Wild Stinging Nettle (Urtica dioica) Extract Suppresses Visceral Adipose Aromatase Levels and Improves Lipid Profile in Male Obese Rats

Authors

  • Zaenudin Zaenudin Universitas Gadjah Mada
  • Jurnalis Gempaning Tyas Universitas Gadjah Mada
  • Kabir Ardiansyah Tangkari Universitas Gadjah Mada
  • Harni Sutiani Universitad Gadjah Mada
  • Arta Farmawati Universitas Gadjah Mada
  • Prasetyastuti Prasetyastuti Universitas Gadjah Mada

DOI:

https://doi.org/10.12928/jfc.v8i1.13860

Keywords:

aromatase, lipid profile, obesity, urtica dioica

Abstract

Obesity can elevate estrogen levels through increased aromatase activity, adversely affecting male fertility. Although aromatase inhibitors are commonly used, they can disrupt lipid profiles and raise cardiovascular risks. This experimental study analyzed the effects of wild stinging nettle (Urtica dioica) extract on visceral adipose aromatase levels and serum lipid profiles in obese male rats. Twenty-five 7–8-week-old male Sprague Dawley rats were divided into five groups: normal control, obesity control, and three obesity groups receiving U. dioica extract at 125, 250, or 500 mg/kg body weight. After a 4-week intervention, blood samples were collected to measure lipid profiles, and visceral adipose tissue was harvested to assess aromatase levels. The U. dioica extract significantly reduced visceral adipose aromatase levels (p < 0.01) and improved lipid profiles in obese rats. Specifically, treated rats showed dose-dependent decreases in triglycerides, total cholesterol, and LDL-cholesterol, along with an increase in HDL-cholesterol (p < 0.05). These findings indicate that U. dioica extract can suppress adipose aromatase levels and ameliorate lipid disturbances in obesity.

References

Ahmadipour, B., & Khajali, F. (2019). Expression of antioxidant genes in broiler chickens fed nettle (Urtica dioica) and its link with pulmonary hypertension. Animal Nutrition 5(3): 264–269. https://doi.org/10.1016/j.aninu.2019.04.004

Alam, M. A., Subhan, N., Hossain, H., Hossain, M., Reza, H. M., Rahman, M. M., et al (2016). Hydroxycinnamic acid derivatives: A potential class of natural compounds for the management of lipid metabolism and obesity. Nutrition & Metabolism 13(27): 1-13. https://doi.org/10.1186/s12986-016-0080-3

da-Silva, W. S., Harney, J. W., Kim, B. W., Li, J., Bianco, S. D. C., Crescenzi, A., et al (2007). The small polyphenolic molecule kaempferol increases cellular energy expenditure and thyroid hormone activation. Diabetes 56(3): 767–776. https://doi.org/10.2337/db06-1488

Fadilah, N. N., & Susanti (2020). Aktivitas antihiperurisemia ekstrak tanaman jelatang (Urtica dioica L.) pada mencit. Health Information: Jurnal Penelitian 12(1): 99-106. https://doi.org/10.36990/hijp.vi.193

Fielding, C. J. (1984). The origin and properties of free cholesterol potential gradients in plasma, and their relation to atherogenesis. Journal of Lipid Research 25(13): 1624–1628. https://doi.org/10.1016/S0022-2275(20)34441-2

Ganjer, D., & Spiteller, G. (1995). Aromatase inhibitors from Urtica dioica roots. Planta Medica 61(02): 138-140. https://doi.org/10.1055/s-2006-958033

Güder A and Korkmaz H (2012). Evaluation of in-vitro antioxidant properties of hydroalcoholic solution extracts of Urtica dioica L., Malva neglecta Wallr. and their mixture. Iranian Journal of Pharmaceutical Research 11(3): 913–923.

Hajhashemi, V., & Klooshani, V. (2013). Antinociceptive and anti-inflammatory effects of Urtica dioica leaf extract in animal models. Avicenna Journal of Phytomedicine 3(2): 193–200.

Johnson, T. A., Sohn, J., Inman, W. D., Bjeldanes, L. F., & Rayburn, K. (2013). Lipophilic stinging nettle extracts possess potent anti-inflammatory activity, are not cytotoxic and may be superior to traditional tinctures for treating inflammatory disorders. Phytomedicine 20(2): 143–147. https://doi.org/10.1016/j.phymed.2012.09.016

Kappelle, P. J. W. H., Bijzet, J., Hazenberg, B. P., & Dullaart, R. P. F. (2011). Lower serum paraoxonase-1 activity is related to higher serum amyloid A levels in metabolic syndrome. Archives of Medical Research 42(3): 219–225. https://doi.org/10.1016/j.arcmed.2011.05.002

Kregiel, D., Pawlikowska, E., & Antolak, H. (2018). Urtica spp.: Ordinary plants with extraordinary properties. Molecules 23(7): 1664. https://doi.org/10.3390/molecules23071664

Lee, M. K., Park, Y. B., Moon, S. S., Bok, S. H., Kim, D. J., Ha, T. Y., et al (2007). Hypocholesterolemic and antioxidant properties of 3-(4-hydroxyl)propanoic acid derivatives in high-cholesterol fed rats. Chemico-Biological Interactions 170(1): 9–19. https://doi.org/10.1016/j.cbi.2007.06.037

Lephart, E. D. (2015). Modulation of aromatase by phytoestrogens. Enzyme Research 2015(1): 594656. https://doi.org/10.1155/2015/594656

Li, W., Yang, C., Mei, X., Huang, R., Zhang, S., Tang, Y., et al (2021). Effect of the polyphenol-rich extract from Allium cepa on hyperlipidemic Sprague-Dawley rats. Journal of Food Biochemistry 45(1): e13565. https://doi.org/10.1111/jfbc.13565

Lustig, R. H., Collier, D., Kassotis, C., Roepke, T. A., Kim, M. J., Blanc, E., et al (2022). Obesity I: Overview and molecular and biochemical mechanisms. Biochemical Pharmacology 199: 115012. https://doi.org/10.1016/j.bcp.2022.115012

Mackness, M., & Mackness, B. (2015). Human paraoxonase-1 (PON1): Gene structure and expression, promiscuous activities and multiple physiological roles. Gene 567(1): 12–21. https://doi.org/10.1016/j.gene.2015.04.088

Mair, K. M., Gaw, R., & MacLean, M. R. (2020). Obesity, estrogens and adipose tissue dysfunction – Implications for pulmonary arterial hypertension. Pulmonary Circulation 10(3): 2045894020952019, 1-21. https://doi.org/10.1177/2045894020952023

Millar, C. L., Duclos, Q., Blesso, C. N. (2017). Effects of dietary flavonoids on reverse cholesterol transport, HDL metabolism, and HDL function. Advances in Nutrition 8(2): 226–239. https://doi.org/10.3945/an.116.014050

Murwani, S. (2013). Diet aterogenik pada tikus putih (Rattus norvegicus strain Wistar) sebagai model hewan aterosklerosis. Jurnal Kedokteran Brawijaya 22(1): 6-9. https://doi.org/10.21776/ub.jkb.2006.022.01.2

Nassiri-Asl, M. (2014). Effects of Urtica dioica extract on lipid profile in hypercholesterolemic rats. Zhong xi yi jie he xue bao 7(5): 428-433. https://doi.org/10.3736/jcim20090506

Obanda, D. N., Ribnicky, D., Yu, Y., Stephens, J., & Cefalu, W. T. (2016). An extract of Urtica dioica L. mitigates obesity-induced insulin resistance in mice skeletal muscle via protein phosphatase 2A (PP2A). Scientific Reports 26(6): 22222. https://doi.org/10.1038/srep22222

Rahmati, M., Keshvari, M., Mirnasouri, R., & Chehelcheraghi, F. (2021). Exercise and Urtica dioica extract ameliorate hippocampal insulin signaling, oxidative stress, neuroinflammation, and cognitive function in STZ-induced diabetic rats. Biomedicine & Pharmacotherapy 139: 111577. https://doi.org/10.1016/j.biopha.2021.111577

Rice, S., Mason, H. D., & Whitehead, S. A. (2006). Phytoestrogens and their low dose combinations inhibit mRNA expression and activity of aromatase in human granulosa-luteal cells. The Journal of Steroid Biochemistry and Molecular Biology 101(4–5): 216–225. https://doi.org/10.1016/j.jsbmb.2006.06.021

Sunarti (2021). Pengaruh dosis fruktosa terhadap indeks massa tubuh, profil glukosa darah dan kadar trigliserida. Jurnal Gizi 10.

Sund, M., Garcia-Argibay, M., Garmo, H., Ahlgren, J., Wennstig, A. K., Fredriksson, I., et al (2021). Aromatase inhibitors use and risk for cardiovascular disease in breast cancer patients: A population-based cohort study. The Breast 59: 157–164. https://doi.org/10.1016/j.breast.2021.07.004

Van Gaal, L. F., Wauters, M. A., Mertens, I. L., Considine, R. V., & De Leeuw, I. H. (1999). Clinical endocrinology of human leptin. International Journal of Obesity and Related Metabolic Disorders 23(Suppl 1): S29–S36. https://doi.org/10.1038/sj.ijo.0800792

Wang, X., Zhu, A., Wang, J., Ma, F., Liu, J., Fan, Y., et al (2020). Steroidal aromatase inhibitors have a more favorable effect on lipid profiles than nonsteroidal aromatase inhibitors in postmenopausal women with early breast cancer: A prospective cohort study. Therapeutic Advances in Medical Oncology 12: 1758835920925991. https://doi.org/10.1177/1758835920925991

Wu, Y., Wang, M., Yang, T., Qin, L., Hu, Y., Zhao, D., et al (2021). Cinnamic acid ameliorates nonalcoholic fatty liver disease by suppressing hepatic lipogenesis and promoting fatty acid oxidation. Evidence-Based Complementary and Alternative Medicine 2021(1): 9561613. https://doi.org/10.1155/2021/9561613

Xu, X., Sun, M., Ya, J., Luo, D., Su, X., Zheng, D., et al (2017). The effect of aromatase on the reproductive function of obese males. Hormone and Metabolic Research 49(8): 572-579, https://doi.org/10.1055/s-0043-107835

Yuxin, L., Chen, L., Xiaoxia, L., Yue, L., Junjie, L., Youzhu, L., et al (2021). Research progress on the relationship between obesity-inflammation-aromatase axis and male infertility. Oxidative Medicine and Cellular Longevity 2021(1): 6612796. https://doi.org/10.1155/2021/6612796

Zagayko, A. L., Kravchenko, G. B., Krasilnikova, O. A., & Ogai, Y. O. (2013). Grape polyphenols increase the activity of HDL enzymes in old and obese rats. Oxidative Medicine and Cellular Longevity 2013(1): 593761. https://doi.org/10.1155/2013/593761

Downloads

Published

2025-07-19

Issue

Section

Articles