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INTRODUCTION 

Metaheuristics have been used to solve scale optimization problems in different engineering 
and science fields. One example about the effectiveness of such metaheuristics can be found 
in [1], for the integration between process planning and job shop scheduling. In [1] the 
communication concept between species is implemented for the aforementioned issue. Rossi 
and Dini [2] studied an applied case that was a flexible job shop scheduling with routing flexibility 
and setup times. As the proposed metaheuristic, an ant colony optimization-based approach is 
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 This paper considers solving more than one combinatorial problem 
considered some of the most difficult to solve in the combinatorial 
optimization field, such as the job shop scheduling problem 
(JSSP), the vehicle routing problem with time windows (VRPTW), 
and the quay crane scheduling problem (QCSP). A hybrid 
metaheuristic algorithm that integrates the Mallows model and the 
Moth-flame algorithm solves these problems. Through an 
exponential function, the Mallows model emulates the solution 
space distribution for the problems; meanwhile, the Moth-flame 
algorithm is in charge of determining how to produce the offspring 
by a geometric function that helps identify the new solutions. The 
proposed metaheuristic, called HEDAMMF (Hybrid Estimation of 
Distribution Algorithm with Mallows model and Moth-Flame 
algorithm), improves the performance of recent algorithms. 
Although knowing the algebra of permutations is required to 
understand the proposed metaheuristic, utilizing the HEDAMMF is 
justified because certain problems are fixed differently under 
different circumstances. These problems do not share the same 
objective function (fitness) and/or the same constraints. Therefore, 
it is not possible to use a single model problem. The 
aforementioned approach is able to outperform recent algorithms 
under different metrics for these three combinatorial problems. 
Finally, it is possible to conclude that the hybrid metaheuristics 
have a better performance, or equal in effectiveness than recent 
algorithms.  
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considered. Recent publications are found in [3]. The authors use a metaheuristic based on a 
genetic algorithm with Pareto-front. The aforementioned scheme works in a mail-order 
pharmacy system. Yue et al. [4] utilized a bee colony scheme with Pareto-front to tackle the 
single machine group-scheduling problem with sequence-dependent setup times. Huang et al. 
[5] developed an improved discrete particle swarm optimization method for the flexible job shop 
scheduling problem. Xu et al. [6] proposed a bat algorithm for solving the dual flexible job shop 
scheduling problem. Moreover, the application of metaheuristics is very remarkable. The main 
objective is to identify a better performance against other schemes. Prins [7] outperformed the 
drawbacks in vehicle routing problems. His proposal occupies a genetic algorithm and local 
search. Gao et al. [8] employed a genetic algorithm, too, but combined with a variable 
neighborhood descent method for flexible job shop scheduling problems. Zeng and Yang [9] 
hybridized a genetic algorithm with a neural network, enhancing the container-loading 
processes. A simulation validation technique gives support to their proposal. Lee et al. [10] also 
employed a genetic algorithm, it is hybridized with a minimum cost flow network model to 
improve the service activity in transport. A comparison was executed to show that their proposed 
scheme outperforms a neighborhood search algorithm. Schittekat et al. [11] proposed another 
metaheuristic to solve the school bus routing problem with bus stop selection. A parameter-free 
greedy randomized adaptive search procedure combined with a variable neighborhood descent 
method. Li and Gao [12] proposed a genetic algorithm and tabu search to solve flexible job shop 
scheduling open problems. Several recent studies [13-15] had other important contributions in 
the field. With this revision, it is clear that a wide set of metaheuristics has been effectively used 
for tackling diverse combinatorial problems. 

Another branch of metaheuristics is the estimation of distribution algorithms (EDAs). 
Efficient EDAs can be found in [16] to solve permutation flow shop scheduling problems. Chen 
et al. [17] contributed to constructing EDAs for single machine scheduling problems. Pan and 
Ruiz [18] utilizes an EDA to solve lot-streaming flow shop problems with setup times. Based on 
the previous papers, EDAs have effectively tackled diverse combinatorial problems. 

As with any metaheuristic, the EDA performance requires identifying each individual's 
fitness by generation from a set of them. Nevertheless, in the EDAs, a probability distribution is 
built based on population to generate new offspring. In addition, the EDA performance requires 
identifying the best probability distribution that fits with respect to the studied problem. Finding 
the best probability distribution is the aim of any EDA. Normally, the distribution is estimated by 
employing the statistical information of the population. Based on papers such as [19-20], a good 
estimated distribution helps to enhance the EDA performance. A way to identify a good 
distribution is by employing relations among independent variables. The proposal is to find high-
order estimations between them. The interactions between variables help to build complex 
probability models. However, complex models are not necessarily the best option because it 
might be difficult to understand. In addition, the most important EDAs drawbacks, such as lack 
of diversity of the solutions, and poor exploitation ability [19], are also difficult to handle. To 
tackle the aforementioned drawbacks, hybridization plays an important role in many 
EDAs´papers.  

Based on the results shown below, the hybridization between EDAs and other techniques 
improves EDA performance. Such hybridization should be considered in the design of any EDA. 
The hybridization also helps to tackle the aforementioned drawbacks of any EDA. in addition, 
the hybridization also might help to avoid the use of complex models. Finally, with the 
hybridization, any EDA could be more understandable. 

This research aims to show how metaheuristics help tackle any EDA's drawbacks. The 
metaheuristics should consider some well-defined math expression because it permits 
reproducing the proposed scheme, helps comprehend how the distribution works, and how the 
offspring are obtained. This study aims to use new metaheuristics, mainly how the proposed 
scheme explicitly executes the search process. The proposal for doing it is to identify what is 
most useful, i.e., using a hybridized EDA, or the recent algorithms. 

More than one type of combinatorial problem is considered in this article to understand the 
role hybridization plays in EDAs. The job shop scheduling problem (JSSP), the vehicle routing 
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problem with time windows (VRPTW), and the quay crane scheduling problem (QCSP) are 
solved with the proposed hybrid EDA. These discrete combinatorial optimization problems were 
selected due to their complex nature. These problems are considered the most difficult to solve 
in the combinatorial optimization field. The number of iterations exponentially increases based 
on the size of the problem, i.e., 𝑂(𝑛!). Due to these NP-hard problems [21], it is necessary to 
develop new methods of dealing with them. In addition, the discrete combinatorial optimization 
problems mentioned are suitable to use a permutation-based representation in the solutions. 
Furthermore, this study considers more than one discrete combinatorial problem to generate 
solid conclusions about the proposed metaheuristic. 

1. Complex distribution models 

A main challenge in creating new EDAs using complex distribution models is how to 
estimate high-order interactions between variables. The Univariate Marginal Distribution 
Algorithm (UMDA) proposed by [22] is an EDA example if there is no relation between variables. 
The Mutual Information Maximization for Input Clustering (MIMIC) detailed by [23] has good 
performance if there exists a relation between pair of variables. If we create new EDAs with 
high-order interactions between variables, new restrictions need to be satisfied, such as more 
population members. It could do difficult its understanding and/or computing. The Combining 
Optimizers with Mutual Information Trees (COMIT) published by [24], and the Bayesian 
Optimization Algorithm (BOA) proposed by [25] fall in this category. 

EDAs with high-order relations among variables continue improving. A mix between 
complex distribution models can be found in the literature. In [26], three complex models are 
used to tackle the flexible job shop scheduling problem. Ceberio et al. [27] showed how the EDA 
complexity increases when higher-order interactions between variables are used. 

2. The hybridization approach 

Wide and diverse evolutionary algorithms have been published considering hybridization 
features at the core of their structure. Studies of [28] face the quay crane-scheduling problem 
using a hybrid genetic algorithm. Then, Figliozzi [29] tackle the VRP with Soft Time Windows 
(VRPSTW), and Hard Time Windows (VRPHTW) using an algorithm-based on route 
construction and improvement. Next, Kamkar et al. [30] solved the VRPTW by a cellular Genetic 
Algorithm (cGA). In addition, Kaveshgar et al. [31] faced the quay crane-scheduling problem by 
a hybrid genetic algorithm with heuristics. Then, Chung et al. [32] also faced the quay crane-
scheduling problem through a hybrid genetic algorithm. Next, Tas et al.  [33] tackle a vehicle 
routing problem with soft time windows and stochastic travel times through a tabu search (TS) 
method. In addition, Chung and Chan [34] face the quay crane-scheduling problem using the 
hybridization between genetic algorithm and fuzzy logic. Next, Vidal et al. [35] solve large-scale 
vehicle routing problems by the hybrid genetic algorithm (HGA). Then, Garg [36] optimize an 
industrial system with uncertain data, using a hybrid genetic algorithm coupled with a 
gravitational search algorithm. Next, Phanden and Jain [37] solved the flexible jobshop-
scheduling problem with process plan flexibility, by a simulation-based genetic algorithm 
approach. Then, Li and Gao [12] tackled the flexible job shop scheduling problem, showing a 
hybrid genetic algorithm and tabu search. Then, Garg [38] solve the constrained optimization 
problems through a particle-based swarm method and a genetic algorithm. In addition, Xu et al. 
[6] resolved the flexible job shop scheduling problem with process plan flexibility through a bat 
algorithm, and Garg [39] addressed the constraint nonlinear optimization problems with mixed 
variables by a hybrid gravitational search algorithm coupled with a genetic algorithm.  

Based on the previous examples, an improvement feature is included in the hybrid EDAs. 
The most popular techniques to enhance the EDA are heuristics or metaheuristics. Peña [40] 
proposed a genetic algorithm and EDAs. The goal is to take benefit from both schemes. The 
proposed hybrid EDA is used for resolving synthetic optimizations problems and two real-world 
cases. Then, Zhang et al. [41] used a metaheuristic too, by an EDA with a 2-opt local search, to 
tackle the quadratic assignment problem. In addition, Liu et al. [42] studed the permutation 
flowshop scheduling problem through a metaheuristic too, an EDA, and the particle swarm 
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optimization method. Then, Wang et al. [19] faced out the flexible job shop scheduling problem 
through a metaheuristic too, an EDA, and a local search strategy to improve the EDA 
performance. Next, Fang et al. [43] also proposed to solve the stochastic resource-constrained 
project-scheduling problem with a metaheuristic by an EDA and a permutation-based local 
search. Then, Wang et al. [44] also presented a metaheuristic to tackle the distributed 
permutation flowshop scheduling problems under machine breakdown, by and EDA, and a fuzzy 
logic technique. 

3. Ranking models 

For the combinatorial optimization problems, it is suitable to develop new EDAs by already 
defined distribution models for rankings. Such as the proposed EDAs by [45] for the flow shop 
scheduling problem, [46] for the school bus routing problem with bus stop selection, [47] for the 
flexible job shop scheduling problem with process plan flexibility, and [48] for the vehicle routing 
problem with time windows. These investigations define distribution model for rankings, i.e., the 
Mallows model.  

4. Research´s gap 

Based on the previous review, there exists a gap to enhance the EDA performance. The 
metaheuristics are competitive approaches to improve any EDA. Therefore, this research 
continues in this direction showing that hybrid metaheuristics have a better performance or equal 
in effectiveness than the recent algorithms. 

The hybridization employed in this investigation is based on the Mallows model and the 
Moth-flame technique [49]. The exponential models sparingly have been used to enhance the 
EDA performance. The available papers are scarce in the literature. Ceberio et al. [45] 
introduced an EDA based on the Mallows model for the flow shop scheduling problem. The 
Mallows model helps build the distribution probability through permutations as solutions. 

The representation of the solutions in this research is rankings or permutations as a first 
step. It is a suitable representation for the problems above, i.e., the JSSP, the VRPTW, and the 
QCSP. Then, by the algebra of permutations, a distance metric is necessary by computing 
between the solutions as a second step. An exponential distribution is built with the previous 
distance metric as a third step. An input parameter, i.e., the distance between each of the 
solutions and a central solution should be computed. The Mallows model [50] assigns a 
probability to each solution that decays exponentially with respect to its distance to the central 
solution. Figure 1 details an example of it. 

 

Figure 1. The Mallows model 
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The aforementioned distance should be factorized as the fourth step. Then, the 
aforementioned factorization is obtained by the generalized Mallows model (GMD), proposed 
by [51] and [52]. The factorization result contains 𝑛 − 1 elements, where 𝑛 is the size of the 
rankings. Table 1 presents details the factorization process. 

Table 1. Factorization process 

Solutions Central solution Distance Factorization result 

3, 1, 4, 2, 5 
1, 2, 3, 4, 5 

3 [ 2 , 0 , 1 , 0 ] 
5, 3, 2, 4, 1 8 [ 4 , 2 , 1 , 1 ] 

The Moth-flame algorithm uses as input parameter the previous factorization in the fifth 
step. Here is the hybridization of this research between the EDA and the Moth-flame scheme. It 
helps to improve the EDA to reach the performance of recent algorithms. The Moth-flame 
scheme uses moths to execute the search process for the new solutions. It is necessary to know 
where the moths are located in the solution space. Therefore, the aforementioned factorization 
serves as the location coordinates for each moth. Figure 2 shows the relation previously 
explained. 

 

Figure 2. Moths´ location coordinates 

The moths represent agents moving in the search space, whereas flames are the best 
position of moths obtained so far [49]. The moths move themselves to new locations by spiral 
way around flames. The distinctions between this study and past research are 
- Through an exponential function, the Mallows model emulates the solution space 

distribution for the problems; meanwhile, the Moth-flame algorithm is in charge of 
determining how to produce the offspring. 

- The previous research only uses the Mallows model directly, i.e., both the search and the 
offspring processes are obtained from the ranking model 

- The previous contributions combine different methods to enhance the performance of the 
algorithm. That is, there is a main technique, and the other helps to tackle the drawbacks 
of the previous one. However, in this research, hybridization is the key feature to improving 
the performance of the proposed scheme. That is, the moth-flame technique not only helps 
to the ranking model, but also it contributes to finding the best solutions. 
Finally, the objective in this research is to show a different metaheuristic to improve the EDA 

performance. The main contributions are: 
-   To manage the hybridization concept between the Mallows model and the Moth-flame 

algorithm for combinatorial problems to tackle the EDA drawbacks. 
-      To offer all the steps to be reproducible the proposed metaheuristic. 
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-    To use a reference ranking model to enhance the EDA to find better solutions for the 
combinatorial problems. 

RESEARCH METHODOLOGY 

This research methodology will elaborate the HEDAMMF approach. The model of the JSSP 
can be found in [53]. The model of the VRPTW is available in [54]. The model of the QCSP is 
detailed in [55]. 

1. Initial population 

As in other EDAs, the representation of the solutions is done by a permutation. This 
representation works for the three sets of issues above. In JSSP, a solution representation is 
shown by processing the sequence of operations on the available machines and the assignment 
of operations on the machines. Therefore, we use one vector to represent the operations 
sequence and another vector to depict the machine assignment. 

Tabel 2. Operatings sequence 

JSSP Vector 1 – Operations sequence 

Ranking 1st 2nd 3rd 4th 5th 

Operations 3 1 4 2 5 

Tabel 3. Machine assignment 

JSSP Vector 2 – Machine assignment 

Ranking 1st 2nd 3rd 4th 5th 

Machine 2 2 1 1 3 

In VRPTW, a common representation is expressed by a vector that contains a sequence of 
all the customers to visit. 

Tabel 4. VRPTW vector 

VRPTW vector 

Ranking 1st 2nd 3rd 4th 5th 

Vertices 3 1 4 2 5 

 

In QCSP, a solution representation is expressed by the processing sequence of containers 
on the available quay cranes and the assignment of containers on the quay cranes. Two vectors 
do it, i.e., the containers sequence vector and the quay crane assignment vector. Both vectors 
are represented as the previous JSSP vectors. In this research, the initial population has 1000 
individuals. The amount of individuals is a fixed parameter. 

2. Fitness 

The fitness for the JSSP is computed by the processing time required to complete all the 
operations. The fitness function formulation used to describe the processing time for all 
operations is found in [53]. The total distance computes the fitness for the VRPTW traveled that 
is required to attend all the customers. The fitness for the QCSP is calculated by the average 
waiting time required to give service to all the tasks. 

3. JSSP machine distribution model   

Once we have the machine's assignment vectors from the initial population, we apply the 
UMDA algorithm to get new offspring, i.e., through the marginal distribution that it is built with all 
the machine assignment vectors. Each value, for each position in the machine vector, depicts a 
specific selected machine for a specific operation. The cumulative probability, from marginal 
distribution, is used to sample the offspring. The process continues until the offspring vector is 
completed.  
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4. QCSP quay crane distribution model  

Here the procedure is the same as the previous, i.e., once we have the quay crane 
assignment vectors from the initial population, again we apply the UMDA algorithm to get new 
offspring, i.e., through the marginal distribution that it is built with all the quay crane assignment 
vectors. Each value, in each quay crane assignment vector, represents a specific quay crane 
selected for a specific task. The cumulative probability, from marginal distribution, is used to 
sample the offspring. The process continues until the offspring vector is completed. The Figure 
3 shows the process to sample the offspring. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. An example to obtain quay crane assignment vectors through the marginal distribution 

5. The Mallows model 

The Mallows model [50] is considered as the VRPTW distribution model. In addition, the 
Mallows model is addressed as the distribution model for the operations sequence vectors in 
the JSSP and the distribution model for the task sequence vectors in the QCSP. 

5.1. Central solution 

To compute the central solution, the first parameter of the Mallows model, is done with all 
individuals by [56] procedure. Figure 4 details a didactical example to obtain the central solution. 

 
Figure 4. A didactical example to obtain a central solution 
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5.2. Factorization computing 

Once we have the central solution, it is possible to obtain the product between the central 
solution, and each vector. The product is computed by the procedure defined by [51] and [52]. 
Figure 5 shows a didactical example through the algebra of permutations. 

 
Figure 5. A didactical example to obtain the product between solutions 

Once we have the aforementioned product, it factorizes in 𝑛 − 1 items. Figure 6 shows the 
procedure. 

 
Figure 6. Factorization 

6. The Moth-flame phase 

6.1. The moths in their feasible space 

Transfer the information of the aforementioned factorization process obtains the 
coordinates where a moth is allocated. As a didactical example, if we have a factorized vector 
as (1,1,1), the moth is allocated in the coordinate (1,1,1). Figure 2 provides a didactical example 
of it. 

6.2. Moths fitness 

As in the previous step, we transfer the fitness of the solution vector as the moth fitness. If 
we are talking to the fitness for the JSSP, it is computed by the processing time required to 
complete all the operations. Then, if we are talking to the fitness for the VRPTW, it is computed 
by the total distance traveled required to attend all the customers. Next, if we are talking to the 
fitness for the QCSP, it is calculated by the average waiting time required to give service to all 
the tasks. 
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6.3. Moths sorting 

A descending order with respect to the fitness is done in the moths population. It is a process 
done by the bubble method. 

6.4. Flames amount computing 

Mirjalili [49] published a mathematical equation to compute  

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑙𝑎𝑚𝑒𝑠 = 𝑟𝑜𝑢𝑛𝑑 (𝑁 − 𝑙 ∗ 
𝑁−1

𝑇
)                      (1) 

where 𝑁 is the maximum number of flames, 𝑙 is the current generation, and 𝑇 indicates the 
maximum number of generations. 

6.5. Flames setting 

Transfer the information of the aforementioned moths sorting step obtains the coordinates 
where a flame is allocated. Table 5 shows a didactical example. 

Table 5. Flames allocation example 

Flames Flame Coordinates Sorted Moths Moth Coordinates 

1 (0,0,1) 1 (0,0,1)* 
2 (3,1,0) 2 (3,1,0)* 
3 (2,1,2) 3 (2,1,2)* 
  4 (0,1,0) 
  5 (1,1,1) 
  6 (3,0,0) 
  7 (2,2,0) 
  8 (2,3,0) 
  9 (1,0,0) 

* the best moths   

6.6. Flame fitness 

We transfer the fitness of the moth as the flame fitness. At the beginning of the process, 
there is no difference between flame and moth fitness. However, a descending order with 
respect to the fitness is done in the flames population in each generation. It is necessary to 
establish which flames will be adequate for the orientation of the moths in the progress of the 
algorithm. 

6.7. Moth-flame assignment 

Every moth is assigned to only one flame. Table 6 presents the details a didactical example 

Table 6. Assignment moth-flame 

Flame  Moths 

1 1 

1 2 

1 3 

2 4 

2 5 

2 6 

3 7 

3 8 

3 9 

6.8. Moth movement 

Every moth finds a new allocation through [49]. The function is below 
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𝑆𝑝𝑖𝑟𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  𝐷𝑖 ∗ 𝑒𝑏𝑡 ∗ cos(2𝜋𝑡) + 𝐹𝑗                           (2) 

where 𝑏 is a constant that defines the spiral shape, 𝑡 is a random value from −1 to 1, 𝐷𝑖 indicates 

the distance from the 𝑖-th moth and the 𝑗-th flame. Figure 7 illustrates the application of the 
expression above 

Figure 7. An example of the use of the spiral function 

7. Offspring (genotype) 

The allocations previously obtained are used as the factorization. The new positions of each 
moth represent the factorization above previously detailed. As an example, the coordinate (2, 0, 
1) could represent an offspring (genotype). 

8. Offspring (phenotype) 

Meilă’s [57] algorithm is used to obtain a new offspring by the genotype vectors and by 
means of the algebra of permutations. As an example, if the genotype is (2, 0, 1), then with the 
Meilă procedure, the phenotype is (2, 4, 1, 3). 

9. Replacement 

A binary tournament is done between parents and offspring to create a new population. The 
offspring must be previously evaluated to do the replacement, i.e., the offspring's fitness must 
be computed. As an example, if the parent 1 is compared against the offspring 1, and the parent 
1 has less fitness value with respect to the offspring 1, then the parent 1 is selected to be part 
of the new population because we are looking for the smallest fitness values for the JSSP, 
VRPTW, and QCSP. We go back to step (section) 3, during 100 generations as a fixed 
parameter. A didactical illustration is shown in Figure 8 to depict the global process. 
 

RESULTS AND DISCUSSION 

Three sets of instances are occupied in this section to realize the key point about the hybrid 
proposed EDA. The instances used for the JSSP are datasets such as the [58] instances; the 
[59] instances; the [60] instances; the [61] instances; the [62] instances; and, the [63] instances. 
For the VRPTW, we use the dataset proposed by [64]. For the QCSP, the [65] instances served 
as input data. In addition, for the comparison, some JSSP methods are used, such as the [37] 
method, the [6] approach, the [12] scheme, and the [66] procedure. 
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Figure 8. The HEDAMMF general procedure 

The algorithms considered in the comparison for the VRPTW are the [33] method, the [35] 
approach, the [29] scheme, and the [30] procedure. The algorithms considered in the 
comparison for the QCSP are the [31] method, the [32] scheme, the [28] procedure, and the [34] 
approach. In addition, an EDA that works with the GMD process as a probability model is a 
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participant in the comparison. The EDA above is labeled as ‘Mallows’ in the corresponding 
charts and it is considered a hybrid EDA. Finally, the HEDAMMF is as the new metaheuristic. 

Three of the most important metrics are computed to evaluate the performance between the 
algorithms. The mean absolute error (MAE) is as follows. 
 
𝑀𝐴𝐸(𝑐𝑖)  =  |𝑐𝑖 −  𝑐+|              (3) 

𝑐𝑖 is the fitness obtained in the 𝑖-th replication, and 𝑐+ is the best fitness available for each 
instance used in this study. Then, the mean square error (MSE) is presented in Eq. 4 and the 
relative percentage increase (RPI) is shown in Eq. 5.  

𝑀𝑆𝐸(𝑐𝑖)  =  (𝑐𝑖 −  𝑐+)2             (4) 
 
𝑅𝑃𝐼(𝑐𝑖)  =  (𝑐𝑖 −  𝑐+ )/𝑐+             (5) 

Figure 9 depicts the performance of the JSSP by Eq. (3). According to the results, the 
algorithm labeled as ‘Mallows’ obtain better results than the recent algorithms, such as the 
HEDAMMF scheme. Then, Figure 10 presents the details the algorithm's output for the JSSP 
with the Eq. (4). The aforementioned figure depicts similar results to the previous Figure 9. The 
HEDAMMF outperforms the other algorithms for the JSSP. 

 

Figure 9. JSSP results by MAE 

 
Figure 10. JSSP results by MSE 
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Figure 11 shows the performance for the JSSP by Eq. (5). The algorithm labeled' Mallows' 
obtains better results than the recent ones. Furthermore, the algorithm ‘Mallows’ obtain similar 
results to the [66] algorithm and the HEDAMMF is the best proposal. 

 

Figure 11. JSSP results by RPI 

Figure 12 details the Dunnett test; there is a statistically significant difference between all 
the recent algorithms and the HEDAMMF scheme. The HEDAMMF scheme outperforms all the 
current algorithms for the JSSP. Based on the results, the Moth-flame scheme helps to get better 
performance for the HEDAMMF. Then, Figure 13 depicts the performance for the VRPTW by 
Eq. (3). According to the results, the HEDAMMF outperforms to the other algorithms. In addition, 
Figure 14 details the performance of the VRPTW by Eq. (4). The behavior is similar to Figure 
13. The HEDAMMF outperforms to the other algorithms. 

 

Figure 12. Dunnett test for the JSSP 



 IJIO Vol 3. No.1 February 2022 pp. 47-67 

60                                                                                                                                   10.12928/ijio.v3i1.5862 

 

 

Figure 13. VRPTW results by MAE 

Figure 14 shows the performance for the VRPTW by Eq. (5). The hybrid algorithm ‘Mallows’ 
outperforms almost all the recent algorithms. The algorithm ‘Mallows’ obtains practically similar 
results to the [30] algorithm; meanwhile, the scheme HEDAMMF is the best. 

 

 

Figure 14. VRPTW results by MSE. 

Figure 15 and Figure 16 present the RPI and Dunnett test; there is a statistically significant 
difference between all the recent algorithms and the HEDAMMF scheme. The HEDAMMF 
scheme outperforms all the recent algorithms for the VRPTW. The HEDAMMF is capable of 
finding the best results through the hybridization between the Mallows model, and the Moth-
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flame method. Figure 17 defines the performance for the QCSP by the Eq. (3). It shows the 
HEDAMMF outperforms to the other algorithms. In addition, Figure 18 details the performance 
of the QCSP by Eq. (4) and Figure 19 present the QCSP by Eq. (5). The HEDAMMF shows the 
best performance. Next, Figure 20 defines the performance of the QCSP by Eq. (5). The 
HEDAMMF approach is outstanding. 

 

Figure 15. VRPTW results by RPI 

 

Figure 16. Dunnett test for the VRPTW 
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Figure 17. QCSP results by MAE 

 

Figure 18. QCSP results by MSE 
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Figure 19. QCSP results by RPI 

 

 

Figure 20. Dunnett test for the QCSP 

The HEDAMMF is capable of tackling the EDAs drawbacks. No evolutionary operators are 
required to obtain new solutions. We only need to apply the Mallows model to find a suitable 
search process; meanwhile, the Moth-flame algorithm determines the allocation of the offspring. 

As previously commented in the Introduction section, these problems are considered the 
most difficult to solve in the combinatorial optimization field. For this reason, it is necessary to 
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develop new methods of dealing with them. To utilize the HEDAMMF is justified because certain 
problems are fixed differently under different circumstances. Finally, these problems do not 
share the same objective function (fitness) and/or the same constraints. Therefore, it is not 
possible to use a single model problem. 

CONCLUSION 

This paper considers solving more than one combinatorial problem such as the jobshop 
scheduling problem (JSSP), the vehicle routing problem with time windows (VRPTW) and, the 
quay crane scheduling problem (QCSP). These problems are considered some of the most 
difficult to solve in the combinatorial optimization field. 

According to the previous results, the hybrid EDAs have a better behavior than the recent 
algorithms. We wish to conclude that estimations of the high-order interactions could be omitted 
if it is about constructing a better metaheuristic. The proposed metaheuristic is more competitive 
against other algorithms. 

The predefined distribution models, such as the Mallows model, help improve the EDA 
scheme's performance. The hybridization concept between the Mallows model and the Moth-
flame algorithm for combinatorial problems helps tackle the EDA drawbacks. The ranking model 
helps enhance the EDA to find better solutions for the combinatorial problems. The moth-flame 
technique not only helps the ranking model, also it contributes to finding the best solutions 

Future research should consider other exponential models based on the results above. In 
addition, more combinatorial problems should be addressed using the proposed EDA, and other 
metaheuristics should be integrated to enhance the EDA results. Finally, real-world data should 
be considered to review the feasibility to implement the proposed EDA in final user platforms. 
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