
Buletin Ilmiah Sarjana Teknik Elektro

Vol. 5, No. 4, December 2023, pp. 475-497

ISSN: 2685-9572, DOI: 10.12928/biste.v5i4.9407 475

Journal Website: http://journal2.uad.ac.id/index.php/biste/ Email: biste@ee.uad.ac.id

Advancing UAV Path Planning System: A Software Pattern

Language for Dynamic Environments

Gregorius Airlangga
 Information Systems Study Program, Universitas Katolik Indonesia Atma Jaya, Jakarta, Indonesia

ARTICLE INFORMATION ABSTRACT

Article History:

Submitted 28 October 2023

Revised 28 November 2023

Accepted 02 December 2023

In the rapidly advancing domain of Unmanned Aerial Vehicle (UAV)

technologies, the capability to navigate dynamic and unpredictable

environments is paramount. To this end, we present a novel design pattern

framework for real-time UAV path planning, derived from the established

Pattern Language of Program Community (PLOP). This framework integrates

a suite of software patterns, each selected for its role in enhancing UAV

operational adaptability, environmental awareness, and resource management.

Our proposed framework capitalizes on a blend of behavioral, structural, and

creational patterns, which work in concert to refine the UAV's decision-

making processes in response to changing environmental conditions. For

instance, the Observer pattern is employed to maintain real-time

environmental awareness, while the Strategy pattern allows for dynamic

adaptability in the UAV's path planning algorithm. Theoretical analysis and

conceptual evaluations form the backbone of this research, eschewing

empirical experiments for a detailed exploration of the design's potential. By

offering a systematic and standardized approach, this research contributes to

the UAV field by providing a robust theoretical foundation for future empirical

studies and practical implementations, aiming to elevate the efficiency and

safety of UAV operations in dynamic environments.

Keywords:

Kata Kunci 1;

Kata Kunci 2;

Kata Kunci 3;

Kata Kunci 4;

Kata Kunci 5

Corresponding Author:

Gregorius Airlangga,

Universitas Katolik Indonesia

Atma Jaya, Jakarta, Indonesia.

Email:

gregorius.airlangga@atmajaya.

ac.id

This work is licensed under a Creative

Commons Attribution-Share Alike 4.0

Document Citation:

G. Airlangga, “Advancing UAV Path Planning System: A Software Pattern Language for Dynamic

Environments,” Buletin Ilmiah Sarjana Teknik Elektro, vol. 5, no. 4, pp. 475-497, 2023, DOI:

10.12928/biste.v5i4.9407.

https://doi.org/10.12928/biste.v5i4.9407
http://journal2.uad.ac.id/index.php/biste/
http://journal2.uad.ac.id/index.php/biste/
mailto:biste@ee.uad.ac.id
mailto:gregorius.airlangga@atmajaya.ac.id
mailto:gregorius.airlangga@atmajaya.ac.id
https://creativecommons.org/licenses/by-sa/4.0/deed.id
https://creativecommons.org/licenses/by-sa/4.0/deed.id
https://creativecommons.org/licenses/by-sa/4.0/deed.id
http://journal2.uad.ac.id/index.php/biste/article/view/xxx
http://journal2.uad.ac.id/index.php/biste/article/view/xxx
http://journal2.uad.ac.id/index.php/biste/article/view/9407

476 Buletin Ilmiah Sarjana Teknik Elektro ISSN: 2685-9572

Buletin Ilmiah Sarjana Teknik Elektro, Vol. 5, No. 4, December 2023, pp. 475-497

1. INTRODUCTION

The trajectory of Unmanned Aerial Vehicles (UAVs) has been marked by rapid technological progress,

shifting their use from controlled, predictable environments to more complex and variable scenarios. This

evolution necessitates a reassessment of path planning methodologies [1]-[3]. The foundational work by [4]-

[6] laid the groundwork by detailing static path planning techniques, suitable for environments with minimal

change. However, as UAV applications expanded into more dynamic settings, the limitations of these methods

became increasingly apparent [7]-[8]. The transition to dynamic environments brought new challenges to the

forefront of UAV path planning. The work from [9]-[12] spearheaded research into adaptive algorithms

designed for real-time responsiveness. Their work illuminated the intricate challenges involved in balancing

computational efficiency with the flexibility needed for unpredictable settings such as disaster relief or urban

surveillance. This highlighted a significant gap in existing path planning methodologies - the need for a system

capable of adapting on-the-fly to unforeseen changes in the environment.

Concurrently, the domain of software engineering has been witnessing a renaissance in the application of

design patterns [13]-[15]. Pioneering studies by [16]-[18] demonstrated the transformative impact of these

patterns in streamlining software development, optimizing processes, and enhancing system reliability. The

author from [19]-[21] built upon this, showcasing how these patterns could be leveraged to tackle complex,

modular challenges in scalable system architectures. However, the application of these sophisticated software

engineering principles in the realm of UAV path planning remains scant, signaling an untapped potential [22]-

[24]. This juxtaposition of advanced UAV technology and refined software engineering practices presents an

unexplored frontier. The research gap is evident: there is a profound opportunity to harness software

engineering patterns to meet the complex demands of dynamic UAV path planning. This confluence represents

an untapped potential for enhancing UAV adaptability, responsiveness, and operational efficacy in real-time

navigation. Addressing this lacuna, this study introduces a groundbreaking approach that amalgamates the

structured methodologies of software engineering patterns with the nuanced requirements of dynamic UAV

path planning. The research endeavors to create an online path planning system pattern that is inherently

adaptable, efficiently responsive, and capable of navigating the multifaceted aspects of dynamic environments.

This pattern is envisaged to revolutionize UAV path planning, elevating real-time decision-making processes,

and significantly enhancing operational efficiency.

The ramifications of this research are extensive, with the potential to impact diverse sectors such as

emergency response, environmental conservation, and urban infrastructure management. It serves as a crucial

resource for UAV manufacturers, autonomous system software developers, and robotics researchers, offering

a new lens through which to view the integration of software engineering principles with UAV navigational

technology. The paper is structured as follows, section 2 delves deeper into the existing literature on UAV path

planning and software engineering patterns, elaborating on the historical context, recent advancements, and

identified gaps. In section 3 we detail the software pattern language template to develop the online path

planning system pattern, emphasizing the integration of software engineering concepts. In Section 4, we

provide an in-depth description of the proposed design pattern, delineating the functionalities of its various

components. Finally, we conclude the paper by summarizing the key findings and contributions of the research

and outlines potential future research directions in this area.

2. LITERATURE SURVEY

The evolution of Unmanned Aerial Vehicles (UAVs) has transitioned from basic navigation solutions to

sophisticated path planning systems. This evolution has been largely driven by the expanding use cases of

UAVs, from controlled, predictable settings to dynamic, unpredictable ones. The foundational research,

exemplified by the studies of [25]-[27], focused on static path planning methodologies, effective in

environments where variables remain constant. However, as UAV applications permeated more complex

realms like disaster response, environmental monitoring, and urban surveillance, the static nature of these early

path planning methodologies revealed significant constraints. They lacked the flexibility and responsiveness

required to adapt to rapidly changing scenarios. Pioneering work by [28]-[30] marked a pivotal shift towards

dynamic path planning.

This research highlighted the need for UAV systems capable of real-time adaptability, able to recalibrate

paths instantaneously in response to unforeseen environmental changes and obstacles. In the realm of software

engineering, the concept and application of design patterns have evolved significantly, offering structured

solutions to recurring problems in software development. The work of [31]-[33] is pivotal in this respect,

illustrating how design patterns can enhance the efficiency, robustness, and maintainability of software

architectures. Following this, [34]-[36] expanded on the application of these patterns in complex system

architectures, particularly emphasizing their role in scalability and modularity. However, the direct application

of these structured software engineering strategies to UAV path planning, especially from the perspective of a

software engineer, remains a largely unexplored area [37][38].

477 Buletin Ilmiah Sarjana Teknik Elektro ISSN: 2685-9572

Advancing UAV Path Planning System: A Software Pattern Language for Dynamic Environments

(Gregorius Airlangga)

There exists a notable research gap in the synthesis of software design patterns with the adaptive and

dynamic requirements of UAV path planning. The absence of integration of software design patterns in the

development of UAV path planning systems. From a software engineering standpoint, the application of design

patterns to UAV path planning is not only a novel concept but also a necessary evolution. The current landscape

of UAV technology necessitates a paradigm shift where the adaptability and dynamism of UAV systems are

complemented by the structured and systematic approach inherent in software design patterns. This integration

is essential for enhancing the architectural quality of UAV systems, ensuring they are not only adaptable to

environmental changes but also scalable, maintainable, and robust, adhering to the highest standards of

software engineering. From a software engineer’s perspective, addressing this gap involves reimagining UAV

path planning through the lens of software design patterns. It calls for a harmonization of the principles of

software architecture with the functional demands of UAV technology. This approach promises to

revolutionize UAV path planning, making these systems more versatile, efficient, and aligned with established

software engineering methodologies. The application of design patterns to UAV path planning is poised to

address several key challenges, including system scalability in response to varying operational demands,

maintainability in the face of evolving technological landscapes, and robustness against a range of

environmental variables.

3. SOFTWARE PATTERN LANGUAGE TEMPLATE

Pattern language can be traced back to the field of architecture in the 1970s, when Christopher Alexander

introduced an innovative system for organizing and interconnecting design patterns to create solutions to

complex architectural problems [39]. This revolutionary idea obtained traction in the field of software

engineering, where it manifested similar benefits, such as promoting reusable solutions, improving

cohesiveness, fostering modularity, and ensuring extensibility [40]. Several distinguishing characteristics

characterize pattern language. The ability to interconnect individual design patterns while emphasizing their

relationships and providing guidelines for their use and integration is the most important [41]. This

interconnectedness enables developers to implement patterns in a consistent and structured manner. Moreover,

pattern language is typically tailored to a particular problem domain or system, providing a structured approach

to resolving a wide variety of design problems within the given domain [42]. In addition, pattern language

promotes iterative development, enabling developers to refine and improve their designs concurrently with a

deeper comprehension of the problem domain and its requirements [43].

Within the scope of software engineering, pattern language offers numerous benefits. They provide

reusable solutions to recurring problems in software design, like design patterns, but with a more

comprehensive and structured approach that addresses a broader spectrum of problems within a particular

domain [44]. Moreover, pattern language advocate for modularity, thereby promoting the separation of

concerns and the division of a system into smaller, more manageable components, which improves

maintainability and facilitates system comprehension, modification, and extension [45]. Extensibility is another

notable advantage of pattern language. Software systems that adhere to established pattern language can be

extended or adapted more easily to accommodate changing requirements and novel functionality, thereby

ensuring the system’s long-term viability and evolution [46]. Lastly, pattern language also can improve

communication by establishing a common vocabulary and promoting a shared understanding among

developers, thereby facilitating more effective communication, collaboration, and dissemination of knowledge

[39]. The Pattern Template, as proposed by [47], presents a structured methodology for articulating and

interpreting a design pattern. Below is a detailed description of each pattern subsection.

3.1. Intent

Intent of a pattern is an important aspect of its definition and usage. In Prof. Fernandez’s pattern template

[48], the intent describes the primary purpose or goal that the pattern aims to achieve. It is a summary statement

that provides a high-level understanding of what the pattern does and why it is important. The intent typically

answers questions such as: What does this pattern do? Why and when is this pattern useful? What kind of

problem does this pattern solve? By addressing these queries, the intent encapsulates the fundamental essence

of the pattern, making it easy to understand immediately.

Importantly, the intent also provides the rationale for the pattern’s existence. In a pattern language or a

collection of patterns, each pattern should have a unique intent that differentiates it from others. It must identify

a distinct problem and provide a specific solution to it. This means that the intent should be specific enough to

highlight its unique value, but broad enough to be applicable in various scenarios. Moreover, the intent serves

as a guiding principle for the pattern’s usage. It helps users decide whether the pattern is appropriate for their

specific problem or situation. This is especially crucial in complex domains where there are multiple patterns

to choose from. By clearly stating what the pattern does and when it should be used, the intent assists designers

478 Buletin Ilmiah Sarjana Teknik Elektro ISSN: 2685-9572

Buletin Ilmiah Sarjana Teknik Elektro, Vol. 5, No. 4, December 2023, pp. 475-497

or developers in selecting the most suitable pattern for their needs. The intent of a pattern is a critical element

that defines its purpose, guides its usage, and sets it apart from other patterns. It is an essential component of a

well-defined and useful pattern.

3.2. Example

Example subsection serves as a concrete illustration of the pattern in action, typically showing its

application in a real-world context. The inclusion of an example is essential in demystifying the abstract

concept of the pattern, as it helps users visualize how the pattern functions and how it can be applied to solve

a specific problem. The example usually takes a practical scenario or situation and shows how the pattern can

be applied within that context. It often details how the pattern addresses a specific problem, outlining the steps

taken and the results achieved. This makes the pattern more relatable, by demonstrating its practical use and

showing its effectiveness in addressing real-world challenges.

For instance, if a pattern is designed to enhance user authentication in web applications, an example might

illustrate how the pattern can be implemented in an e-commerce website to securely verify users’ identities and

protect their personal information. The example would explain how the pattern is applied, what changes were

needed, and how it improved the system’s security. Examples can also highlight the versatility of a pattern by

demonstrating its application in a variety of contexts or scenarios. This helps users understand the breadth of

the pattern’s applicability and its adaptability to different situations. Moreover, examples can showcase the

pattern’s handling of different “forces” or constraints in a real-world context. This provides users with a better

understanding of how the pattern navigates the trade-offs and challenges in a practical scenario. An example

in a pattern template is a practical demonstration of the pattern’s application, offering a tangible illustration of

how the pattern works and how it can be used to address real-world problems. It is a vital part of the pattern

template as it bridges the gap between the abstract concept of the pattern and its practical utility.

3.3. Context

The context helps to set the stage for when and where a pattern might be applied most effectively. It offers

a description of the situations or conditions under which the pattern can be used. The context section usually

includes a description of specific situations where the pattern is applicable, the kinds of problems that it is

designed to solve, and the conditions that must be in place for the pattern to work effectively. This can involve

the broader environment in which the pattern operates, the specific technological constraints, or even the

organizational factors that might influence the pattern’s applicability. In more concrete terms, the context might

outline aspects such as: Is the pattern suitable for a distributed system or a single-user application? Is it more

useful in a real time system or a batch processing system? Does it require a particular infrastructure or

programming paradigm to function effectively? All these specifics provide users with a clearer understanding

of when and where to apply the pattern.

Importantly, the context can also articulate any preconditions or requirements that must be met for the

pattern to be applicable. This could be certain system characteristics, user behaviors, or technological

frameworks. For instance, a pattern for user authentication in a web application might have a context of an

internet-connected system where users need to be uniquely identified and securely verified. Understanding the

context is crucial for successful pattern application, as it ensures that the pattern is used in appropriate

circumstances, thus optimizing its effectiveness, and preventing potential misuse or misapplication. The

context also helps users to choose the most suitable pattern from among a set of possible patterns, based on

their specific situation or requirements. The context of a pattern defines the specific scenarios or situations

where the pattern can be most effectively implemented, detailing the relevant conditions, preconditions, and

problem spaces. It’s a critical component for correctly interpreting and applying a pattern.

3.4. Problem

The “Problem “section in a pattern template distinctly states the core issue or challenge that the pattern

aims to address. This serves as a focal point for understanding the pattern’s intent and application. The nature

of the problem could span a wide range, from technical issues like managing concurrency in multi-threaded

environments, to more conceptual challenges such as promoting modularity in large software systems.

Typically, this section presents the problem as either a question or a statement. This format makes it easier for

users to discern if the pattern is applicable to their specific situation. By articulating a clear problem statement,

the pattern specifies a target for its solution and lays the foundation for a thorough explanation [49].

Frequently, this section incorporates a discussion on “Forces “. Forces refer to the conditions, limitations,

or trade-offs that affect the problem and its possible solutions. For instance, a pattern addressing data security

in a cloud environment would factor in forces such as regulatory compliance, performance impacts of

encryption, and the need for user transparency. These forces shape the problem, defining its limits and affecting

its potential solutions. Their recognition enables a comprehensive understanding of the problem, its

479 Buletin Ilmiah Sarjana Teknik Elektro ISSN: 2685-9572

Advancing UAV Path Planning System: A Software Pattern Language for Dynamic Environments

(Gregorius Airlangga)

complexities, and prepares for a more effective solution. Understanding these forces is crucial when designing

a suitable pattern. They can take the form of performance requirements, system limitations, security concerns,

or usability trade-offs, and they influence the overall design and implementation of the pattern.

In line with Prof. Fernandez’s pattern template [50], these forces are considered implicitly in the problem

description, the context, and the solution sections. The pattern acknowledges the forces that need to be

addressed, the context specifies the conditions under which the pattern operates, and the solution is designed

to balance these forces effectively. For example, in a pattern designed to handle high-volume data processing

in a cloud computing environment, forces might encompass network latency, data security requirements, and

resource allocation. A well-constructed pattern addresses these forces, aiming to ensure efficient data

processing, minimize latency, maintain security, and optimize resource utilization. A thorough understanding

of these forces enables more effective pattern design and more informed decision-making when selecting and

implementing patterns.

3.5. Solution

Solution represents the specific approach or method that the pattern proposes to solve the identified

problem. It describes the general principle or strategy without being tied to a specific implementation, thus

allowing for flexibility and adaptability. The solution is the heart of the pattern, demonstrating its practical

value. It details how the pattern can be used to address the problem effectively, enhance efficiency, or im-

prove other relevant aspects of the system or situation at hand. This typically includes a description of the

entities involved, their relationships, their responsibilities, and the dynamics between them [51]. For example,

if the problem described in the pattern is how to handle high-volume data processing in real time systems, the

solution might propose a strategy like dividing the data into smaller chunks and processing these chunks

concurrently, possibly across multiple servers. It’s important to note that the solution doesn’t prescribe a

specific implementation, but rather provides a guideline or a blueprint.

This allows the pattern to be adapted to a variety of contexts and to be implemented using various

technologies or programming languages. The solution should also demonstrate how it addresses and reconciles

the forces described in the problem section. It should show how the proposed approach navigates the trade-offs

and constraints that are inherent in the problem, providing a balanced and effective response to these forces.

Furthermore, the solution may also describe the pat- tern’s interaction with other patterns, showing how they

can be combined or sequenced to address more complex problems or to create a more comprehensive design.

The solution section of a pattern offers a general principle or strategy that effectively addresses the problem

described earlier in the pattern. It is the core value proposition of the pattern, demonstrating how it navigates

the forces at play and provides a beneficial impact on the system or situation.

3.6. Structure

The Structure section of pattern template visually represents the pattern through diagrams such as Unified

Modeling Language (UML) diagrams or Block diagrams. This section offers a graphical depiction of the

pattern, making it easier to comprehend and conceptualize. The structure of a pattern, in essence, provides a

snapshot of how the pattern works. It typically illustrates the key elements of the pattern and their interactions,

highlighting the roles, relationships, and collaborations among these elements. UML diagrams are a common

choice for representing the structure of patterns because of their wide adoption in software engineering and

their capability to depict complex designs in a standardized, comprehensible way. They may include class

diagrams to show the static structure of the pattern, sequence diagrams to depict the interactions over time, or

state diagrams to outline the states and transitions of a system following the pattern.

On the other hand, Block diagrams can be used when a more abstract, high-level view of the system is

sufficient. They can effectively represent the main components of the pattern, their roles, and the interactions

among them, without delving into the intricacies of the system. The Structure section is a powerful tool for

understanding a pattern. It gives users a visual interpretation of the pattern, complementing the textual

descriptions in other sections. With it, the pattern’s design, its key elements, and their interactions become

much clearer and easier to understand. By visualizing the pattern, users can more readily understand its

mechanics, discern its flow, and identify its key elements. This understanding can enhance the user’s ability to

implement the pattern correctly and effectively in their own context. The Structure section provides a graphical

representation of the pattern, helping to clarify its design, its key elements, and their interactions. It

complements the textual descriptions in the other sections, making the pattern easier to understand and apply.

3.7. Dynamics

“Dynamics” in the context of pattern languages, describes the behavior of a pattern or system as it evolves

over time, influenced by various internal and external factors. It elucidates how a pattern behaves, adapts, and

480 Buletin Ilmiah Sarjana Teknik Elektro ISSN: 2685-9572

Buletin Ilmiah Sarjana Teknik Elektro, Vol. 5, No. 4, December 2023, pp. 475-497

reacts to different scenarios, which is paramount for its effective use and adaptation to specific needs. We can

further dissect the dynamics of a design pattern into three key components:

1. Interaction: Interaction signifies the relationships and interdependencies among different components

within a pattern or system. Understanding these connections can help in anticipating systemic responses

to changes in any part of the system.

2. Flow: Flow encapsulates the sequence and interaction of information, resources, or actions within a

system. Gaining insights into this flow can provide a blueprint for the effective implementation of the

pattern.

3. Behavior Under Different Conditions: This element describes how a pattern performs under a diverse array

of conditions. Comprehending these variances helps in optimizing a pattern’s effectiveness across a wide

range of scenarios.

3.8. Implementation

The Implementation section of pattern template provides detailed guidelines on how to apply the pattern.

This part of the template serves as a roadmap for developers, helping to ensure the pattern is effectively used

and appropriately tailored to the specific context. The implementation guidance does not dictate an exact

procedure but offers direction and advice to help users apply the pattern correctly. It typically involves a

sequence of steps, considerations, or principles that users should follow when putting the pattern into practice.

This can involve aspects like the order of operations, important considerations, potential pitfalls to avoid,

common adaptations, and tips for success. For instance, if the pattern is related to database access in a web

application, the Implementation section might provide guidelines on setting up the database connection,

handling queries, managing transactions, dealing with exceptions, and ensuring security and performance.

 While the Implementation section provides guidance on how to apply the pattern, it is not prescriptive

and does not limit flexibility. The pattern can often be adapted to a variety of situations and can be implemented

using various technologies or programming languages. Therefore, the Implementation section is intended to

guide, rather than restrict, the user’s approach to implementing the pattern. The Implementation section may

also reference relevant standards, best practices, or industry conventions, helping users align their

implementation with established norms. It can also cite examples of real-world implementations, helping users

understand how the pattern can be applied in practice. The Implementation section of a pattern is a vital tool

for users, offering guidance and advice on how to effectively put the pattern into practice. It helps ensure the

pattern is correctly and effectively used, enhancing its value and impact.

3.9. Known Uses

 The known uses in pattern template provides concrete examples where the pattern has been successfully

applied. This section helps to establish the pattern’s credibility and practicality, demonstrating its value in real-

world contexts. Typically, the known uses section presents three or more examples of real systems or projects

where the pattern has been effectively utilized. These examples can span a range of domains, applications, and

technologies, illustrating the versatility and adaptability of the pattern. Each example usually includes a brief

description of the system or project, the specific problem that was addressed, and how the pattern was applied

to solve that problem. These details help to bring the pattern to life, demonstrating its practical application and

effectiveness in resolving real-world issues. For example, in a pattern that addresses concurrency in multi-

threaded environments, known uses could include instances where the pattern was applied in a database system,

a web server, and a real-time data processing application.

 These real-world examples serve as evidence of the pattern’s utility and its practical value, enhancing its

credibility and making it more relatable and understandable. They demonstrate that the pattern is not just a

theoretical construct but a practical tool that has been proven to work in real systems. Moreover, these examples

can also provide inspiration and guidance for those considering using the pattern, offering insights into how it

can be applied and the benefits it can deliver. The known uses section of a pattern provides concrete, real-world

examples of the pattern’s application, demonstrating its practical value, enhancing its credibility, and offering

inspiration and guidance for its potential use.

3.10. Consequences

The consequences section articulates the results of applying the pattern, including both its advantages and

potential drawbacks. Understanding the consequences of a pattern’s use is fundamental to evaluating its

suitability for a given context and making informed decisions about its implementation. The consequences of

a pattern can manifest in several ways, and they extend beyond the immediate solution to the problem at hand.

They can impact system properties such as performance, scalability, maintainability, or security, and might

also influence aspects like development time, complexity, and the learning curve for developers. Advantages

481 Buletin Ilmiah Sarjana Teknik Elektro ISSN: 2685-9572

Advancing UAV Path Planning System: A Software Pattern Language for Dynamic Environments

(Gregorius Airlangga)

of applying a pattern might include facilitating code reuse, improving system modularity, enhancing scalability,

or increasing security, to name just a few.

These positive outcomes typically align with the intent of the pattern and help solve the problem identified

in the template. However, every solution also carries potential liabilities or trade-offs, which are equally

important to understand. For example, while a pattern might improve system performance, it could potentially

increase code complexity or require additional resources. Identifying these consequences helps to highlight the

trade-offs involved in using the pattern and to understand the impact on other aspects of the system or process.

It ensures that developers and designers have a well-rounded understanding of the pattern, enabling them to

make informed decisions about its use. The consequences section of a pattern provides an in-depth

understanding of the impact of applying the pattern. It articulates both the advantages and potential liabilities,

helping users to make informed decisions and to anticipate and manage the trade-offs involved in the pattern’s

application.

3.11. Related Patterns

 The Related Patterns section in pattern template plays a significant role in demonstrating the pattern’s

relationship and interaction with other patterns. This section provides a broader context for the pattern and

shows how it fits into the larger landscape of pattern language. Related Patterns can be those that complement

the current pattern, offering solutions that can be used in combination with it, or those that offer alternative

solutions to the same problem. This can help users understand different approaches to the same problem and

decide which pattern best fits their specific needs. For instance, if the current pattern describes a way to handle

concurrency in a multithreaded system, related patterns could include ones that describe different strategies for

concurrency management, or ones that describe how to handle related issues like synchronization or deadlock

prevention.

 Additionally, some patterns naturally fit together in a sequence, forming a pattern sequence or pattern

language. In such cases, the Related Patterns section can describe this relationship, explaining how the current

pattern fits into this sequence and interacts with the other patterns in it. In some cases, variants of the pattern

that fit specific contexts might also be included in the Related Patterns. This shows that the pattern is adaptable

and can be modified to fit different situations. By providing this information, the Related Patterns section helps

users understand the larger context for the pattern and its interactions with other patterns. This can inform their

decisions about how and when to use the pattern, and how it can be combined with other patterns to address

more complex problems or to create a more comprehensive design.

4. PROPOSED ONLINE PATH PLANNING SYSTEM PATTERN DESIGN

4.1. Intent

The principal intent of the online path planning system pattern for a single UAV is to enhance the path

and motion planning process in terms of efficiency, accuracy, and adaptability within dynamic environments.

It introduces an online scheme where the environmental assessment and planning calculations occur

concurrently and in real-time when the UAV undertakes a mission. This approach negates the need for a

predetermined path or prior knowledge of the map, thus allowing for a more flexible and adaptive navigation

system. This pattern is designed to allow the UAV to respond to unforeseen changes in its environment

promptly and effectively, thereby improving its overall navigation performance and ability to complete its

mission successfully.

4.2. Example

Consider a scenario where a search and rescue drone is deployed in an area struck by a natural disaster,

such as an earthquake or a flood. The area is filled with unpredictable obstacles and the landscape has

drastically changed due to the disaster. Traditional navigation methods, reliant on predetermined paths and

prior knowledge of the terrain, might fail in this dynamic environment. Here, the Online path planning system

pattern becomes indispensable. As the drone embarks on its mission to locate survivors, this pattern enables

real-time assessment of the environment and dynamic path planning. Thus, the drone can efficiently navigate

the complex environment, avoiding obstacles, altering its path based on new information, and adapting in real-

time to ensure the optimal route for successful mission completion [52]. Further, imagine a drone navigating

through a dense forest with varying altitude and numerous obstacles such as trees, branches, and rocks. The

terrain is complex and the environment is constantly changing due to factors like wind and wildlife. A

predetermined path or prior map knowledge might not be sufficient for safe and efficient navigation in this

case. Utilizing the online path planning system pattern, the drone can adapt its path in real-time, identifying

and avoiding potential collisions, and navigating efficiently through the forest. This pattern hence empowers

482 Buletin Ilmiah Sarjana Teknik Elektro ISSN: 2685-9572

Buletin Ilmiah Sarjana Teknik Elektro, Vol. 5, No. 4, December 2023, pp. 475-497

the UAV with the capability to adapt to unexpected changes, improving its performance and effectiveness in

dynamic environments.

4.3. Context

The path planning for a single UAV pattern is applicable in various contexts where an autonomous system

like a UAV is required to operate in a dynamic environment. Here, ’dynamic environment’ denotes

environments that are subject to frequent or unpredictable changes, which can affect the UAV’s path and

overall mission.

1. UAV in Changing Landscapes: One of the most common applications of this pattern is in the operation

of UAV in changing landscapes. These could be natural environments such as forests with varying

altitudes and obstacles, disaster-stricken areas with sudden changes due to earthquakes or floods, or urban

environments where construction or traffic might alter the UAV typical path. In these scenarios, the

UAV’s environment is not static. Obstacles can appear, disappear, or move, and the terrain might change

due to natural or human-induced factors. Therefore, the UAV requires an online motion system that can

adapt to these changes in real-time. The system must consider the UAV’s current speed, direction, and

orientation to navigate efficiently and safely.

2. UAV in Cluttered Indoor Spaces: Another significant context of application for this pattern is in the

operation of UAV in cluttered indoor spaces. These could be warehouses, factories, hospitals, or even

homes, where the UAV’s path might be filled with moving or stationary obstacles. Unlike a static

environment where the layout remains the same, cluttered indoor spaces can change frequently. Items or

structures might be moved, new obstacles might appear, and humans or other robots might cross the

UAV’s path. Therefore, the UAV needs an online path planning system pattern that can adapt to these

changes promptly. It needs to consider its current speed, direction, and orientation to efficiently navigate

through the cluttered space without collisions.

4.4. Problem

Traditional path planning algorithms have significant limitations when dealing with dynamic and

unpredictable environments. They typically rely on static maps or predetermined paths, operating under the

assumption that the environment will remain unchanged during the UAV’s operation. In reality, environments

can be dynamic and constantly changing due to various factors like wind, moving obstacles, or terrain

alterations. Moreover, these algorithms often fail to consider the orientation and direction of the moving object.

In the context of drones, these factors are crucial for efficient path planning, especially in complex

environments. Ignoring these aspects might lead to inefficient routes, potential collisions with obstacles, or the

inability to navigate through narrow spaces.

For instance, a search and rescue drone operating in a disaster-stricken area or a forest surveillance drone

might encounter unexpected obstacles or terrain changes. Without the ability to dynamically adapt to these

changes in real-time, the drone might crash into obstacles or fail to reach its destination, thereby failing its

mission. This pattern, which includes the propulsion system, control surfaces, and the onboard control

algorithms, directly influences the UAV ability to maneuver and orient itself in response to the path planning

algorithm. Traditional motion systems often employ a simple, reactive approach, responding to immediate

obstacles or environmental changes rather than proactively planning for efficient navigation. They may also

fail to effectively consider the UAV current orientation and direction in real-time, leading to poor efficiency in

path following. For example, a UAV might need to make a sharp turn to avoid an obstacle. If the motion system

does not consider the drone’s current speed, inertia, or orientation, the UAV might not be able to make the turn

in time or efficiently, leading to suboptimal path following or even collisions.

The problem extends beyond improving the path planning algorithm itself. It requires enhancements in

the motion system of the UAV to respond more effectively and efficiently to dynamic path planning in real-

time. This involves accounting for the UAV’s current speed, direction, and orientation. The ultimate goal is to

ensure safe, efficient, and adaptive navigation in dynamic environments. Thus, both the efficiency, safety, and

adaptability of the path planning process and the UAV’s motion system need significant improvements to

tackle the challenges posed by dynamic environments.

4.5. Solution

The pattern proposes a solution that integrates an improved path planning algorithm with a sophisticated

UAV motion system. Our main component of this solution contains of eight modules such as modified A*

algorithm, map generator by using Lidar, altitude information storage, partial goal estimator, adaptive module

manager, direction pattern generator, automatic speed & altitude configuration and the last is collision

avoidance module can be seen in Figure 1.

483 Buletin Ilmiah Sarjana Teknik Elektro ISSN: 2685-9572

Advancing UAV Path Planning System: A Software Pattern Language for Dynamic Environments

(Gregorius Airlangga)

Figure 1. Online path planning component diagram

4.6. Modified A* Algorithm (Direction Aware Algorithm)

This module features a modified version of the A* algorithm, a widely used path planning algorithm in

robotics. The standard A* algorithm excels at finding an optimal path from a start point to an endpoint while

avoiding obstacles. However, it has limitations, particularly with respect to accounting for the UAV’s current

orientation or direction. This module aims to address those limitations and enhance the algorithm’s capabilities.

Standard A* Algorithm: The traditional A* algorithm uses a grid-based approach, assigning costs to each

grid cell or node based on its distance from the start and end points and any obstacles present. However, this

algorithm isn’t inherently direction aware, meaning it doesn’t factor in the UAV’s current orientation when

selecting the next move. This could lead to inefficient paths in certain scenarios, particularly in complex and

dynamic environments. Direction-Aware Modifications: The modified A* algorithm in this solution

incorporates the UAV’s current orientation into its calculations. By taking this direction aware approach, the

algorithm can select the next move that is not only efficient in terms of distance but also aligns better with the

UAV’s current direction. This approach reduces unnecessary turns and detours, making navigation more

efficient, particularly in complex environments.

Real-Time Performance: An essential feature of this modified algorithm is its ability to compute paths

quickly or in ’real-time’. This is particularly important in dynamic environments where obstacles might appear

or move suddenly. In such cases, the algorithm needs to swiftly recalculate the path to avoid new obstacles.

Interaction with Other Modules: The output from this module feeds into the direction Pattern Generator and

the Adaptive Module Manager. If the Lidar-based Map Generator detects a new obstacle, the modified A*

algorithm can quickly re-plan the path to avoid it. Also, if the Collision Avoidance Module detects a risk of

collision, the path can be instantly adjusted.

484 Buletin Ilmiah Sarjana Teknik Elektro ISSN: 2685-9572

Buletin Ilmiah Sarjana Teknik Elektro, Vol. 5, No. 4, December 2023, pp. 475-497

4.7. Map Generator by using Lidar

This module uses Lidar technology to produce a detailed 2D map of the UAV’s environment in real-time.

This up-to-date environmental information is critical for the UAV’s efficient navigation and safety. Lidar

Technology: Lidar, which stands for Light Detection and Ranging, is a remote sensing method that uses pulsed

laser light to measure distances to objects. By measuring the time delay between the emission of a laser pulse

and the detection of the reflected signal, Lidar can determine the distance to the object that reflected the signal.

It can perform these measurements in multiple directions to build a detailed picture of the surrounding

environment.

Real-Time Map Generation is the Map Generator module that takes the distance measurements from the

Lidar and uses them to create a mini 2D map of the UAV’s immediate surroundings. This map is updated for

each time iteration, meaning that a new map is generated in real-time as the UAV moves and the Lidar collects

new measurements. These continual updates ensure the map accurately reflects the current state of the

environment, including any moving or newly appeared obstacles. Obstacle Detection is a real-time 2D map

that greatly enhances the UAV’s ability to detect and avoid obstacles. The map provides a clear representation

of where obstacles are in relation to the UAV, enabling other modules, such as the Collision Avoidance

Module, to take appropriate action if necessary. Integration with other modules concept is not only used for

obstacle detection but also feeds into other modules, such as the Modified A* Algorithm, which uses the map

to plan the most efficient path, and the Direction Pattern Generator, which uses it to determine the best

orientation for the UAV.

4.8. Altitude Information Stored in a Hash Map

The Altitude Information Stored in a Hash Map module is a vital part of the system that efficiently handles

and stores altitude data for the UAV. This information is integral to the UAV’s ability to navigate complex

environments with variations in altitude. There are several important modules such as Hash Map Data

Structure, Key-Value Pairs, Data Acquisition and Enhanced Environment Awareness.

Hash Map Data Structure module uses a hash map data structure. A hash map stores data in pairs of keys

and values, and it is designed to enable extremely fast access to the values when given the corresponding keys.

This fast access is due to a technique called hashing, where each key is processed through a hashing function

to produce a unique index (the ‘hash’) that determines where the paired value is stored. Key-Value Pairs is the

module that stores the keys in the hash map for coordinates of the UAV’s path, and the corresponding values

would be the altitude information at those coordinates. This setup allows the system to quickly retrieve the

altitude of any location on the UAV’s path just by providing its coordinates. Data Acquisition is comprising of

altitude information that could be gathered from various sources such as onboard altimeters, terrain data maps,

or real-time Lidar scanning.

Enhanced Environment Awareness concept means by storing altitude data in this way, the module

provides the UAV with a method of quickly accessing altitude information, improving its environmental

awareness. This is particularly valuable when navigating through complex environments with significant

altitude variations, like hilly landscapes, multi-store urban environments, or disaster-stricken areas. Integration

with Other Modules means the altitude information can be used by other modules, such as the Automatic Speed

& Altitude Configuration, Modified A* Algorithm, and Collision Avoidance Module. For example, when

planning a path, the Modified A* Algorithm could use the altitude information to avoid steep inclines or to

navigate around high obstacles. The last is partial goal estimator, the module operates under the principle that

when a target location is distant or in a complex environment, it’s more effective and computationally efficient

to plan the path in segments, rather than attempting to compute the entire path in one go. This is because the

full path from the start to the end point could be exceptionally long, contain numerous potential obstacles, or

might change over time due to dynamic factors in the environment. Here is a step-by-step breakdown of how

this module works:

1. Path Segmentation: This process starts with dividing the entire journey from the starting point to the

destination into smaller, manageable segments or ’chunks’. Each of these segments represents a ’partial

goal’ that the UAV needs to reach before proceeding to the next one.

2. Route Planning: For each of these partial goals, the UAV, with the help of the Modified A* Algorithm

module, plans a route from its current location to the partial goal. This segmentation of path planning tasks

makes the process less computationally intensive, as the UAV doesn’t have to process the entire path all

at once.

3. Dynamic Adjustments: As the UAV starts moving towards a partial goal, it continually scans the

environment using its onboard sensors (like Lidar). If it detects new obstacles, it will then adjust its planned

path to avoid these obstacles. This ensures that the UAV’s path planning remains flexible and adaptable

to changes in the environment. The new path to the partial goal is calculated by the Modified A*

Algorithm, keeping in mind the UAV’s current location and orientation.

485 Buletin Ilmiah Sarjana Teknik Elektro ISSN: 2685-9572

Advancing UAV Path Planning System: A Software Pattern Language for Dynamic Environments

(Gregorius Airlangga)

4. Repetition: Once a partial goal is reached, the UAV moves onto the next segment of the journey and

repeats the process until it reaches the destination.

4.9. Adaptive Module Manager

This approach allows for efficient path planning and a quick response to changes in the environment. The

reduction in computational load facilitates real-time processing and quick decision-making, essential in a

dynamic environment where obstacles could appear unexpectedly. Furthermore, it enables the UAV to

optimize its path based on the most current information available about the environment, making its navigation

safer and more efficient. The Adaptive Module Manager essentially serves as the central coordination system

or “brain” of the UAV’s operation. Its primary role is to ensure smooth communication and cooperation

between all the other modules, adapting the UAV’s behavior according to the incoming data. Here is a more

detailed explanation:

1. Data Reception and Analysis: The Adaptive Module Manager constantly receives data from all other

modules in the system. This data could be regarding the UAV’s current location, the detected obstacles,

altitude information, or direction pattern. The manager analyzes this data to understand the status and

situation of the UAV.

2. Decision Making: Based on the received data, the Adaptive Module Manager makes decisions on how the

UAV should adjust its behavior. This decision-making process considers the current state of the UAV, the

final goal, and the environmental conditions. It decides which module needs to be activated, deactivated,

or adjusted based on the data received.

3. Signal Transmission: Once the decisions are made, the manager sends signals to the appropriate modules

to execute the necessary actions. For example, if the Lidar detects a new obstacle, the manager will send

a signal to the Modified A* Algorithm module to recalculate the path, avoiding the obstacle. Similarly, if

the altitude data indicates a change in the landscape, the manager might signal the Automatic Speed &

Altitude Configuration to adjust the UAV’s altitude accordingly.

4. Adaptive Behavior: One key feature of the Adaptive Module Manager is its ability to adapt to changing

conditions. Unlike a rigid system, it can modify its decisions and signals based on the updated data it

receives. This flexibility allows the UAV to react in real-time to changes in its environment or flight

conditions, enhancing its safety and efficiency.

5. Continuous Monitoring: Throughout the flight, the Adaptive Module Manager continuously monitors the

operation of all other modules and the overall behavior of the UAV. This constant monitoring ensures that

all systems are working as intended and allows for quick adjustments if any issues are detected. In essence,

the Adaptive Module Manager acts as a bridge between the various modules, facilitating efficient

information exchange and decision-making processes, ultimately ensuring the smooth operation and

adaptation of the UAV in response to dynamic conditions.

4.10. Direction Pattern Generator

The Direction Pattern Generator plays an essential role in guiding the UAV from its current location to

its desired destination. It translates the planned path (created using the Modified A* Algorithm) into a series

of step-by-step directional commands that the UAV can follow. This process involves both maintaining a sense

of the UAV’s global direction towards its final goal and considering its local navigation needs based on

immediate environmental factors.

1. Receiving Path Information: The Direction Pattern Generator starts its work by receiving the planned path

from the Modified A* Algorithm. This path information is usually in the form of a sequence of points or

nodes that the UAV needs to pass through to reach its destination.

2. Generating Directional Instructions: The module then translates this sequence of points into a series of

directional instructions or a ’pattern’. Each instruction guides the UAV from one point to the next. These

instructions are not just simplistic commands like “go left” or “go right”, but they consider the UAV’s

current orientation, the required change in direction, the distance to the next point, and any potential

obstacles.

3. Managing Orientation and Trajectory: The generated pattern also keeps the UAV’s orientation and

trajectory optimized. By carefully calculating each turn or change in altitude, the module ensures that the

UAV doesn’t make any abrupt or inefficient movements. This minimizes energy usage and wear and tear

on the UAV.

4. Dynamic Adjustments: If the Adaptive Module Manager signals a change in the path due to a new obstacle

or change in the environment, the Direction Pattern Generator will create a new set of directions based on

the updated path. This ensures the UAV can adapt to changes in real-time.

486 Buletin Ilmiah Sarjana Teknik Elektro ISSN: 2685-9572

Buletin Ilmiah Sarjana Teknik Elektro, Vol. 5, No. 4, December 2023, pp. 475-497

5. Relaying Directions to UAV: The series of directions is then relayed to the UAV control system which in

turn adjusts the UAV’s motors and control surfaces to follow the given directions. The Direction Pattern

Generator is thus instrumental in turning a high-level path into actionable, moment-to-moment navigation

instructions. Its functions enhance the overall stability, efficiency, and safety of the UAV’s flight.

4.11. Automatic Speed and Altitude Configuration

This module is crucial in managing two fundamental parameters of UAV’s flight:

1. Speed and altitude: During a flight, a UAV might need to vary its speed and altitude based on the

characteristics of its environment, like the presence of obstacles, variations in terrain elevation, and

weather conditions. This module enables real-time adjustments of these parameters to ensure the safety

and efficiency of the UAV’s flight.

2. Data Gathering: The Automatic Speed & Altitude Configuration module receives and processes data from

several other modules. This includes altitude information from the Altitude Information Storage and

environmental data from the Mini 2D Map Generated by Lidar. It may also take inputs from other sensor

modules that provide data about wind speed, air pressure, and other environmental factors.

3. Situation Analysis: Once the data is collected, the module analyzes it to assess the current situation. For

example, if the Lidar detects a steep hill ahead, the module will recognize the need to adjust the UAV’s

altitude and speed.

4. Decision Making: Based on its analysis, the module then makes decisions about the optimal speed and

altitude for the UAV. These decisions aim to balance the efficiency and safety of the flight. For example,

in the presence of a steep hill, the module might decide to increase the UAV’s altitude to clear the hill and

reduce the speed to manage the ascent safely.

5. Implementation of Adjustments: The decisions are then converted into control signals and sent to the

UAV’s control system. These signals adjust the UAV’s motor speeds, propeller angles, and other control

parameters to change the UAV’s speed and altitude as decided.

6. Dynamic Adaptation: This process is not a one-time calculation but happens continuously throughout the

flight. The module dynamically adapts the speed and altitude based on the most recent data, enabling the

UAV to react to changes in the environment in real time.

7. In essence, the Automatic Speed & Altitude Configuration module plays a pivotal role in maneuvering the

UAV through different environments. By making real-time adjustments to the UAV’s speed and altitude,

it helps the UAV navigate safely, efficiently, and effectively in various conditions.

4.12. Collision Avoidance

The Collision Avoidance Module is a critical part of the UAV’s operations, functioning as a real-time

safety mechanism to prevent potential collisions with obstacles in the environment. These obstacles can be

either static (like buildings or trees) or dynamic (like birds or other moving objects):

1. Data Collection: The first step is to gather environmental data from the UAV’s on- board sensors. These

sensors, which can include Lidar, radar, and cameras, constantly scan the surrounding area to provide a

detailed and up-to-date view of the environment. Each sensor offers a unique type of data. Lidar and radar

provide accurate distance and velocity measurements, while cameras can supply visual context and help

in recognizing specific types of obstacles.

2. Risk Assessment: The module then processes this data to identify potential hazards. It calculates a risk of

collision for each identified obstacle, factoring in the UAV’s current speed, direction, and proximity to the

obstacle. This risk calculation is continuously updated as new sensor data comes in and as the UAV’s

flight parameters change.

3. Decision Making: If the calculated risk of collision exceeds a certain threshold, the module decides that

an evasive action is necessary. This decision is based on several considerations, including the type and

size of the obstacle, the UAV’s current flight parameters, and the available maneuvering options.

4. Evasive Action: The chosen evasive action can take several forms, such as altering the UAV’s flight path,

speed, or altitude. The goal is to ensure the UAV avoids the obstacle safely while minimizing any

disruptions to its flight plan. These changes are implemented by sending appropriate control signals to the

UAV’s flight control system.

5. Communication with Other Modules: When a potential collision is detected and avoided, this module

communicates the data to other components like the Modified A* Algorithm and the Direction Pattern

Generator. They use this information to adjust the UAV’s path and direction instructions, maintaining

safety and efficiency. The module can also override current actions for immediate evasive maneuvers in

case of sudden, unpredictable obstacles. The Collision Avoidance Module thus plays an indispensable role

in the UAV’s operation, particularly in complex and dynamic environments. By proactively detecting and

avoiding potential collisions, it greatly enhances the reliability and safety of the UAV system.

487 Buletin Ilmiah Sarjana Teknik Elektro ISSN: 2685-9572

Advancing UAV Path Planning System: A Software Pattern Language for Dynamic Environments

(Gregorius Airlangga)

4.13. Structure

The class diagram provided offers a detailed representation of a dynamic path planning system for UAVs.

Starting with the LiDAR class, it serves as the primary source of sensor data for the entire system. The data it

provides is vital for generating an accurate local map of the UAV’s environment, allowing for informed path

planning. Additionally, the LiDAR class continuously updates sensor data as the UAV navigates, ensuring the

system’s real-time responsiveness to environmental changes. Upon receiving raw sensor data from the LiDAR,

the SensorManager class processes this information and produces a ProcessedSensorData object. As the

intermediary between the LiDAR sensor and the UAV, this class is responsible for managing data flow and

updating the processed sensor data to maintain an up-to-date representation of the UAV’s surroundings can be

seen in Figure 2.

The UAV class serves as the core component of the system, executing motion control based on the

generated path and interacting with other classes to achieve successful navigation. Not only does the UAV

send the processed sensor data to the MapGenerator class, but it also commands the ControlSystem class,

ensuring proper motion control in accordance with the generated path. Taking the processed sensor data from

the UAV, the MapGenerator class creates a 2D Mini Map and Altitude HashMap. In doing so, it provides the

UAV with a clear understanding of its environment, essential for efficient path planning.

Furthermore, the MapGenerator class can update both the Mini Map and Altitude HashMap as the

environment evolves, guaranteeing real-time adaptability. Acting as the coordinator for the path planning

process, the PathPlannerManager class oversees the entire operation. This class is responsible for requesting

and updating paths from the PathPlanner class, as well as communicating with the ControlSystem class to

determine the UAV’s motion. It serves as the bridge between the path planning and control system classes.

The PathPlanner class calculates an initial path and updates it based on the MiniMap and Altitude

HashMap provided by the MapGenerator. This class is in charge of generating the safest and most efficient

path for the UAV, taking into account the current environmental conditions. To further refine the generated

path, the PathOptimizer class optimizes it for safety and efficiency. By receiving the path from the PathPlanner

class, enhancing its overall quality, and returning the optimized path to the PathPlannerManager, it ensures

the UAV follows the best possible route. Finally, the ControlSystem class manages the UAV’s motion based

on the received path. It works closely with the PathPlannerManager to receive and update the path, and it

communicates with the UAV class to execute motion control accordingly. In conclusion, this class diagram

showcases an intricate and interconnected system for dynamic path planning in UAVs.

Each class contributes a specific function and collaborates with others to create a solution for navigating

dynamic environments. The integration of LiDAR, sensor management, map generation, path planning,

optimization, and control systems guarantees the UAV’s ability to reach its destination safely and efficiently.

Due to the complexity, we only depict the structure that focusing on the online path planning algorithm, the

main structure is involving multiple components such as modified A* algorithm, Lidar-generated mini 2D

maps for each time iteration, and a hash map for altitude information. To begin, the LiDAR sensor serves as

the primary data acquisition device, gathering crucial environmental information. This raw sensor data is then

provided to the SensorManager, which is responsible for processing and filtering the collected data to ensure

its reliability and accuracy. Once the data has been processed, it is subsequently forwarded to the UAV. As the

central hub for coordinating all actions, the UAV is responsible for dispatching the processed data to the

MapGenerator component. Consequently, the MapGenerator utilizes this data to create a 2D Mini Map, which

provides a bird’s-eye view of the environment, as well as an Altitude HashMap, which contains information

about the elevation of various points in the environment. These generated maps are then passed on to the

PathPlannerManager. Following this, the PathPlannerManager plays a crucial role in requesting the most

efficient path from the PathPlanner, which takes into consideration the generated 2D Mini Map and Altitude

HashMap. In order to ensure the path is not only efficient but also safe, the PathPlanner forwards the initially

calculated path to the PathOptimizer.

The PathOptimizer is responsible for refining the path by taking into account various factors, such as

potential obstacles and environmental constraints. Once the path has been optimized, it is returned to the

PathPlannerManager. Subsequently, the PathPlannerManager communicates the optimized path to the

ControlSystem, which is in charge of commanding the UAV to execute motion control based on the generated

path. The ControlSystem ensures that the UAV follows the designated path while maintaining stability and

adhering to any predefined motion constraints. During the entire process, an update cycle loop is in place to

account for dynamic changes in the environment. The LiDAR sensor continuously updates the sensor data,

which is processed by the SensorManager and sent to the UAV. The UAV then forwards this updated processed

data to the MapGenerator, resulting in updates to the 2D Mini Map and Altitude HashMap. Consequently, the

PathPlannerManager requests an updated path from the PathPlanner, which relies on the PathOptimizer to

488 Buletin Ilmiah Sarjana Teknik Elektro ISSN: 2685-9572

Buletin Ilmiah Sarjana Teknik Elektro, Vol. 5, No. 4, December 2023, pp. 475-497

refine the updated path. The optimized path is once again returned to the PathPlannerManager and then to the

ControlSystem. As the UAV follows the updated path, it is essential to monitor its progress towards the goal.

The UAV checks the goal position and communicates its status to the PathPlannerManager. If the goal has

not been achieved, the PathPlannerManager instructs the ControlSystem to continue moving the UAV along

the updated path. However, if the UAV has successfully reached its goal, the ControlSystem commands the

UAV to cease movement and execute a safe landing procedure.

Figure 2. Online path planning system class diagram

4.14. Dynamics

First, the UAV’s task is to read sensor data. The UAV comes equipped with various onboard sensors such

as Lidar, accelerometers, and gyroscopes. The raw data from these sensors form the basis for understanding

489 Buletin Ilmiah Sarjana Teknik Elektro ISSN: 2685-9572

Advancing UAV Path Planning System: A Software Pattern Language for Dynamic Environments

(Gregorius Airlangga)

the UAV’s current state and the surrounding environment. This data collection is paramount in providing real-

time information about the UAV’s surroundings and its physical state. Following data collection, the UAV

moves to the process sensor data step. Here, it processes the collected raw sensor data, eliminating noise and

transforming the data into a more usable and understandable format. This stage may involve the implementation

of a sensor fusion algorithm. Such an algorithm merges data from various sensors, creating a more

comprehensive, accurate depiction of the UAV’s status and the environment can be seen in Figure 3.

Using the processed sensor data, the UAV then generates mini maps and an altitude HashMap. The UAV

creates a mini 2D map offering a bird’s-eye view of its environment. This map displays the landscape and any

potential obstacles in the UAV’s path. Concurrently, the UAV constructs an Altitude HashMap representing

the varying heights or elevations in the environment. These pieces of information play a crucial role in planning

the UAV’s flight path. The next stage involves path planning. The UAV generates a preliminary flight path

based on the Mini Map and Altitude HashMap. It considers factors like the UAV’s current position, its

destination, and potential obstacles in the path. With this information, it calculates a feasible path to its

destination. Having established an initial path, the UAV proceeds to optimize the path. At this juncture, the

UAV refines the initially calculated path. Optimization ensures the safety of the UAV while enhancing

efficiency. In this step, the UAV considers various factors like wind resistance, battery usage, and overall flight

time, adjusting its path accordingly.

Finally, the UAV executes control signals. This involves the actual execution of the flight based on the

optimized path. The UAV communicates with its propulsion and steering systems, issuing control signals for

movement along the planned path. This process is subject to constant updates and adjustments depending on

real-time changes in the environment or the UAV’s physical state. In this system, the Environment acts as a

secondary actor. Though it does not actively perform actions, it greatly influences the UAV’s operations. Its

role is to provide environmental changes. The environment is dynamic, changing constantly and often without

warning. Changes range from sudden shifts in weather conditions to the introduction of new obstacles in the

UAV’s path. Consequently, the UAV must adapt its flight plan in real-time, ensuring a safe and efficient

response to these environmental changes can be seen in Figure 4.

Figure 3. Online Path Planning Sequence Diagram

490 Buletin Ilmiah Sarjana Teknik Elektro ISSN: 2685-9572

Buletin Ilmiah Sarjana Teknik Elektro, Vol. 5, No. 4, December 2023, pp. 475-497

Figure 4. Use case diagram

4.15. Implementation

Implementing the pattern is a multi-step process that requires careful attention to various technical details.

It involves the integration of sensor data, specifically Lidar and altitude information, into the path planning

algorithm, and ensuring that the algorithm is capable of handling real-time adjustments and is direction aware.

Below is the explanation of the process can be seen in Figure 5.

1. Understanding the Environment: The first step in implementing this pattern is to thoroughly understand

the environment in which the UAV will operate. This includes comprehending potential obstacles,

dynamic elements, and variations in the terrain. The environmental characteristics will guide the

development and modification of the path planning algorithm and influence the calibration of the UAV’s

motion system.

2. Sensor Selection and Integration: The next step involves selecting appropriate sensors that can accurately

perceive the environment in real-time. This typically includes Lidar sensors for creating 2D or 3D maps,

accelerometers and gyroscopes for understanding the UAV’s movement and orientation, and possibly

other specific sensors depending on the application. It’s important to ensure that the data from these sensors

can be integrated and processed efficiently and accurately in real-time, which may require the development

of efficient sensor fusion algorithms.

3. Development and Optimization of the Path Planning Algorithm: Developing a path planning algorithm

that considers the dynamic nature of the environment and the UAV’s direction and orientation is a crucial

step. This involves modifying traditional path planning algorithms to work with real-time data and account

for direction-awareness. The algorithm should be optimized to run efficiently in real-time while utilizing

potentially limited computational resources onboard the UAV.

4. Integration of Lidar Data and Altitude Information: To enhance the UAV’s environment awareness, you

will need to integrate the Lidar-generated mini 2D maps and hash map-based altitude data into the path

planning algorithm. This integration requires careful attention to data processing to ensure accuracy and

efficiency.

5. Upgrading the UAV’s Motion System: The UAV’s motion system needs to be upgraded to effectively

respond to the outputs of the path planning algorithm. This requires adjusting the control surfaces and

491 Buletin Ilmiah Sarjana Teknik Elektro ISSN: 2685-9572

Advancing UAV Path Planning System: A Software Pattern Language for Dynamic Environments

(Gregorius Airlangga)

propulsion system, and developing onboard control algorithms that can control the UAV’s speed,

direction, and orientation according to the algorithm’s instructions.

6. Testing and Iteration: After the development and integration phases, rigorous testing in various

environments and conditions is necessary. Metrics for evaluating the performance of the system include

path planning efficiency, accuracy, adaptability, and computational resource usage. Regular monitoring

and testing of the system can identify any performance issues or areas for improvement. The testing

feedback will likely lead to several iterations of the path planning algorithm, motion system, and sensor

fusion algorithms to optimize performance.

7. Dealing with Potential Inhibitors: Potential obstacles to successful implementation could include

computational limitations, sensor inaccuracies, or rapidly changing environments. It’s crucial to identify

these issues early and address them to prevent performance problems or system failures.

8. Final Integration and Deployment: Once the system has been thoroughly tested and optimized, it can be

integrated into the UAV for deployment. This involves not only the physical installation of hardware and

the integration of software on the UAV but also ensuring that the UAV can handle the computational load

of the system and that the system performs well under real-world conditions. The success of implementing

this pattern relies heavily on the accuracy of the Lidar data, the efficiency of the path planning algorithm,

and the effective integration of direction-awareness. Regular monitoring, testing, and system adjustments

are necessary to ensure optimal performance in various dynamic environments.

9. Considerations for implementing in Multi-UAV Operations: Consider scenarios where multiple UAVs are

needed, for instance, in extensive search and rescue operations, agricultural surveys over large fields, or

large-scale environmental monitoring. In such cases, employing a fleet of UAVs can significantly improve

operational efficiency and coverage. Each UAV in the fleet could use the online path planning system

pattern to navigate its own path, responding to environmental changes individually. However, when

functioning as a part of a multi-UAV system, additional parameters need to be considered for effective

operation. These considerations include maintaining formation structure, cooperative sensing and data

sharing, task allocation, and collision avoidance among the UAVs themselves. Here are the key

considerations for multi-UAV operations:

• Maintaining Formation Structure: Formations allow multiple UAVs to effectively cover a large area

or focus on specific tasks simultaneously. The structure could range from simple geometrical

arrangements (like line, grid, or column) to complex, adaptive formations based on environmental

factors or mission goals. Maintaining formation requires sophisticated control algorithms that adjust

the UAVs’ positions in real-time. This not only includes adjustments due to movements but also

adapting to changes in the formation structure. Additionally, depending on the mission requirements,

the formation might need to remain rigid or could be allowed to deform to a certain extent. All these

require complex inter-UAV communication, precise control mechanisms, and accurate real-time

positioning information.

• Cooperative Sensing and Data Sharing: When operating as a multi-UAV system, UAVs can benefit

immensely from sharing sensor data and other mission-relevant information. For example, a UAV

that has detected an obstacle can share this information with others, allowing them to adjust their paths

even before they come close to the obstacle. Moreover, by sharing data from their individual

perspectives, UAVs can create a more comprehensive and accurate 3D map of the environment,

improving path planning, and obstacle detection. However, effective data sharing requires a robust

and reliable communication system to handle potentially large volumes of data and ensure

synchronization.

• Task Allocation: In a multi-UAV system, tasks must be efficiently distributed among the UAVs to

maximize overall performance. This involves complex decision-making processes, considering

factors such as the capabilities of each UAV, the importance and requirements of each task, and the

status of the mission. Some tasks might be best handled by a single UAV, while others could benefit

from the coordinated efforts of multiple UAVs. Task allocation strategies need to be adaptive to

respond to real-time changes in the mission or the environment. If a UAV becomes unavailable or if

a new task emerges, the system needs to reallocate tasks on the fly.

• Intra-collision Avoidance: While each UAV in a multi-UAV system uses its own collision avoidance

system to avoid environmental obstacles, they also need to avoid collisions with each other. This

requires an additional layer of collision avoidance that considers the positions, directions, and speeds

of all UAVs in the system. Intra collision avoidance strategies can range from simple rules (like

maintaining a minimum distance from each other) to sophisticated algorithms that predict potential

collisions based on current trajectories and adjust the UAVs’ paths to avoid them. It’s also crucial to

492 Buletin Ilmiah Sarjana Teknik Elektro ISSN: 2685-9572

Buletin Ilmiah Sarjana Teknik Elektro, Vol. 5, No. 4, December 2023, pp. 475-497

coordinate these adjustments to prevent conflicting actions (like two UAVs trying to avoid each other

by moving in the same direction).

Figure 5. Online Path Planning Deployment Diagram

4.16. Known Uses

Instead of listing known uses of the pattern, we identify similar applications and potential users who could

use the same approach. The pattern has a broad range of applications and is already being utilized in several

domains. Its primary utility lies in enhancing the adaptability and efficiency of path planning and motion

control for autonomous systems navigating in complex and dynamic environments. Below are some specific

instances where this pattern is known to be employed.

1. Search and Rescue Operations: These missions often take place in dynamic and unpredictable

environments. The drones involved in these operations need to be able to adapt their paths in real-time,

avoiding obstacles and efficiently navigating through the disaster-stricken areas. The pattern has been used

to enhance the efficiency and safety of these operations, allowing drones to adapt to real-time changes in

the environment and to their own orientation and direction [53][54].

2. Surveillance and Monitoring: In surveillance and monitoring applications, drones are often required to

navigate through complex environments like forests or urban landscapes. The pattern has been employed

in these contexts to enable drones to avoid collisions and adapt their paths in real-time, making the

surveillance process more efficient and accurate [55].

3. Autonomous Vehicles: Autonomous vehicles operate in highly dynamic environments, with other

vehicles, pedestrians, and various obstacles constantly moving around them. The Online Path Planning

System pattern can be applied to these vehicles to enhance their path planning and motion control

capabilities, allowing them to navigate safely and efficiently through their environments [56].

493 Buletin Ilmiah Sarjana Teknik Elektro ISSN: 2685-9572

Advancing UAV Path Planning System: A Software Pattern Language for Dynamic Environments

(Gregorius Airlangga)

4. Indoor Robots: Indoor robots, such as those used in warehouses or factories, often need to navigate through

cluttered spaces with various obstacles. The pattern can be utilized in these situations to improve the

robots’ path planning and motion control abilities, enabling them to move more efficiently and adaptively

in their environments [57]. In each of these uses, the pattern enhances the autonomous system’s ability to

navigate efficiently and safely through complex, dynamic environments, considering real-time changes in

the environment and the system’s orientation and direction. However, the implementation of the pattern

may require additional computational resources due to the integration of more sophisticated algorithms

and additional sensor data.

4.17. Consequences

The implementation of the pattern carries several significant consequences, both positive and negative.

Below are the detailed explanations.

• Positive: Improved Efficiency, Accuracy, and Adaptability The primary consequence of implementing this

pattern is a marked improvement in the efficiency, accuracy, and adaptability of the path planning process.

By integrating a direction-aware A* algorithm, the pattern enables the UAV to consider its current

orientation when determining the next move. This results in more efficient navigation, reducing

unnecessary movements and conserving energy. In terms of accuracy, the integration of a Lidar-generated

mini 2D map and altitude information stored in a hash map allows the UAV to have a more accurate

understanding of its immediate environment. This improved environmental awareness enhances the

accuracy of the path planning and reduces the likelihood of collisions with unforeseen obstacles. The

pattern also boosts the adaptability of the UAV in dynamic environments. The UAV becomes capable of

adjusting its path in real time in response to changes in the environment. This adaptability is crucial for

UAV operations in unpredictable and changing environments like disaster-stricken areas or forests with

moving obstacles.

• Negative: Increased Computational Resource Requirements On the downside, the implementation of this

pattern may lead to an increase in the computational resources required. The addition of a modified A*

algorithm, Lidar-generated mini 2D maps, and altitude data stored in a hash map means that the UAV’s

onboard computer needs to process more data in real time. This could necessitate more powerful

computing hardware, more sophisticated software, or both. Depending on the specific UAV platform, this

could result in increased costs, higher energy consumption, or additional weight from the onboard

computer. These factors should be considered and appropriately managed during the implementation of

the pattern.

4.18. Related Patterns

The pattern is related to several other patterns that deal with the navigation, control, and coordination of

autonomous systems. Below is a definition of related patterns.

1. Traditional Path Planning Algorithms: These algorithms, such as the A* algorithm, Dijkstra’s algorithm,

or RRT, form the basis for many navigation systems. They allow for efficient path planning in known

environments but often struggle in dynamic or complex environments. The pattern extends these

traditional algorithms by incorporating real-time data and adjusting for changes in the UAV’s orientation

and direction [58].

2. SLAM (Simultaneous Localization and Mapping): SLAM is a computational problem of constructing or

updating a map of an unknown environment while simultaneously keeping track of an agent’s location

within it. It’s a fundamental problem solved in the field of robotics and is essential for autonomous robots

like self-driving cars, drones, and rovers. SLAM could be complementary to the Online Path Planning

System for UAV pattern, providing real-time updates about the environment which could be used for more

informed path planning [59].

3. Sensor Fusion Algorithms: Sensor fusion is the use of sensory data from diverse sources in a

complementary manner to provide robust and more accurate information than would be possible by using

individual sensors alone. Sensor fusion techniques can be used to enhance the input data for the Online

Path Planning System pattern, providing a more accurate picture of the dynamic environment [60].

4. Control Theory Applications: Control theory is an interdisciplinary branch of engineering and mathematics

that deals with the behavior of dynamical systems with inputs. In the context of UAV, it’s used to maintain

stability and to control the flight. Control theory can be applied to improve the motion system’s response

to the path planning algorithm’s output [61].

5. Swarm Intelligence: Swarm intelligence involves the collective behavior of decentralized, self-organized

systems, natural or artificial. In the context of UAV, it’s used to coordinate multiple drones to complete

494 Buletin Ilmiah Sarjana Teknik Elektro ISSN: 2685-9572

Buletin Ilmiah Sarjana Teknik Elektro, Vol. 5, No. 4, December 2023, pp. 475-497

tasks more efficiently. While this pattern focuses on individual drone navigation, it can be combined with

swarm intelligence for tasks requiring coordination among multiple drones. These related patterns can be

used in conjunction with online path planning system patterns to create an efficient, and adaptable

navigation and control system for autonomous vehicles operating in dynamic environments [62].

5. CONCLUSION

Our research embarked on an ambitious journey to redefine the path planning systems of Unmanned

Aerial Vehicles (UAVs) in dynamic environments. The cornerstone of this venture was the development of an

innovative software pattern design, inspired by the paradigms of the Software Pattern Community (PLOP).

This design serves as a blueprint for creating adaptable, efficient, and robust UAV path planning systems

capable of navigating the complexities of unpredictable environments. The theoretical exploration presented

in this study underscores the potential of integrating diverse software design patterns into UAV path planning.

The proposed framework, a tapestry of behavioral, structural, and creational patterns, offers a versatile solution

to the challenges of real-time adaptability and decision-making in UAV operations. It highlights the feasibility

and benefits of employing a pattern-oriented approach to address the intricacies of UAV navigation, such as

dynamic obstacle avoidance, energy optimization, and data management. While our study does not include

empirical validation, its theoretical contributions lay the groundwork for future research. It opens possibilities

for practical implementation and empirical testing of the proposed design in real-world scenarios. The next

steps could involve adapting the design for specific UAV models and mission types, integrating advanced

technologies like artificial intelligence and machine learning to further enhance its capabilities. In conclusion,

this research not only advances the field of UAV path planning but also sets a precedent for the integration of

software engineering principles into UAV system design. It offers a comprehensive framework that can be

further explored and refined, potentially leading to groundbreaking advancements in UAV technology and its

applications in diverse and dynamic environments.

REFERENCES
[1] T. Lai and F. Ramos, "LTR*: Rapid Replanning in Executing Consecutive Tasks with Lazy Experience Graph," 2022

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 8784-8790, 2022,

https://doi.org/10.1109/IROS47612.2022.9982237.

[2] S. Lin, A. Liu, J. Wang, and X. Kong, "A Review of Path-Planning Approaches for Multiple Mobile Robots,"

Machines, vol. 10, no. 9, p. 773, 2022, https://doi.org/10.3390/machines10090773.

[3] C. Jose and K. S. Vijula Grace, "Optimization based routing model for the dynamic path planning of emergency

vehicles," Evol. Intel., vol. 15, pp. 1425–1439, 2022, https://doi.org/10.1007/s12065-020-00448-y.

[4] S. Abdallaoui, E.-H. Aglzim, A. Chaibet, and A. Kribèche, "Thorough Review Analysis of Safe Control of

Autonomous Vehicles: Path Planning and Navigation Techniques," Energies, vol. 15, no. 4, p. 1358, 2022,

https://doi.org/10.3390/en15041358.

[5] J. Dai, J. Qiu, H. Yu, C. Zhang, Z. Wu, and Q. Gao, “Robot Static Path Planning Method Based on Deterministic

Annealing,” Machines, vol. 10, no. 8, p. 600, 2022, https://doi.org/10.3390/machines10080600.

[6] S. Chakraborty, D. Elangovan, P. L. Govindarajan, M. F. ELnaggar, M. M. Alrashed, and S. Kamel, “A

Comprehensive Review of Path Planning for Agricultural Ground Robots,” Sustainability, vol. 14, no. 15, p. 9156,

2022, https://doi.org/10.3390/su14159156.

[7] M. Ramezani, H. Habibi, J. L. Sanchez-Lopez and H. Voos, "UAV Path Planning Employing MPC-Reinforcement

Learning Method Considering Collision Avoidance," 2023 International Conference on Unmanned Aircraft Systems

(ICUAS), pp. 507-514, 2023, https://doi.org/10.1109/ICUAS57906.2023.10156232.

[8] A. Israr, Z. A. Ali, E. H. Alkhammash, and J. J. Jussila, “Optimization Methods Applied to Motion Planning of

Unmanned Aerial Vehicles: A Review,” Drones, vol. 6, no. 5, p. 126, 2022, https://doi.org/10.3390/drones6050126.

[9] S. Maadi, S. Stein, J. Hong, and R. Murray-Smith, “Real-Time Adaptive Traffic Signal Control in a Connected and

Automated Vehicle Environment: Optimisation of Signal Planning with Reinforcement Learning under Vehicle

Speed Guidance,” Sensors, vol. 22, no. 19, p. 7501, 2022, https://doi.org/10.3390/s22197501.

[10] P. Yu, Y. Zhou, X. Sun, H. Sang, and S. Zhang, "Adaptive path following control for wave gliders in ocean currents

and waves," Ocean Eng., vol. 284, p. 115251, 2023, https://doi.org/10.1016/j.oceaneng.2023.115251.

[11] M. Kamezaki, A. Kobayashi, R. Kono, M. Hirayama and S. Sugano, "Dynamic Waypoint Navigation: Model-Based

Adaptive Trajectory Planner for Human-Symbiotic Mobile Robots," in IEEE Access, vol. 10, pp. 81546-81555, 2022,

https://doi.org/10.1109/ACCESS.2022.3194146.

[12] C. Zhang, P. Cheng, B. Du, B. Dong, and W. Zhang, "AUV path tracking with real-time obstacle avoidance via

reinforcement learning under adaptive constraints," Ocean Eng., vol. 256, p. 111453, 2022,

https://doi.org/10.1016/j.oceaneng.2022.111453.

[13] P. Balasubramanian, "Automation in Data Science, Software, and Information Services," in Springer Handbook of

Automation, S. Y. Nof, Ed. Cham, Switzerland: Springer, 2023, doi: https://doi.org/10.1007/978-3-030-96729-1_46.

[14] Z. Pei, L. Liu, C. Wang and J. Wang, "Requirements Engineering for Machine Learning: A Review and Reflection,"

2022 IEEE 30th International Requirements Engineering Conference Workshops (REW), pp. 166-175, 2022,

https://doi.org/10.1109/REW56159.2022.00039.

https://doi.org/10.1109/IROS47612.2022.9982237
https://doi.org/10.3390/machines10090773
https://doi.org/10.1007/s12065-020-00448-y
https://doi.org/10.3390/en15041358
https://doi.org/10.3390/machines10080600
https://doi.org/10.3390/su14159156
https://doi.org/10.1109/ICUAS57906.2023.10156232
https://doi.org/10.3390/drones6050126
https://doi.org/10.3390/s22197501
https://doi.org/10.1016/j.oceaneng.2023.115251
https://doi.org/10.1109/ACCESS.2022.3194146
https://doi.org/10.1016/j.oceaneng.2022.111453
https://doi.org/10.1007/978-3-030-96729-1_46
https://doi.org/10.1109/REW56159.2022.00039

495 Buletin Ilmiah Sarjana Teknik Elektro ISSN: 2685-9572

Advancing UAV Path Planning System: A Software Pattern Language for Dynamic Environments

(Gregorius Airlangga)

[15] Z. Chen, J. Liu, Y. Su, H. Zhang, X. Ling, Y. Yang, and M. R. Lyu, "Adaptive Performance Anomaly Detection for

Online Service Systems via Pattern Sketching," in Proc. of the 44th International Conference on Software

Engineering (ICSE '22), pp. 61–72, 2022, https://doi.org/10.1145/3510003.3510085.

[16] A. R. Kunduru, "Cloud BPM Application (Appian) Robotic Process Automation Capabilities," Asian J. Res. Comput.

Sci., vol. 16, no. 3, pp. 267-280, 2023, https://doi.org/10.9734/ajrcos/2023/v16i3361.

[17] N. E. Akrami, M. Hanine, E. S. Flores, D. G. Aray and I. Ashraf, "Unleashing the Potential of Blockchain and

Machine Learning: Insights and Emerging Trends From Bibliometric Analysis," in IEEE Access, vol. 11, pp. 78879-

78903, 2023, https://doi.org/10.1109/ACCESS.2023.3298371.

[18] S. M. Srinivasan, S. Mahbub, R. S. Sangwan, Y. Badr, and P. Mukherjee, “Pattern Language for Designing

Distributed AI Systems,” In INFORMS International Conference on Service Science, pp. 467-477, 2022,

https://doi.org/10.1007/978-3-031-15644-1_34.

[19] Shumba, A. T., Montanaro, T., Sergi, I., Fachechi, L., De Vittorio, M., & Patrono, L. , "Leveraging IOT-aware

technologies and AI techniques for real-time critical healthcare applications," Sensors, vol. 22, no. 19, p. 7675, 2022,

https://doi.org/10.3390/s22197675.

[20] F. Al-Doghman, N. Moustafa, I. Khalil, N. Sohrabi, Z. Tari and A. Y. Zomaya, "AI-Enabled Secure Microservices

in Edge Computing: Opportunities and Challenges," in IEEE Transactions on Services Computing, vol. 16, no. 2, pp.

1485-1504, 2023, https://doi.org/10.1109/TSC.2022.3155447.

[21] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall, "Robot Operating System 2: Design, architecture,

and uses in the wild," Sci. Robotics, vol. 7, no. 66, eabm6074, 2022, https://doi.org/10.1126/scirobotics.abm6074.

[22] N. S. P. Peraka and K. P. Biligiri, “Pavement asset management systems and technologies: A review,” Automation

in Construction, vol. 119, p. 103336, 2020, https://doi.org/10.1016/j.autcon.2020.103336.

[23] K. Telli, O. Kraa, Y. Himeur, A. Ouamane, M. Boumehraz, S. Atalla, and W. Mansoor, "A Comprehensive Review

of Recent Research Trends on Unmanned Aerial Vehicles (UAVs)," Systems, vol. 11, no. 8, p. 400, 2023,

https://doi.org/10.3390/systems11080400.

[24] J. Li, G. Zhang, C. Jiang, and W. Zhang, "A survey of maritime unmanned search system: theory, applications and

future directions," Ocean Eng., vol. 285, 2023, p. 115359, https://doi.org/10.1016/j.oceaneng.2023.115359.

[25] H. S. Hewawasam, M. Y. Ibrahim and G. K. Appuhamillage, "Past, Present and Future of Path-Planning Algorithms

for Mobile Robot Navigation in Dynamic Environments," in IEEE Open Journal of the Industrial Electronics Society,

vol. 3, pp. 353-365, 2022, https://doi.org/10.1109/OJIES.2022.3179617.

[26] M. Kobayashi and N. Motoi, "Local Path Planning: Dynamic Window Approach With Virtual Manipulators

Considering Dynamic Obstacles," in IEEE Access, vol. 10, pp. 17018-17029, 2022,

https://doi.org/10.1109/ACCESS.2022.3150036.

[27] J. A. Abdulsaheb and D. J. Kadhim, “Classical and Heuristic Approaches for Mobile Robot Path Planning: A Survey,”

Robotics, vol. 12, no. 4, p. 93, 2023, https://doi.org/10.3390/robotics12040093.

[28] Z. Zhang, S. Wang, J. Chen and Y. Han, "A Bionic Dynamic Path Planning Algorithm of the Micro UAV Based on

the Fusion of Deep Neural Network Optimization/Filtering and Hawk-Eye Vision," in IEEE Transactions on Systems,

Man, and Cybernetics: Systems, vol. 53, no. 6, pp. 3728-3740, 2023, https://doi.org/10.1109/TSMC.2023.3233965.

[29] M. Jones, S. Djahel, and K. Welsh, "Path-Planning for Unmanned Aerial Vehicles with Environment Complexity

Considerations: A Survey," ACM Comput. Surv., vol. 55, no. 11, p. 234, 2023, https://doi.org/10.1145/3570723.

[30] A. Khan, J. Zhang, S. Ahmad, S. Memon, H. A. Qureshi, and M. Ishfaq, “Dynamic Positioning and Energy-Efficient

Path Planning for Disaster Scenarios in 5G-Assisted Multi-UAV Environments,” Electronics, vol. 11, no. 14, p. 2197,

2022, https://doi.org/10.3390/electronics11142197.

[31] A. Serban and J. Visser, "Adapting Software Architectures to Machine Learning Challenges," 2022 IEEE

International Conference on Software Analysis, Evolution and Reengineering (SANER), pp. 152-163, 2022,

https://doi.org/10.1109/SANER53432.2022.00029.

[32] O. Chenaru, S. Mocanu, R. Dobrescu, and M. Nicolae, “Enhancing Antifragile Performance of Manufacturing

Systems through Predictive Maintenance,” Applied Sciences, vol. 12, no. 23, p. 11958, 2022,

https://doi.org/10.3390/app122311958.

[33] G. Baptista and F. Abbruzzese. Software Architecture with C# 10 and .NET 6: Develop Software Solutions Using

Microservices, DevOps, EF Core, and Design Patterns for Azure. Packt Publishing Ltd. 2022.

https://books.google.co.id/books?hl=id&lr=&id=6tlhEAAAQBAJ.

[34] M. Pau, M. Mirz, J. Dinkelbach, P. Mckeever, F. Ponci and A. Monti, "A Service Oriented Architecture for the

Digitalization and Automation of Distribution Grids," in IEEE Access, vol. 10, pp. 37050-37063, 2022,

https://doi.org/10.1109/ACCESS.2022.3164393.

[35] V. Velepucha and P. Flores, "A Survey on Microservices Architecture: Principles, Patterns and Migration

Challenges," in IEEE Access, vol. 11, pp. 88339-88358, 2023, https://doi.org/10.1109/ACCESS.2023.3305687.

[36] A.-T. Shumba, T. Montanaro, I. Sergi, L. Fachechi, M. De Vittorio, and L. Patrono, “Leveraging IoT-Aware

Technologies and AI Techniques for Real-Time Critical Healthcare Applications,” Sensors, vol. 22, no. 19, p. 7675,

2022, https://doi.org/10.3390/s22197675.

[37] A. Puente-Castro, D. Rivero, A. Pazos, and E. Fernandez-Blanco, "A review of artificial intelligence applied to path

planning in UAV swarms," Neural Comput. Appl., vol. 34, no. 1, pp. 153-170, 2022, https://doi.org/10.1007/s00521-

021-06569-4.

[38] N. Bashir, S. Boudjit, G. Dauphin, and S. Zeadally, "An obstacle avoidance approach for UAV path planning," Simul.

Model. Pract. Theory, vol. 129, 2023, p. 102815, https://doi.org/10.1016/j.simpat.2023.102815.

https://doi.org/10.1145/3510003.3510085
https://doi.org/10.9734/ajrcos/2023/v16i3361
https://doi.org/10.1109/ACCESS.2023.3298371
https://doi.org/10.1007/978-3-031-15644-1_34
https://doi.org/10.3390/s22197675
https://doi.org/10.1109/TSC.2022.3155447
https://doi.org/10.1126/scirobotics.abm6074
https://doi.org/10.1016/j.autcon.2020.103336
https://doi.org/10.3390/systems11080400
https://doi.org/10.1016/j.oceaneng.2023.115359
https://doi.org/10.1109/OJIES.2022.3179617
https://doi.org/10.1109/ACCESS.2022.3150036
https://doi.org/10.3390/robotics12040093
https://doi.org/10.1109/TSMC.2023.3233965
https://doi.org/10.1145/3570723
https://doi.org/10.3390/electronics11142197
https://doi.org/10.1109/SANER53432.2022.00029
https://doi.org/10.3390/app122311958
https://books.google.co.id/books?hl=id&lr=&id=6tlhEAAAQBAJ
https://doi.org/10.1109/ACCESS.2022.3164393
https://doi.org/10.1109/ACCESS.2023.3305687
https://doi.org/10.3390/s22197675
https://doi.org/10.1007/s00521-021-06569-4
https://doi.org/10.1007/s00521-021-06569-4
https://doi.org/10.1016/j.simpat.2023.102815

496 Buletin Ilmiah Sarjana Teknik Elektro ISSN: 2685-9572

Buletin Ilmiah Sarjana Teknik Elektro, Vol. 5, No. 4, December 2023, pp. 475-497

[39] P. Galle, “Christopher Alexander’s Battle for Beauty in a World Turning Ugly: The Inception of a Science of

Architecture?,” She Ji: The Journal of Design, Economics, and Innovation, vol 6, no. 3, pp. 345-375, 2020,

https://doi.org/10.1016/j.sheji.2020.03.002.

[40] F. Mo, M. U. Querejeta, J. Hellewell, H. U. Rehman, M. I. Rezabal, J. C. Chaplin, D. Sanderson, and S. Ratchev,

"PLC orchestration automation to enhance human–machine integration in adaptive manufacturing systems," J.

Manuf. Syst., vol. 71, pp. 172-187, 2023, https://doi.org/10.1016/j.jmsy.2023.07.015.

[41] J. Axelsson, "Systems-of-Systems Design Patterns: A Systematic Literature Review and Synthesis," 2022 17th

Annual System of Systems Engineering Conference (SOSE), pp. 171-176, 2022,

https://doi.org/10.1109/SOSE55472.2022.9812681.

[42] I. A. Buckley and E. B. Fernandez, “Dependability Patterns: A Survey,” Computers, vol. 12, no. 10, p. 214, 2023,

https://doi.org/10.3390/computers12100214.

[43] A. Alami and O. Krancher, "How Scrum adds value to achieving software quality?" Empirical Software Engineering,

vol. 27, no. 7, pp. 165, 2022, https://doi.org/10.1007/s10664-022-10208-4.

[44] I. Arnold. Enterprise Architecture Function: A Pattern Language for Planning, Design and Execution. Springer

Nature. 2022. https://books.google.co.id/books?hl=id&lr=&id=FJtXEAAAQBAJ.

[45] S. Waseeb and V. Vranić, "Toward Organizational Pattern Ontology," in Proc. of the 27th European Conference on

Pattern Languages of Programs (EuroPLop '22), p. 20, 2023, https://doi.org/10.1145/3551902.3551983.

[46] O. Zimmermann, M. Stocker, D. Lubke, U. Zdun, and C. Pautasso, Patterns for API Design: Simplifying Integration

with Loosely Coupled Message Exchanges. Addison-Wesley Professional. 2022.

https://books.google.co.id/books?hl=id&lr=&id=2tnPEAAAQBAJ.

[47] V. M. Romero and E. B. Fernandez, "Towards a Reference Architecture for Cargo Ports," Future Internet, vol. 15,

no. 4, p. 139, 2023, https://doi.org/10.3390/fi15040139.

[48] B. Thapa, E. B. Fernandez, I. Cardei, and M. M. Larrondo-Petrie, "Abstract Entity Patterns for Sensors and

Actuators," Computers, vol. 12, p. 93, 2023, https://doi.org/10.3390/computers12050093.

[49] L. Li, L. F. Herrera, L. Liang, and N. Law, "An outcome-oriented pattern-based model to support teaching as a design

science," Instructional Science, pp. 1-32, 2022, https://doi.org/10.1007/s11251-021-09563-4.

[50] H. Washizaki, S. Ogata, A. Hazeyama, T. Okubo, E. B. Fernandez and N. Yoshioka, "Landscape of Architecture and

Design Patterns for IoT Systems," in IEEE Internet of Things Journal, vol. 7, no. 10, pp. 10091-10101, 2020,

https://doi.org/10.1109/JIOT.2020.3003528.

[51] O. I. Abiodun et al., "Comprehensive Review of Artificial Neural Network Applications to Pattern Recognition,"

in IEEE Access, vol. 7, pp. 158820-158846, 2019, https://doi.org/10.1109/ACCESS.2019.2945545.

[52] A. T. Azar, A. Koubaa, N. A. Mohamed, H. A. Ibrahim, Z. F. Ibrahim, M. Kazim, A. Ammar et al., "Drone deep

reinforcement learning: A review," Electronics, vol. 10, no. 9, p. 999, 2021,

https://doi.org/10.3390/electronics10090999.

[53] P. K. Muthusamy, M. Garratt, H. Pota and R. Muthusamy, "Real-Time Adaptive Intelligent Control System for

Quadcopter Unmanned Aerial Vehicles With Payload Uncertainties," in IEEE Transactions on Industrial Electronics,

vol. 69, no. 2, pp. 1641-1653, 2022, https://doi.org/10.1109/TIE.2021.3055170.

[54] V. Kangunde, R. S. Jamisola, and E. K. Theophilus, "A review on drones controlled in real-time," Int. J. Dyn. Control,

vol. 9, no. 4, pp. 1832-1846, Dec. 2021, https://doi.org/10.1007/s40435-020-00737-5.

[55] S. Hu, W. Ni, X. Wang, A. Jamalipour and D. Ta, "Joint Optimization of Trajectory, Propulsion, and Thrust Powers

for Covert UAV-on-UAV Video Tracking and Surveillance," in IEEE Transactions on Information Forensics and

Security, vol. 16, pp. 1959-1972, 2021, https://doi.org/10.1109/TIFS.2020.3047758.

[56] M. Aloqaily, R. Hussain, D. Khalaf, D. Slehat and A. Oracevic, "On the Role of Futuristic Technologies in Securing

UAV-Supported Autonomous Vehicles," in IEEE Consumer Electronics Magazine, vol. 11, no. 6, pp. 93-105, 1 Nov.

2022, https://doi.org/10.1109/MCE.2022.3141065.

[57] L. Zhao, L. Yan, X. Hu, J. Yuan, and Z. Liu, "Efficient and High Path Quality Autonomous Exploration and

Trajectory Planning of UAV in an Unknown Environment," ISPRS Int. J. Geo-Inf., vol. 10, no. 10, p. 631, 2021,

https://doi.org/10.3390/ijgi10100631.

[58] A. Ait Saadi, A. Soukane, Y. Meraihi, A. Benmessaoud Gabis, S. Mirjalili, and A. Ramdane-Cherif, "UAV Path

Planning Using Optimization Approaches: A Survey," Arch. Comput. Methods Eng., vol. 29, no. 6, pp. 4233-4284,

2022, https://doi.org/10.1007/s11831-022-09742-7.

[59] O. Saha, P. Dasgupta, and B. Woosley, "Real-time robot path planning from simple to complex obstacle patterns via

transfer learning of options," Autonomous Robots, vol. 43, no. 8, pp. 2071-2093, 2019,

https://doi.org/10.1007/s10514-019-09852-5.

[60] H. Yu, F. Zhang, P. Huang, C. Wang and L. Yuanhao, "Autonomous Obstacle Avoidance for UAV based on Fusion

of Radar and Monocular Camera," 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pp. 5954-5961, 2020, https://doi.org/10.1109/IROS45743.2020.9341432.

[61] X. Huang et al., “The Improved A* Obstacle Avoidance Algorithm for the Plant Protection UAV with Millimeter

Wave Radar and Monocular Camera Data Fusion,” Remote Sensing, vol. 13, no. 17, p. 3364, 2021,

https://doi.org/10.3390/rs13173364.

[62] Y. Zhou, B. Rao and W. Wang, "UAV Swarm Intelligence: Recent Advances and Future Trends," in IEEE Access,

vol. 8, pp. 183856-183878, 2020, https://doi.org/10.1109/ACCESS.2020.3028865.

https://doi.org/10.1016/j.sheji.2020.03.002
https://doi.org/10.1016/j.jmsy.2023.07.015
https://doi.org/10.1109/SOSE55472.2022.9812681
https://doi.org/10.3390/computers12100214
https://doi.org/10.1007/s10664-022-10208-4
https://books.google.co.id/books?hl=id&lr=&id=FJtXEAAAQBAJ
https://doi.org/10.1145/3551902.3551983
https://books.google.co.id/books?hl=id&lr=&id=2tnPEAAAQBAJ
https://doi.org/10.3390/fi15040139
https://doi.org/10.3390/computers12050093
https://doi.org/10.1007/s11251-021-09563-4
https://doi.org/10.1109/JIOT.2020.3003528
https://doi.org/10.1109/ACCESS.2019.2945545
https://doi.org/10.3390/electronics10090999
https://doi.org/10.1109/TIE.2021.3055170
https://doi.org/10.1007/s40435-020-00737-5
https://doi.org/10.1109/TIFS.2020.3047758
https://doi.org/10.1109/MCE.2022.3141065
https://doi.org/10.3390/ijgi10100631
https://doi.org/10.1007/s11831-022-09742-7
https://doi.org/10.1007/s10514-019-09852-5
https://doi.org/10.1109/IROS45743.2020.9341432
https://doi.org/10.3390/rs13173364
https://doi.org/10.1109/ACCESS.2020.3028865

497 Buletin Ilmiah Sarjana Teknik Elektro ISSN: 2685-9572

Advancing UAV Path Planning System: A Software Pattern Language for Dynamic Environments

(Gregorius Airlangga)

AUTHOR BIOGRAPHY

Gregorius Airlangga received the B.S. degree in information system from the Yos Sudarso

Higher School of Computer Science, Purwokerto, Indonesia, in 2014, and the M.Eng. degree in

informatics from Atma Jaya Yogyakarta University, Yogyakarta, Indonesia, in 2016. He got Ph.D.

degree with the Department of Electrical Engineering, National Chung Cheng University, Taiwan.

He is also an Assistant Professor with the Department of Information System, Atma Jaya Catholic

University of Indonesia, Jakarta, Indonesia. His research interests include artificial intelligence

and software engineering include path planning, machine learning, natural language processing,

deep learning, software requirements, software design pattern and software architecture.

