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 One of todays’ best performing CG methods is Dai-Liao (DL) 
method which depends on non-negative parameter 𝑡 and 
conjugacy conditions for its computation. Although numerous 
optimal selections for the parameter were suggested, the best 
choice of 𝑡 remains a subject of consideration. The pure conjugacy 
condition adopts an exact line search for numerical experiments 
and convergence analysis. Though, a practical mathematical 
experiment implies using an inexact line search to find the step 
size. To avoid such drawbacks, Dai and Liao substituted the earlier 
conjugacy condition with an extended conjugacy condition. 
Therefore, this paper suggests a new hybrid CG that combines the 
strength of Liu and Storey and Conjugate Descent CG methods by 
retaining a choice of Dai-Liao parameter 𝑡 that is optimal. The 
theoretical analysis indicated that the search direction of the new 
CG scheme is descent and satisfies sufficient descent condition 
when the iterates jam under strong Wolfe line search. The 
algorithm shown to converge globally using standard assumptions, 
where the numerical   experimentation of the scheme 
demonstrated that the proposed method is robust and promising 
than some known methods applying the performance profile 
presented by Dolan and Mor´e on 250 unrestricted problems.  
Numerical assessment of the tested CG algorithms with sparse 
signal reconstruction and image restoration in compressive 
sensing problems, file restoration, image video coding and other 
applications show that these CG schemes are comparable and can 
be apply in different fields such as temperature, fire, seismic 
sensors and humidity detectors in forest and so on using the 
wireless sensor network techniques. 
  

 

 

Article history 
Received: 
May 9, 2021 
Revised: 
July 23, 2021 
Accepted: 
July 29, 2021 
Available online: 
August 31, 2021 
 

 

http://ijo.iaurasht.ac.ir/?_action=article&au=2601978&_au=Nasiru++Salihu
http://ijo.iaurasht.ac.ir/?_action=article&au=2602259&_au=Mathew+Remilekun+Odekunle
http://ijo.iaurasht.ac.ir/?_action=article&au=2601978&_au=Nasiru++Salihu
mailto:nasirussalihu@gmail.com


 

International Journal of Industrial Optimization 
Vol. 2, No.2, September 2021, pp. 69-84 

P-ISSN 2714-6006 
E-ISSN 2723-3022 

               

 

  

 
Salihu et al 70 

 

1. Introduction  

Conjugate Gradient (CG) method was initially suggested for solving linear system of equation. 
Subsequently, the solution of a linear system is comparable to minimizing a positive definite 
quadratic function, for this reason (Babaie-Kafaki & Ghanbari, 2014a), the method was later 
modified to solve unconstrained minimization problems (Rao, 2009). Therefore, the method 
constitutes an excellent choice for solving optimization problems by scientists, engineers and 
mathematicians (Babaie-Kafaki, 2011). The method is categorized by absent of matrix storage 
with powerful theoretical properties (Djordjevic, 2017). The problem as the form: 

 
𝑚𝑖𝑛 𝑓(𝑥),                                                               (1) 

𝑥 ∈ 𝑅𝑛 
  
where 𝑓: 𝑅𝑛 →  𝑅  is a function that is twice continuously differentiable, and the CG scheme that 
iteratively solves the problem is given 
 

𝑥0 ∈  𝑅𝑛                                                                     (2) 
𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 ,    

 
where  𝛼𝑘 > 0 is a step-size obtained by a suitable line search and 𝑑𝑘  here is a search direction 
(Gilbert & Nocedal, 1992). 
Generally, the distance to move along the search direction 𝑑𝑘  can be attained by solving one-
dimensional minimization called an exact line search such that the objective function is minimized 

to find  𝛼𝑘, that is,  
 

 𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) = 𝑚𝑖𝑛 𝛼 > 0  (𝑥𝑘 + 𝛼 𝑑𝑘)                                                            (3) 
 

However, for large scale problems usually, an exact line search is not possible so any value of  
 𝛼𝑘 that satisfies certain properties called Wolfe conditions is accepted (Nocedal & Wright, 2006): 
  

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≤ 𝑓(𝑥𝑘) +  𝛿𝛼𝑘𝑔𝑘
𝑇𝑑𝑘,      (4) 

 

       𝑔(𝑥𝑘 + 𝛼𝑘𝑑𝑘)𝑇𝑑𝑘 ≥ 𝜎 𝑔𝑘
𝑇𝑑𝑘.                                                            (5) 

  

where 0 < 𝛿 < 𝜎 < 1 ,  and  𝑑𝑘  that is a path towards minimum needs to be descent (Babaie-
Kafaki & Ghanbari, 2014c). Whereas other value of  𝛼𝑘  constitute up of (4) and    

 

                                                  |𝑔(𝑥𝑘 + 𝛼𝑘𝑑𝑘)𝑇𝑑𝑘|  ≤  −𝜎 𝑔𝑘
𝑇𝑑𝑘                                     (6) 

 
known strong Wolfe condition is also accepted (Nocedal & Wright, 2006). 
 
Therefore, the direction towards minimum can be obtained by the formula  
  

    𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘𝑑𝑘 ,              (7) 
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where 𝛽𝑘  is a scalar CG (update) parameter which is determined by some inner products (Ding, 

et al., 2010). Mainly, the CG schemes vary by the selection of  𝛽𝑘 coefficient. Some well-known 
CG schemes can be divided into two (Babaie-Kafaki, et al,2010). The schemes in the first 
category may perform poorly theoretically but numerically behave well due to an important feature 
known as restart that helps them circumvent jamming automatically (Babaie-Kafaki & Ghanbari, 
2014c). These CG parameters were initially suggested by Hestenes and Stiefel (1952), Polak, 
Ribie‘re and Polyak (1967), Liu and Storey (1991) with the following coefficients, respectively: 
 

𝛽𝑘
𝐻𝑆 =

𝑔𝑘+1
𝑇 𝑦𝑘

𝑑𝑘
𝑇𝑦𝑘

,            𝛽𝑘
𝑃𝑅𝑃 =

𝑔𝑘+1
𝑇 𝑦𝑘

‖𝑔𝑘‖2 ,        𝛽𝑘
𝐿𝑆 = −

𝑔𝑘+1
𝑇 𝑦𝑘

𝑑𝑘
𝑇𝑔𝑘

,                                        (8)   

                                           
where ‖. ‖ symbolizes Euclidean norm and define 𝑠𝑘 =  𝑥𝑘+1 − 𝑥𝑘   and 𝑔𝑘 =  𝑔𝑘+1 −  𝑔𝑘    (Andrei, 
2008a). 

The other category is prone to poor numerical performance as a result of jamming, but they 
have powerful theoretical properties (Andrei, 2008b). These schemes were earlier proposed by 
Fletcher and Revees (1964), Dai and Yuan (1991) and Fletcher (1987) with the following CG 
parameters respectively: 

 

𝛽𝑘
𝐹𝑅 =

‖𝑔𝑘+1‖2

‖𝑔𝑘‖2 ,        𝛽𝑘
𝐷𝑌 =

‖𝑔𝑘+1‖2

𝑑𝑘
𝑇𝑦𝑘

,         𝛽𝑘
𝐶𝐷 = −

‖𝑔𝑘+1‖2

𝑑𝑘
𝑇𝑔𝑘

.                                                      (9) 

 
The schemes in (9) vary with other 𝛽𝑘   selections in theory because their theoretical properties 

require Lipchitz assumption only but not including boundedness assumption (Hager, & Zhang, 
2006). The FR method’s poor practical performance is associated to taking tiny steps without 
meaningful progress to reach the minimum (Powell, 1984). Specifically, if a bad path is taken, 

then tiny steps from 𝑥𝑘−1 and 𝑥𝑘  will be generated, the next path along 𝑑𝑘  step 𝛼𝑘 are likely to 
be poor except a restart along the gradient direction is made (Babaie-Kafaki, 2013). Babaie-
Kafaki, et al. (2011) Pointed out that despite such deficiency, the FR method was proved to be 
theoretically powerful with exact line search on general functions; later this result was extended 
to an in-exact line search to improve the efficiency of the scheme (Hager & Zhang, 2006). In 
general, the performance of the methods in the first category is efficient but their convergence is 
uncertain (Hager & Zhang, 2006). The behavior of these schemes needs to be improved to avoid 
jamming (Djordjevic, 2017). Therefore, Researchers were interested in combining CG schemes 
of the two schemes (Babaie-Kafaki & Mahdavi-Amiri, 2013). Although, CD scheme is closely 

related to FR scheme with exact line search but, the restriction  𝑐 <
1

2
  in FR is not required for CD 

to attain sufficient descent using strong Wolfe line condition. Moreover, CD scheme is theoretically 
powerful for the generalized Wolfe conditions with 𝛿 < 1   and 𝜎 = 0 restrictions (Hager & Zhang, 
2006). Meanwhile, Djordjevic (2017) pointed out that no much research has been done on the 

choice of 𝛽𝑘
𝐿𝑆  except for the work of Liu & Storey (1991) initially, but the analysis of PRP 

techniques should be applied to the LS method (Hager & Zhang, 2006). Since LS and PRP 
schemes are identical when an exact line search is used (Dai, 2001). 

Babaie-Kafaki & Ghanbari (2014c) suggested two Hybrid Conjugate Gradient (HCG) methods 
where the CG coefficients were obtained from standard and modified secant equations 

respectively. The parameters are calculated as an affine combination of 𝛽𝑘
𝐻𝑆 and 𝛽𝑘

𝐷𝑌. While 

Djordjevic (2017) suggested a hybrid parameter using Liu & Storey (1991) with Conjugate 
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Descent CG parameters Convex Combination (LSCDCC) from conjugacy condition as an affine 

combination of 𝛽𝑘
𝐿𝑆 and 𝛽𝑘

𝐶𝐷. To achieve global convergence for general function, HCG adopted 

𝛽𝑘 ≥ 0  restriction, while the other 𝛽𝑘 coefficient is hypothetically superior for uniformly convex 

function. Subsequently, the selection of 𝛽𝑘
𝐿𝑆 CG parameter received little attention by researchers 

except for the work of (Djordjevic, 2017; Salihu, et al, 2020) recently motivated this work. Given 
the above, a large number of hybrid conjugate gradients techniques were proposed (Andrei, 

2008a) that modified different 𝛽𝑘 coefficients to maximize their strengths and minimize their 
weaknesses (Babaie-Kafaki, et al. 2010). Among them: (e.g. see (Yuan, 1991; Gilbert & Nocedal, 
1992; Andrei,2008c; Dai & Yuan, 2001; Sabiu, & Waziri, 2017; Sabiu, et al, 2017). The excellent 
contributions of Andrei and Babaie-Kafaki on hybridization using convex combination and that of 
Djordjevic motivated us to extend their approaches to access and combine the strength of LS and 
CD CG update parameters.  
 

2. Extended Conjugacy Condition of Dai and Liao CG Method (ECCDL) 

In the earlier CG methods; conjugacy condition 𝑑𝑘+1
𝑇 𝑦𝑘 = 0  that rests on the exact line search 

plays a significant part in the mathematical experiment and convergence analysis (Sun & Yuan, 
2006). Though, a practical mathematical experiment implies using an inexact line search to find 

the step-size 𝛼𝑘. Especially in a situation where 𝑑𝑘+1
𝑇 𝑦𝑘 is not equal to zero, then it may take other 

form, to avoid such defect Dai & Liao (2001) substituted the pure conjugacy condition with 
extended conjugacy condition. Due to simpler structure and low memory requirements of Dai-
Liao conjugate gradient methods; Yao, et al. (2019) proposed some three-term Dai-Liao CG 
algorithms that possess efficient conjugate gradient structures. Esmaeili, et al. (2018) suggested 
a new CG scheme to solve problems emerged from astronomical imaging, file restoration, image 
video coding and other applications. Similarly, Guo & Wan (2019) developed CG algorithm for 
sparse engineering signal problem. Numerical tests indicated that the algorithm is an alternative 
for recovering sparse signal problems and beats earlier methods.  Recently, Liu, et al. (2020) 

transformed nonlinear unconstrained optimization problems as 𝑀-tensor equation to solve real-
life issues originating from engineering and economics. Numerical results revealed that the 
proposed CG scheme is efficient than some known methods. One of todays’ best performing CG 
method is Dai & Liao (DL) method which depends on non-negative parameter t for its computation. 
Although numerous optimal selections for the parameter were suggested as in (Babaie-Kafaki, & 
Ghanbari 2014b; Babaie-Kafaki,2015; Babaie-Kafaki & Ghanbari, 2017; Waziri, et al, 2019; 
Salihu, et al, 2021), the best choice of t still remains subject of consideration (Babaie-Kafaki, & 
Ghanbari, 2015).  Motivated by the above, in this section, using similar approach in (Andrei, 
2008b; Andrei, 2009; Babaie-Kafaki, et al, 2010; Djordjevic, 2017), this research will combine the 
attractive features of CG update parameters proposed by Liu and Storey (1991) with CG 
parameter proposed by Fletcher (1987) conjugate descent using Extended Conjugacy Condition 
of Dai and Liao (2001) CG method called (ECCDL) as follows: 
 

 𝛽𝑘
𝐸𝐶𝐶𝐷𝐿 = (1 − 𝜃𝑘) 𝛽𝑘

𝐿𝑆 + 𝜃𝑘 𝛽𝑘
𝐶𝐷.    (10) 

 
From relations (8) and (9), we can write (10) as 
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 𝛽𝑘
𝐸𝐶𝐶𝐷𝐿 = (1 − 𝜃𝑘) (−

𝑔𝑘+1
𝑇 𝑦𝑘

𝑑𝑘
𝑇𝑔𝑘

) + 𝜃𝑘 (−
𝑔𝑘+1

𝑇 𝑔𝑘+1

𝑑𝑘
𝑇𝑔𝑘

),       (11) 

 

Therefore, using vector  𝑦𝑘
𝑇  on relations (7) and (10) we obtain 

 

                 𝑑𝑘+1 = −𝑔𝑘+1 + ((1 − 𝜃𝑘) (−
𝑔𝑘+1

𝑇 𝑦𝑘

𝑑𝑘
𝑇𝑔𝑘

) + 𝜃𝑘 (−
𝑔𝑘+1

𝑇 𝑔𝑘+1

𝑑𝑘
𝑇𝑔𝑘

)) 𝑑𝑘,                   (12) 

𝑑𝑘+1
𝑇 𝑦𝑘 = −𝑔𝑘+1

𝑇 𝑦𝑘 −
𝑔𝑘+1

𝑇 𝑦𝑘

𝑑𝑘
𝑇𝑔𝑘

𝑑𝑘
𝑇𝑦𝑘 + 𝜃𝑘 (

𝑔𝑘+1
𝑇 𝑦𝑘

𝑑𝑘
𝑇𝑔𝑘

−
𝑔𝑘+1

𝑇 𝑔𝑘+1

𝑑𝑘
𝑇𝑔𝑘

) 𝑑𝑘
𝑇𝑦𝑘.             (13) 

 

Applying 𝑑𝑘+1
𝑇 𝑦𝑘 = 0 on (13) will lead to the following hybridization parameter in (Djordjevic ,2017): 

 

𝜃𝑘 = −
(𝑔𝑘+1

𝑇 𝑦𝑘 ) (𝑑𝑘
𝑇 𝑔𝑘+1)

  (𝑔𝑘+1
𝑇  𝑔𝑘) (𝑑𝑘

𝑇 𝑦𝑘)
  .                                             (14) 

 
Similarly, if we apply Dai-Liao extended conjugacy condition:  

 

𝑑𝑘+1
𝑇 𝑦𝑘 = −𝑡𝑑𝑘

𝑇𝑔𝑘+1, 𝑤ℎ𝑒𝑟𝑒 𝑡 ≥ 0                         (15) 

 

on (13) and after some algebra another new hybridization parameter is propose as: 

 

𝜃𝑘 =
𝑡 (𝑑𝑘

𝑇 𝑔𝑘+1) (𝑑𝑘
𝑇 𝑔𝑘)−(𝑔𝑘+1

𝑇 𝑦𝑘 ) (𝑑𝑘
𝑇 𝑔𝑘+1)

  (𝑔𝑘+1
𝑇  𝑔𝑘) (𝑑𝑘

𝑇 𝑦𝑘)
.                           (16) 

 

The justification of the choice of the method in this work, an algorithm with update parameter 
that do not require the calculation of the Hessian matrix for solving large scale problems is 

preferred. For this reason, we assume that  𝜃𝑘 does not satisfies 𝑑𝑘+1
𝑇 𝑦𝑘 = 0. Therefore, the 

beautiful structures of CG update parameters proposed by Liu and Storey (1991) with CG 
parameter suggested by Fletcher conjugate descent using Extended Conjugacy Condition of Dai 

and Liao (ECCDL) CG method is proposed in such a way that, if the modulating parameter 𝑡 = 0, 
then (16) reduces to the method in (Djordjevic, 2017). So, as for the optimal choice of the method 

we assume 𝑡 ≠ 0 in the term. 
Next the algorithm of the proposed method is presented as follows:   
Algorithm 1 (ECCDL). 
Step 1. Guess  𝑥0 ∈ 𝑅𝑛 and parameter  0 < 𝛿 < 𝜎 < 1. Compute  𝑓(𝑥0) and 𝑔0.  
 

Step 2. If ‖𝑔𝑘‖∞ ≤ 10−5, then stop. 
 
Step 3. Compute 𝛼𝑘 > 0 satisfying (4) and (6). 
 

Step 4. If (𝑔𝑘+1
𝑇  𝑔𝑘) (𝑑𝑘

𝑇 𝑦𝑘) = 0, then set 𝜃𝑘 = 0; otherwise, compute   𝜃𝑘  by (16). 

 

Step 5. If 0 < 𝜃𝑘 < 1, then compute  𝛽𝑘
𝐸𝐶𝐶𝐷𝐿  by (10).  
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Step 6. Compute 𝑑𝑘  from (7) using (10). Set  𝑑𝑘+1 = −𝑔𝑘+1 if restart principle of Powell (1984) is 
fulfilled, then  

 

                                        |𝑔𝑘+1
𝑇 𝑔𝑘| ≥  0.2 ‖𝑔𝑘+1‖2,                                              (17) 

 
otherwise, define 𝑑𝑘+1 = 𝑑. Compute 𝛼𝑘, go to Step 2 and set   𝑘 = 𝑘 + 1. 

Remark: The update parameter 𝜃𝑘 computed by (16) may be outside interval [0, 1]. However, to 

have a proper convex combination in (10)-(11). The following rules are applied: if 𝜃𝑘 ≤ 0 , set 𝜃𝑘 =
0, i.e,  𝛽𝑘

𝐸𝐶𝐶𝐷𝐿 =  𝛽𝑘
𝐿𝑆; if 𝜃𝑘 ≥ 1  set 𝜃𝑘 = 1, i.e,  𝛽𝑘

𝐸𝐶𝐶𝐷𝐿 =  𝛽𝑘
𝐶𝐷. Therefore, under this selection for 

𝜃𝑘, the direction 𝑑𝑘+1 in (12)-(13) is a proper convex combination of  𝛽𝑘
𝐶𝐷 and  𝛽𝑘

𝐿𝑆. 

3. Theoretical Analysis 

To demonstrate the sufficient descent condition of the ECCDL method, we apply the following 
theorem. 
Theorem 3.1 Suppose ECCDL algorithm generates sequences {𝑔𝑘},{𝑥𝑘} and {𝛼𝑘},{𝑑𝑘}. Then the 

search direction 𝑑𝑘 satisfies: 
 

𝑑𝑘
𝑇𝑔𝑘 ≤ −𝑐‖𝑔𝑘‖2, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 ≥ 0,      (18) 

 
where 𝑐 = (1 − 2.2𝜎). 
Proof: From ECCDL algorithm, if the criterion in (17) holds, then it is easy to see that 
𝑑𝑘 = −𝑔𝑘 and (18) also holds. Assume that the condition in (17) does not hold. Then  
 

|𝑔𝑘+1
𝑇 𝑔𝑘| < 0.2 ‖𝑔𝑘+1‖2.                                               (19) 

 

The proof is using induction. For 𝑘 = 0; 𝑑0
𝑇𝑔0 = −‖𝑔0‖2. Since 𝑐 < 1, it is to see that (18) is 

satisfied. Subsequently, for 𝑘 ≥ 1 it not difficult from (6) to show that (18) holds and we have 
 

𝑑𝑘
𝑇𝑦𝑘 = 𝑑𝑘

𝑇𝑔𝑘+1 − 𝑑𝑘
𝑇𝑔𝑘 ≥ −(1 − 𝜎)𝑑𝑘

𝑇𝑔𝑘 ≥ 0.                           (20) 

 

Applying vector 𝑔𝑘+1
𝑇  on (7), we get 

 

𝑑𝑘+1
𝑇 𝑔𝑘+1 = ‖𝑔𝑘+1‖2 + 𝛽𝑘𝑑𝑘

𝑇𝑔𝑘+1.                                               (21) 

 

Firstly, when 𝜃𝑘 ≥ 1, from Step 5 we have 𝛽𝑘 =  𝛽𝑘
𝐶𝐷, it follows easily from (6), (9) and (21) that 

 

𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ −‖𝑔𝑘+1‖2 +

‖𝑔𝑘+1‖2

|𝑑𝑘
𝑇𝑔𝑘|

. |𝑑𝑘
𝑇𝑔𝑘+1| 

≤ −(1 + 𝜎)‖𝑔𝑘+1‖2.                                                         (22)  
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Secondly, we obtain 𝛽𝑘 =  𝛽𝑘
𝐿𝑆 when 𝜃𝑘 ≤ 0 according to Step 5 so that from (6), (8) and (21), it 

holds that 
 

𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ −‖𝑔𝑘+1‖2 +

|𝑔𝑘+1
𝑇 𝑦𝑘|

|𝑑𝑘
𝑇𝑔𝑘|

 |𝑑𝑘
𝑇𝑔𝑘+1|                     

≤ −(1 − 1.2𝜎)‖𝑔𝑘+1‖2.                                              (23) 
 

 Finally, if 𝜃𝑘  ∈  (0,1), then 𝜃𝑘 is computed by (10) , from (6) and (19) we have  
 

𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ −‖𝑔𝑘+1‖2 +  | 𝛽𝑘

𝐿𝑆| ∙ |𝑑𝑘
𝑇𝑔𝑘+1| + | 𝛽𝑘

𝐶𝐷| ∙ |𝑑𝑘
𝑇𝑔𝑘+1| 

≤ −‖𝑔𝑘+1‖2 + 𝜎| 𝛽𝑘
𝐿𝑆| ∙ |𝑑𝑘

𝑇𝑔𝑘| + 𝜎| 𝛽𝑘
𝐶𝐷| ∙ |𝑑𝑘

𝑇𝑔𝑘|  = −‖𝑔𝑘+1‖2 + 𝜎|𝑔𝑘+1
𝑇 𝑦𝑘| + 𝜎‖𝑔𝑘+1‖2 

≤ −‖𝑔𝑘+1‖2+2𝜎‖𝑔𝑘+1‖2 + 0. 2𝜎‖𝑔𝑘+1‖2  ≤ −(1 − 2.2𝜎)‖𝑔𝑘+1‖2. 
 

Then we have 

𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ −𝑐‖𝑔𝑘+1‖2.                                                  (24) 

 

This inequality implies (18) is satisfied for 𝑘 + 1.                                     ∎ 

3.1. Convergence Analysis 

The following assumptions are required to establish the global convergence of ECCDL method: 
 
Boundedness Assumptions: Assumption 3.1. The set 𝑆 = {𝑥 ∈ 𝑅 ∶ 𝑓(𝑥) ≤ 𝑓(𝑥0)} is bounded 

from below where 𝑥0 is the starting point of CG method in (2) and (7). That is, there exist a positive 

constant  𝐵 such that 
 

‖𝑥‖ ≤ 𝐵, ∀ 𝑥 ∈ 𝑆.                                                       (25) 
 

 

Lipschitz Assumptions: Assumption 3.2. In a neighborhood 𝑁 𝑜𝑓 𝑆, the objective function f is 
continuously differentiable and its gradient 𝑔(𝑥) is Lipchitz continuous on 𝑁, that is, there exist a 

constant 𝐿 > 0 such that 
 

                                                 ‖𝑔(𝑥) − 𝑔(𝑦)‖  ≤ 𝐿‖𝑥 − 𝑦‖,                                                (26) 
 

for all 𝑥, 𝑦 ∈ 𝑁. 
 
Under Assumptions 3.1 and 3.2 on 𝑓, there exist a constant 𝛤 > 0  such that 
 

‖𝑔(𝑥)‖  ≤ 𝛤, for all  𝑥 ∈ 𝑆.    (27) 
 
Lemma 3.1 (Djordjevic,2017). Let 𝑓 ∈ (𝑅𝑛) and 𝑑𝑘 be a descent direction in the point 𝑥𝑘. Suppose 

that the function 𝑓 is bounded from below along direction {𝑥𝑘 + 𝛼𝑑𝑘  | 𝛼 > 0} and if 0 < 𝛿 < 𝜎 < 1, 
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then there exist an interval inside which the step size satisfies Wolfe conditions and strong Wolfe 
condition  
Lemma 3.2 Suppose Assumption 3.1 holds, consider ECCDL Algorithm, where 𝑑𝑘  is a descent 

direction, and step length 𝛼𝑘 is obtained using the Wolfe conditions. Then. 
 

∑

𝑘≥1

(𝑑𝑘
𝑇𝑔𝑘)2

‖𝑑𝑘‖2
< +∞.  

 
Remark: Since 𝛼𝑘 satisfies (4) and (6), it must also hold for (4) and (5). Consequently, Lemma 
3.2 also holds for (4) and (6) equally. 
 
Lemma 3.3 Let Assumption 3.1 holds and 𝑑𝑘 is a descent direction and the step-size 𝛼𝑘 satisfies 
 

𝑔𝑘+1
𝑇 𝑑𝑘 ≥ 𝜎𝑑𝑘

𝑇𝑔𝑘 , 𝜎 < 1,                                                      (29) 

then 

𝛼𝑘 ≥
(1−𝜎)

𝐿
 ∙

|𝑑𝑘
𝑇𝑔𝑘|

‖𝑑𝑘‖2 .                                                          (30) 

 

Proof: Using (26) and (29), it holds that 

−(1 − 𝜎)𝑑𝑘
𝑇𝑔𝑘 ≥ 𝑑𝑘

𝑇(𝑔𝑘+1 − 𝑔𝑘) ≤ 𝐿𝛼𝑘‖𝑑𝑘‖2. 
Subsequently, when 𝜎 > 1 and the search direction is 𝑑𝑘

𝑇𝑔𝑘 < 0, it is not difficult to claim that (30) 

holds. Clearly, from relations (6) and (18), the step-size 𝛼𝑘 in the ECCDL algorithm fulfils (30). 

Consequently, according to (18) and since  𝛼𝑘 = 0  does not fulfil (6), we can easily conclude that 

𝑑𝑘
𝑇𝑔𝑘 ≠ 0 ∀ 𝑘 ≥ 0,  which means 𝛼𝑘 ≠ 0  and as such there exist  𝜇 > 0 so that  

 

𝛼𝑘 ≥ 𝜇 , ∀ 𝑘 ≥ 0.                                                                  (31) 
 
Generally, any CG method with strong Wolfe line search converges. However, only weak form of 
the (Zoutendijk, 1970) condition is required for general function (Dai & Liao, 2001). The theorem 
below establishes the useful theoretical property of ECCDL through the strong Wolfe line search. 
 
Theorem 3.2 Let Assumptions 3.1 and 3.2 hold. Let the ECCDL algorithm generates sequences 

{𝑑𝑘} and {𝑔𝑘}. Then, Zoutendijk condition below holds 
 

𝑖𝑛𝑓 ‖𝑔𝑘‖ = 0.                                                        (32) 
 
The proof is using contradiction, that theorem (3.2) is not true. 
 
Proof: Let 𝑔𝑘 ≠ 0 and assume that (32) does not hold. Then, we have a constant 𝜖 > 0, such that 
 

‖𝑔𝑘‖ ≥ 𝜖.      (33) 

Let ‖𝑠𝑘‖  ≤ 𝐷. Then, from (10), (18) and (33) we have  
 

  (28) 
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| 𝛽𝑘
𝐸𝐶𝐶𝐷𝐿| ≤ | 𝛽𝑘

𝐿𝑆| + | 𝛽𝑘
𝐶𝐷| =

|𝑔𝑘+1
𝑇 𝑦𝑘|

|𝑑𝑘
𝑇𝑔𝑘|

+
‖𝑔𝑘+1‖2

|𝑑𝑘
𝑇𝑔𝑘|

 

≤
‖𝑔𝑘+1‖∙‖𝑦𝑘‖+‖𝑔𝑘+1‖2

𝑐‖𝑔𝑘‖2 ≤  
𝛤𝐿𝐷+𝛤2

𝑐𝜖2 = 𝑃.                                              (34) 

 
It follows from the first inequality that 𝜃𝑘  ∈  (0,1) and subsequently the second inequality holds 
from the Cauchy Schwartz inequality. But when 𝜃𝑘  ∉  (0,1), it is easy to get the above inequality 

according to  𝛽𝑘  selection in Step 5 of algorithm 1. Thus, from (7) and (34) we get 
 

‖𝑑𝑘+1‖ ≤ ‖𝑔𝑘+1‖ +  |𝛽𝑘| ∙ ‖𝑑𝑘‖ = ‖𝑔𝑘‖ +
|𝛽𝑘|∙‖𝑠𝑘‖

𝛼𝑘
≤ 𝛤 +

𝑃𝐷

𝜇
= 𝑀,                        (35) 

 
and this indicates that  
 

∑

𝑘≥0

1

‖𝑑𝑘‖2
+ ∞.     

   
Contrarily, from (18), (28) and (33), we can achieve  
 

𝑐2𝜖4 ∑

𝑘≥0

1

‖𝑑𝑘‖2
≤ ∑

𝑘≥0

𝑐2‖𝑔𝑘‖4

‖𝑑𝑘‖2
 ≤ ∑

𝑘≥0

(𝑑𝑘
𝑇𝑔𝑘)2

‖𝑑𝑘‖2
< +∞.     

 
Also, applying Lemma (3.1), we conclude that  
 

𝑖𝑛𝑓 ‖𝑔𝑘‖ = 0. 
 

Obviously, this is a contradiction of (36) and hence (33) is not satisfied which implies that (32) is 
proved.                                ∎ 
 

4. Results and Discussion 

In engineering, medical sciences, biological and other areas of science; digital image 
processing plays an important role. Therefore; Ibrahim, et al. (2020) utilized Hybrid Liu and Storey 
and Fletcher and Revees (HLSFR) algorithm of Djordjevic (2019) in restoring one dimensional 
signal sparse problem using mean squared error (MSE) with the LS and FR CG algorithm to 
suggest a hybrid algorithm for unconstrained minimization problems and extend the result to 
convex monotone equations. Numerical assessments with some image restoration in 
compressive sensing CG algorithms show that the proposed scheme is efficient and promising 
than other schemes with smaller number of iterations, computing time and MSE on different noise 
sample problems. The HLSFR algorithm is the foundation of Ibrahim et al. (2020) work and is 
similar to Hybrid Hestenes and Stiefel and Fletcher and Revees (HHSFR) algorithm of Djordjevic 
(2018), LSCDCC of Djordjevic (2017) and ECCDL algorithms which can be applied to 
compressive sensing problems that has wide variety of applications as shown in Ibrahim et al. 

  (36) 

  (37) 

  (38) 
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(2020) for example; the wireless sensor networks that are usually placed in field can be used in 
temperature, fire, seismic sensors and humidity detectors in forest, etc.  

Therefore, in this section, we present the performance of ECCDL and compare with that of 
LSCDCC of Djordjevic (2017) and HCG method of Babaie-Kafaki & Ghanbari (2014c). To 
implement the hybridize CG parameters, the codes were run on a computer with a processor and 
memory of 2.20 𝐺𝐻𝑧 𝐶𝑃𝑈 and 3.0 𝐺𝐵 𝑅𝐴𝑀, respectively, using Matlab 8.3 (𝑅2014𝑎) on 250 
unconstrained optimization problems. The test problems are the unconstrained problems 
obtained from (Andrei, 2008c; and Gould, et al, 2003). Since CG schemes are used to solve 

largescale unconstrained optimization, we choice 25 problems that are tested 10 times for: 100; 
200; 500; 1,000; 2,000; 5,000; 10,000; 20,000; 50,000 and 100,000 with summary of the 
numerical results and list of test functions shown in table 1-2 respectively. All the algorithms were 

implemented using (4) and (6) with 𝛿 =  0.0001 and 𝜎 =  0.001, and the step length is computed 
with initial trail value 𝛼𝑘 = 1 and the modulating parameter 𝑡 = 0.5 .The same stopping criterion 

 ‖𝑔𝑘‖∞ ≤ 10−5  is used. All the test functions were minimizing from standard starting points.  
Test function results are obtained by running a solver on set of problems and recording the 

number of iterations and the computing time. Interpretation of figures 1-2 show the performance 
of these methods using (Dolan & Mor´e, 2002) profile. The  𝑃(𝜏) is the portion of problems with 
performance ration 𝜏, thus, a solver with high values 𝑃(𝜏) or at the top right of the figures are 

preferable. That is, for each method, we plot the percentage 𝑃(𝜏) of the problems for the best 

time for each algorithm within a factor of 𝑃(𝜏)  versus time 𝜏. The left side gives the percentage 
of the test problems of the method that is fastest. The right side gives the percentage of the test 
functions successfully solved by each method. The interpretation of figure 1 shows the probability 
of ECCDL method is the winner on a given problem is  61%. While LSCDCC and HCG methods 

win 39% and 15% percentages respectively, when the factor 𝜏 is chosen within the interval 0 <
 𝜏 < 0.5. Clearly, ECCDL method has the most wins, because it has the highest probability of 

being closer to the optimal solution. However, if we extend our 𝜏 of interest to 𝜏 ≥ 0.5, ECCDL 
and HCG algorithms solved the test functions in a given time and reach 88% and 87% 

respectively, while LSCDCC method is 85% to. It is easy to see that the performance of ECCDL 
and HCG algorithms are computationally efficient than LSCDCC scheme.  

Since the computing time is also affected by the computer atmosphere like operating system 
and busy status, we additionally compare the number of iterations of the algorithms. Figure 2 
shows that the fraction of ECCDL method is the winner on a given problem is  82%. While 

LSCDCC and HCG methods win 80% and73% percentages respectively, when the factor  𝜏  is 
chosen within the interval 0 < 𝜏 < 0.5  Clearly, ECCDL method wins, since it has the highest 

possibility of being closer to the best solution. However, if we extend our 𝜏 of interest to 𝜏 ≥ 0.5, 
ECCDL and HCG algorithms solved the test functions in a given number of iterations and reach 

88% and 87% respectively, while LSCDCC method is 85%, it is easy to see that the performance 
of ECCDL and HCG algorithms are computationally efficient than LSCDCC scheme. 

 
 
 
 
 

Table 1: Summary of Numerical Results of ECCDL, LSCDCC and HCG Methods 
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  ECCDL  LSCDCC         HCG    

Successful 
105 20 33 CPU Time 

199 177 178 No. of Iteration       

Not 
Successful 

116 200 180 CPU Time 

21 36 35 No. of Iteration 

Failure 
29 30 37 CPU Time 

30 37 36 No. of Iteration 

Total 
250 250 250 CPU Time 

250 250 250 No. of Iteration 

 
Table 2. List of Test Functions 

NO Faction 

1 Extended White & Holst 

2 Extended Rosenbrock 

3 Extended Freudenstein & Roth 

4 Extended Tridiagonal 1 

5 Extended Himmelblau 

6 Extended Powel 1 

7 Fletcher Function (Cute) 

8 Extended Powel 

9 Nonscomp Function (Cute) 

10 Extended Denschnb Function (Cute) 

11 Extended Quadratic Penalty Qp1 

12 Hager 

13 Extended Maratos 

14 Shallo 

15 Quardratic Qf2 

16 Generalized Tridiagonal 1 

17 Generalized Tridiagonal 2 

18 Power 

19 Quadratic Qf1 

20 Extended Quadratic Penalty 

21 Extended Penalty 

22 Extended Beale  

23 Raydan  

24 Diagonal 1 

25 Quadratic Qf2 
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Figure 1: CPU time performance profile for ECCDL, HCG and LSCDCC schemes. 

 
Figure 2: Number of iterations performance profile for ECCDL, HCG and LSCDCC schemes. 

 

5. Conclusion 

One of todays’ best performing CG method is DL method which depends on non-negative 
parameter 𝑡 for its computation. Although numerous optimal selections for the parameter were 
suggested, the best choice of 𝑡 remains a subject of consideration. In this paper, we have 

presented a new hybrid Dai-Liao conjugate algorithm in which the parameter  𝛽𝑘 is computed from 

 𝛽𝑘
𝐿𝑆 and  𝛽𝑘

𝐶𝐷in such a way that if the modulating parameter 𝑡 = 0  then it reduces to the method 
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that uses the pure conjugacy condition. Theoretical and numerical computations adopt inexact 
line search when compared with some known CG coefficients using strong Wolfe condition show 
the algorithm is robust, efficient and converge globally compared to LSCDCC and HCG methods 
on 250 unconstrained optimization problems. Numerical assessments of these CG algorithms 
show that the schemes are comparable with smaller iterations and computing time and can be 
applied to compressive sensing problems with a wide variety of applications, as shown in Ibrahim 
et al.(2020) method.  
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