain AK, Ross AA, Nandakumar K. Introduction to Biometrics. Springer; 2011. doi:10.1007/978-0-387-77326-1

Farid H. Photo Forensics. MIT Press; 2016. doi:10.7551/mitpress/10451.001.0001

Liu Y, Ma J, Song H, Qian Z, Lin X. Chinese universities’ cross-border research collaboration in the social sciences and its impact. Sustainability. 2021;13:10378. doi:10.3390/su131810378

Wagner CS, Bornmann L, Leydesdorff L. Recent developments in China–U.S. cooperation in science. Minerva. 2015;53:199-214. doi:10.1007/s11024-015-9273-6

da Silva RT. Some aspects of “grey literature” in Brazil. Archaeologies. 2010;6:327-336. doi:10.1007/s11759-010-9142-8

Leta J, Pereira JCR, Chaimovich H. The life sciences: the relative contribution of the University of São Paulo to the highest impact factor journals and to those with the largest number of articles, 1980 to 1999. Scientometrics. 2005;63:599-616. doi:10.1007/s11192-005-0230-2

Tiwari A, Kusum S. Role of forensic criminology in access to justice—a critical analysis. Routledge; 2024. doi:10.4324/9781032629346-4

Downloads

Published

2025-10-09

How to Cite

WIraagni, I. A., Saputra Yadnya , K. ., Widiningsih , D. ., Bhima Nareshwara , A. ., Eka Ganda Winata , I. P. ., Setya Nugroho , F. ., Dwi Angesti Putri , R. ., Hidayat , S. ., Sukma Wahyuni , E. ., Firdaus, & Erwandi Mohamad Haron, D. . (2025). Trends and Challenges in Forensic Image Processing: A Bibliometric Study. Ahmad Dahlan Medical Journal, 6(2), 187–215. https://doi.org/10.12928/admj.v6i2.14221

Most read articles by the same author(s)