Establishing Geographical Indicator of Fermented Cacao Beans Using Microbiome Fingerprinting

Authors

  • Imam Bagus Nugroho Universitas Gadjah Mada
  • Abdul Rahman Siregar

DOI:

https://doi.org/10.12928/jbns.v4i1.10775

Keywords:

Bioinformatics, Clustering, PCA, UMAP, KNN

Abstract

Geographical indication is an essential label for industrial products. Herein, we aimed to explore a method for establishing geographical indications based on microbial diversity data. We collected two groups of datasets available on the public server of the European Nucleotide Archive. These datasets contain 12 (twelve) NGS-generated reads (amplicon sequencing metagenomes) of fermented cacao beans from Brazil and Mexico. We extracted the microbiome profile using bioinformatic tools in the SHAMAN server. We analyzed further using Principal Component Analysis, Clustering (Ward’s Method of Hierarchical Agglomerative Clustering), and UMAP (Uniform Manifold Approximation and Projection) combined with KNN (K-Nearest Neighbor). We discovered differences in microbial diversity and unique taxa in the fermented cacao beans from Brazil and Mexico. Lactic acid bacteria (LAB), such as Liquorilactobacillus, Tatumella, Leuconostoc, Companilactobacillus, and Limosilactobacillus, are unique genera in samples from Mexico, while Bacillus is a unique genus found in samples from Brazil.  We have demonstrated the separation of the microbiome profiles between fermented cacao beans from Brazil and Mexico using PCA, clustering analysis and UMAP-KNN. We have successfully developed the proof of concept in establishing geographical indicators based on microbial diversity data or microbiome profiles. In the future, we will extend this research to analyze samples from Indonesia and establish a microbial diversity database of Indonesian fermented cacao. This database is essential for the authentication assay of Indonesian fermented cacao and for developing fine cacao and specialty products.

References

Bray, J.R., & Curtis, J.T. (1957). An Ordination of The Upland Forest Communities of Southern Wisconsin. Ecological Monographs, 27(4):326–349. https://doi.org/10.2307/1942268.

Brugman, E., Wibowo, A., & Widiastuti, A. (2022). Phytophthora palmivora from Sulawesi and Java Islands, Indonesia, Reveals High Genotypic Diversity and Lack of Population Structure. Fungal Biology, 126(4):267–276. https://doi.org/10.1016/j.funbio.2022.02.004.

Calvo, A.M., Botina, B.L., García, M.C., Cardona, W.A., Montenegro, A.C., & Criollo, J. (2021). Dynamics of Cocoa Fermentation and Its Effect on Quality. Scientific Reports, 11(1):16746. https://doi.org/10.1038/s41598-021-95703-2.

Chao, A. (1984). Nonparametric Estimation of The Number of Classes in A Population. Scandinavian Journal of Statistics, 11(4):265–270. Retrieved from https://www.jstor.org/stable/4615964.

Da Silva, B.L., Pereira, P.V., Bertoli, L.D., Silveira, D.L., Batista, N.N., Pinheiro, P.F., Carneiro, J.S., Schwan, R.F., Silva, S.A., Coelho, J.M., & Bernardes, P.C. (2021). Fermentation Of Coffea canephora Inoculated with Yeasts: Microbiological, Chemical, And Sensory Characteristics. Food Microbiology, 98:103786. https://doi.org/10.1016/j.fm.2021.103786.

De C. Lima, C.O., Vaz, A.B.M., De Castro, G.M., Lobo, F., Solar, R., Rodrigues, C., Pinto L.R.M., Vandenberghe, L., Pereira, G., da Costa, A.M., Benevides R.G., Azevedo, V., Uetanabaro, A.P.T., Soccol, C.R., & Góes-Neto, A. (2021). Integrating Microbial Metagenomics and Physicochemical Parameters and A New Perspective on Starter Culture for Fine Cocoa Fermentation. Food Microbiology, 93:103608. https://doi.org/10.1016/j.fm.2020.103608.

De Vuyst, L., & Leroy, F. (2020). Functional Role of Yeasts, Lactic Acid Bacteria and Acetic Acid Bacteria In Cocoa Fermentation Processes. FEMS Microbiology Reviews, 44(4):432–453. https://doi.org/10.1093/femsre/fuaa014.

Fang, Y., Li, R., Chu, Z., Zhu, K., Gu, F., & Zhang, Y. (2020). Chemical And Flavor Profile Changes of Cocoa Beans (Theobroma Cacao L.) During Primary Fermentation. Food Science & Nutrition, 8(8):4121–4133. https://doi.org/10.1002/fsn3.1701.

Ferreira, O.D.S., Chagas‐Junior, G.C.A., Chisté, R.C., Martins, L.H.D.S., Andrade, E.H.D. A., Nascimento, L.D.D., & Lopes, A.S. (2022). Saccharomyces cerevisiae and Pichia manshurica from Amazonian Biome Affect the Parameters of Quality and Aromatic Profile of Fermented and Dried Cocoa Beans. Journal of Food Science, 87(9):4148–4161. https://doi.org/10.1111/1750-3841.16282.

Hughes, J.B., Hellmann, J.J., Ricketts, T.H., & Bohannan, B.J.M. (2001). Counting The Uncountable: Statistical Approaches to Estimating Microbial Diversity. Applied and Environmental Microbiology, 67(10):4399–4406. https://doi.org/10.1128/AEM.67.10.4399-4406.2001.

Maćkiewicz, A., & Ratajczak, W. (1993). Principal Components Analysis (PCA). Computers & Geosciences, 19(3):303–342. https://doi.org/10.1016/0098-3004(93)90090-R.

McInnes, L., Healy, J., Saul, N., & Großberger, L. (2018). UMAP: Uniform Manifold Approximation and Projection. Journal of Open Source Software, 3(29):861. https://doi.org/10.21105/joss.00861.

Murtagh, F. & Legendre, P. (2014). Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? Journal of Classification, 31(3):274–295. https://doi.org/10.1007/s00357-014-9161-z.

Nema, V. (2019). The Role and Future Possibilities of Next-Generation Sequencing in Studying Microbial Diversity. In: Das S & Dash HR (Eds.). Microbial Diversity in the Genomic Era, pp. 611–630. Academic Press Elsevier London UK. https://doi.org/10.1016/B978-0-12-814849-5.00034-4.

Papalexandratou, Z., Kaasik, K., Kauffmann, L.V., Skorstengaard, A., Bouillon, G., Espensen, J.L., Hansen, L.H., Jakobsen, R.R., Blennow, A., Krych, L., & Nielsen, D.S. (2019). Linking Cocoa Varietals and Microbial Diversity of Nicaraguan Fine Cocoa Bean Fermentations and Their Impact on Final Cocoa Quality Appreciation. International Journal of Food Microbiology, 304:106–118. https://doi.org/10.1016/j.ijfoodmicro.2019.05.012.

Rabha, J., Devi, S.P., Das, S., Roy, N., & Jha, D.K. (2023). Microbial conversion of biomass to value-added chemicals. In: Kuddus M & Ramteke P (Eds.). Value-Addition in Agri-food Industry Waste Through Enzyme Technology, pp. 37–64. Academic Press Elsevier London UK. https://doi.org/10.1016/B978-0-323-89928-4.00018-3.

Rahayu, E.S., Triyadi, R., Khusna, R.N.B., Djaafar, T.F., Utami, T., Marwati, T., & Hatmi, R.U. (2021). Indigenous Yeast, Lactic Acid Bacteria, And Acetic Acid Bacteria from Cocoa Bean Fermentation in Indonesia Can Inhibit Fungal-Growth-Producing Mycotoxins. Fermentation, 7(3):192. https://doi.org/10.3390/fermentation7030192.

Ricotta, C., & Podani, J. (2017). On Some Properties of The Bray-Curtis Dissimilarity and Their Ecological Meaning. Ecological Complexity, 31:201–205. https://doi.org/10.1016/j.ecocom.2017.07.003.

Schmidt, P.J., Cameron, E.S., Müller, K.M., & Emelko, M.B. (2022). Ensuring That Fundamentals of Quantitative Microbiology Are Reflected in Microbial Diversity Analyses Based on Next-Generation Sequencing. Frontiers in Microbiology, 13:728146. https://doi.org/10.3389/fmicb.2022.728146.

Serra, J.L., Moura, F.G., Pereira, G.V.D.M., Soccol, C.R., Rogez, H., & Darnet, S. (2019). Determination Of the Microbial Community in Amazonian Cocoa Bean Fermentation by Illumina-Based Metagenomic Sequencing. LWT, 106:229–239. https://doi.org/10.1016/j.lwt.2019.02.038.

Soumahoro, S., Ouattara, H.G., Droux, M., Nasser, W., Niamke, S.L., & Reverchon, S. (2020). Acetic Acid Bacteria (AAB) Involved in Cocoa Fermentation from Ivory Coast: Species Diversity and Performance In Acetic Acid Production. Journal of Food Science and Technology, 57(5):1904–1916. https://doi.org/10.1007/s13197-019-04226-2.

Streule, S., Freimüller Leischtfeld, S., Galler, M., & Miescher Schwenninger, S. (2022). Monitoring Of Cocoa Post-Harvest Process Practices on A Small-Farm Level at Five Locations in Ecuador. Heliyon, 8(6):e09628. https://doi.org/10.1016/j.heliyon.2022.e09628.

Tigrero-Vaca, J., Maridueña-Zavala, M.G., Liao, H.-L., Prado-Lince, M., Zambrano-Vera, C.S., Monserrate-Maggi, B., & Cevallos-Cevallos, J.M. (2022). Microbial Diversity and Contribution to The Formation of Volatile Compounds During Fine-Flavor Cacao Bean Fermentation. Foods, 11(7):915. https://doi.org/10.3390/foods11070915.

Viesser, J.A., De Melo Pereira, G.V., De Carvalho Neto, D.P., Favero, G.R., De Carvalho, J.C., Goés-Neto, A., Rogez, H., & Soccol, C.R. (2021). Global Cocoa Fermentation Microbiome: Revealing New Taxa and Microbial Functions by Next Generation Sequencing Technologies. World Journal of Microbiology and Biotechnology, 37(7):118. https://doi.org/10.1007/s11274-021-03079-2.

Volant, S., Lechat, P., Woringer, P., Motreff, L., Campagne, P., Malabat, C., Kennedy, S., Ghozlane, A. (2020). SHAMAN: A User-Friendly Website for Metataxonomic Analysis from Raw Reads to Statistical Analysis. BMC Bioinformatics, 21(1):345. https://doi.org/10.1186/s12859-020-03666-4.

Downloads

Published

2024-06-29

Issue

Section

Articles