Long Short-Term Memory on Bitcoin Price Forecasting

Authors

  • Tuti Purwaningsih Universitas Islam Indonesia
  • Gita Evi Kusumandari Universitas Islam Indonesia

DOI:

https://doi.org/10.12928/mf.v3i1.3857

Keywords:

Bitcoin, LSTM, Forecasting, MAPE

Abstract

In modern times, many people rely on sophisticated technology to meet their needs. Already many technologies today can replace the role and function of society in the field of investment. There are many ways to fulfill the lives of these people, such as Bitcoin investment. Bitcoin is a digital asset that only exists in digital form by means of peer-to-peer work. To maximize profits, it is necessary to forecast Bitcoin prices when it will go up or down. This study tries to address the changes in Bitcoin prices whether to go up or down the next day with an artificial neural network model. The editor used in this study is the LSTM method. The data used is the Bitcoin blockchain data, namely time-series data in a one-day period from 1 January 2018 to 31 May 2019. Obtained forecasting results in June 2019 for Bitcoin to rise slowly and an accuracy value of 97.5% based on MAPE with the first day worth $8901.50.

Author Biography

Tuti Purwaningsih, Universitas Islam Indonesia

SCOPUS: 57193434157

References

Aflahi, T. (2018). Tutorial Deep Learning untuk Pemula. Diambil kembali dari https://pendekardata.com/tutorial-deep-learning-untuk-pemula/

Andi. (2008, November). Melakukan Preprocessing Data. Diambil kembali dari https://andyku.wordpress.com/2008/11/21/melakukan-preprocessing-data/

CoinDesk. Bitcoin Price (BTC). Diambil kembali dari https://www.coindesk.com/price/bitcoin

CoinMarketCap. Cryptocurrencies. Diambil kembali dari https://coinmarketcap.com/

Dadang, W. (2018, Februari). Memahami Kecerdasan Buatan berupa Deep Learning dan Machine Learning. Diambil kembali dari https://warstek.com/2018/02/06/deepmachinelearning/

Olah, C. (2015, Agustus). Understanding LSTM Networks. Diambil kembali dari http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Prijono, B. (2018, April). Pengenalan Long Short Term Memory (LSTM) dan Gated Recurrent Unit (GRU) – RNN Bagian 2. Diambil kembali dari https://indoml.com/2018/04/13/pengenalan-long-short-term-memory-lstm-dan-gated-recurrent-unit-gru-rnn-bagian-2/

Putra, M. W. (2018). Analisis dan implementasi Long Short Term Memory Neural Network untuk Prediksi Harga Bitcoin . e-Proceeding of Engineering.

Ryan, M. (2017). Pengenalan LSTM (Long Short Term Memory). Diambil kembali dari https://www.academia.edu/34438387/PENGENALAN_LSTM_LONG_SHORT_TERM_MEMORY_

Salwa, N., Tatsara, N. & dkk. (2018). Peramalan Harga Bitcoin Menggunakan Metode ARIMA (Autoregressive Integrated Moving Average). Journal of Data Analysis, 21-31.

Downloads

Published

2021-07-13

Issue

Section

Articles