Mobile and Forensics (MF)
Vol. 4, No. 1, February 2022, pp. 31-43
P-ISSN: 2656-6257, E-ISSN: 2714-6685, DOI: http://dx.doi.org/10.12928/mf.v4i1.5537

DIGITAL FORENSIC ANALYSIS OF TELEGRAM MESSENGER APP
IN ANDROID VIRTUAL ENVIRONMENT

1Ahmed Raza, Z2Muhammad Bilal Hassan
12School of Electrical Engineering and Computer Sciences (SEECS),
National University of Sciences and Technology (NUST), Islamabad, Pakistan
1 araza.msis20seecs@seecs.edu.pk; 2 mhassan.msis20seecs@seecs.edu.pk‘correspondence email

Abstract

The paper provides an in-depth analysis of the artifacts generated by the Telegram Messenger
application on Android OS which provides secure communications between individuals, groups, and
channels. Since the past few years, the application went through major changes and updates and the
latest version’s artifacts varied from the previous ones. Our methodology is based on the set of
experiments designed to generate the artifacts from various use cases on the virtualized environment.
The acquired artifacts such as messages, their location, and data structure how they relate to one
another were studied and were then compared to the older versions. By correlating the artifacts of
newer version with the older ones, it shows how the application have been upgraded behind the scenes
and by incorporating those results can provide investigators better understanding and insight for the
certain evidence in a potential cybercrime case.

Keywords: Telegram, Android, Digital forensics.

INTRODUCTION

Various social media applications over the internet nowadays provide a variety of
interesting set of features from texting, group chatting, notifications, location, contacts, file
sharing to statuses updates all free of cost [1]. This is especially accelerated as with the rise of 4,
5G era, making the old Short Message Service (SMS) out of age [2].

According to [3] the internet has 3.97 billion user — almost half the world’s population with
the highest usage in Asia. Applications are readily available at the any user’s ease offering
services at various levels and industries. This increasing usage with the rise of digital services has
led to the unlawful acts as well [4]. Any violation of law committed using computer technology
is now being identifies as cybercrime [5][6][7]. One of the most serious of those crimes may
include fraud, impersonation, and blackmailing.

In recent literature, smartphone forensics has been widely studied mainly focusing on
Android and iOS platforms due to their pervasiveness [8]. As a result, a vast range of techniques
and, methodologies are available that are used to extract and analysis the evidence from the
smartphones [9]. We try to leverage these body of work for extraction and analysis of the
Telegram application.

Anglano et al. 2017 [10] conducted forensic analysis on the Telegram application on
Android. The authors reconstructed the contact list and messages that were exchanged between
users. Using the logs file, they were able to map out the messages in chronological order with the
details of who, when, the messages were exchanged and when they deleted. However, the hash
functions were not used in this work.

Mabhajan [11] carried out the forensic analysis on WhatsApp and Viber — two of the most
popular instant messaging applications on the platform. They tried to find any data on the internal
memory of the device i.e., messages or media files etc. However, the paper does not focus on the
details of the artifacts or the evidence of their location.

Received January 2, 2022; Revised January 25, 2022; Accepted February 3 ,2022

32
[] P-ISSN: 2656-6257 | E-ISSN: 2714-6685

Agrawal et al. 2019 [12] performed the forensic analysis on Facebook application on the
virtualized android environment. They acquired the artifacts and performed user action and
monitored the changes in device and over the network as well. The analysis only focused on the
limited number of user activities.

Arshad et al. [13] explored the artifacts from Tor browser on the latest versions of Windows
10 and Android OS. They utilized storage, ADB logs. RAM and ZRAM on Android devices; a
first-time analysis of an Android swap file. The investigation showed that a significant evidence
extraction from these techniques can be achieved - approximately 60% and can be a considerable
alternative to performing RAM investigations especially when there are privacy applications in
question.

Asmara et al. [14] proposed a network forensic strategy for social messenger app named
Signal that identify the artifacts from the encrypted network traffic. Proposed strategy can easily
detect activities such as chatting, media messages, audio, and video calls by looking at the payload
patterns from the from encrypted traffic.

Anwar et al. [15] investigated the location data collected by Google when the GPS is
disabled on Android devices. They employed the live forensics on RAM with no evidence of such
data, however they found some similarities in the data collected by the associated Google account
which collects GPS locations from cellular networks, sensors and Wi-Fis with varying accuracy.

The paper focuses on the investigation into the digital forensics of social messaging
applications available on Android OS smartphones [16]. These applications are available through
Google Play Store and most of them are accessible free of cost. The goal of this paper to better
help understand to forensic analysis of the application Telegram and the process through which
and investigator may face during a cybercrime case.

The methodology of this paper can be summarized as follows:

1) Forensic methodology for an app running on Android smartphones.

2) Interpret the acquired artifacts from the analysis with predesigned user activities.

3) Furthermore, compare the results with the older version of the Telegram application.

In section II we map out our methodology used in the process. In, section III, we discuss
the results of the forensic and finally, we present the conclusions of this work in section IV.

METHODS

Given the objective of the forensic analysis the analysist must be allowed to obtain the
evidence by the app. The analysis methodology we proposed can be categorized in four different
sub parts.

A. Identification

We consider the role of the writers as a forensic investigators or analyst [17]. This part of
the methodology deals with the evidence identification. Where the said evidence is located or
stored, what materials re being used as digital evidence what activities are being performed by
the user on the application in question.

B. Preservation

In this part we preserve the evidence acquired during the entire acquisition in the forensic
analysis process. It is the most important part of the investigation where every artifact must be
preserved the way it was originally found as any modification intentionally or accidently may
cause inaccuracies in the analysis process further down the case and can even lead to the
cancellation of a well-established digital forensic case.

The process for acquisition in this paper was performed by Android Debug Bridge (ADB)
v31.0.2, Virtual Box v6.1, Gennymotion v.3.2.1, SQLite Database Browser v3.11.2 (Portable

MF, Vol. 4, No. 1, March 2022, 31-43.

33
MF E-ISSN: 2714-6685 |

version), Amaze file explorer and Notepad++ v7.5.4. The acquisition can only be done on a rooted
Android smartphone.

C. Analysis
After the digital evidence produced in the previous process of preservation, it must be read
for the analysis. The data cannot, however, be read directly. The help of tools as mentioned
previously were required and with those we were able to carry out the analysis process. The
method we used for this was to compare the results of the previous analysis [10] that uses an older
version of the telegram with the newest version that is now available today.
Fig.1 shoes the activities which are to be performed:
1) The initialization of the app: installation, signup, verification, launch.
2) CRUD operations on the contact: add, update, delete.
3) Messaging: sending text, media, contact, file, location sharing.
4) Furthermore, the uninstallation of the app.
5) Finally, the source code analysis and comparing all the above-mentioned parts one to one
with the old version of the app.

Start

|
| I

Application (
‘ Install App ‘

Functionalities” Source Code

()

‘ Artifacts ‘

Experiment Designs

Experiment i

" 4

‘Logs & System State‘
==

‘ Step n ‘ ‘ Comparison

{ Analysis ‘

Fig 1. Workflow of the application analysis and individual experiments

D. Presentation and Documentation

When all the previous mentioned steps have been carried out the final stage is to present
the results and conclusions resulted in the process. The artifacts generated as a result would be
compared with a previous version of the Telegram i.e., v3.15 which came out in 2016. The final
object is to figure out what changes, if any, is there to the application and verify if there is any
major change needed to carry out the forensic of the app now which will always help forensic
analyst prove the cybercrime committed in a relevant court.

RESULT AND DISCUSSIONS
A. Setup and Preparations

In this paper, the scope was to determine the residual data from an Android device using
sound forensic techniques on Telegram Messenger. User activities performed on the app is
necessary to perform a thorough investigation such as: downloading and installation of the
application, signing up into the app and then launching it for the first time; contacts creation,
update, deletion; message exchanges including sending out the text message, receiving the

Digital Forensic Analysis of Telegram Messenger App in Android Virtual Environment
Raza, Hassan

34
. P-ISSN: 2656-6257 | E-ISSN: 2714-6685

message, sending image; sharing contact and file. The test took place on a virtual Android
smartphone configured with generic settings for eliminating the specificity of hardware.

For this work a virtual phone was used customized according to an average android
smartphone configuration — 2GB of RAM, 2 Core processor, 16GB of storage with Android 8.1
having API level 27. Telegram Application version used was 7.7.2 (2293) which was the latest
release of the forensic analysis. Fig 2. Shows the startup and signing in the app in virtual
environment.

o Cum322

Your Phone

Pakistan
O romtactor Genymotica on

W Android AP +92 343 698 3781
3£ Density
1 sie

z Source

v v v v v

Suggest conlact names? Touch for info

1 20 3o -
4o Du O

Tows 8w G- @
* # 0+ >

Free for personal dses

Fig 2. Virtual Smartphone Setup using Gennymotion v.3.2.1

For the acquisition of the artifacts, we used live and as well as online tools while the
activities were happening in real time. We incorporated different tools to aid us to the access to a
rooted virtual device, file explorer and command line interface for analyzing the logs of the events
performed. At the end all the data generated along the activities were compiled to presented
including the files, files’ contents, and their locations.

B. Investigation
1) File Structure
During the extraction of the data, we found different files and folders relating to

the app directory in multiple location. Fig 3 shows the results of the findings. Firstly,
data/data/org.telegram.messenger.web contains multiple files important to the evidence
recovery. It stores all the files in the smartphone’s local storage relating to the activities
performed. The files folder contains the cache4.db file containing all the local cached
database including tables having data of contacts, users, groups, messages etc. In contrast,
data/org.telegram.messenger shows the normal directory in a non-rooted smartphone
where the most important files and shared prefs are not accessible.

MF, Vol. 4, No. 1, March 2022, 31-43.

35

MF E-ISSN: 2714-6685 n
data/data/org.telegram.messenger.web
(rooted)
1. cache
2. code_cache
3. databases
4. files (cache4.db file)
5. lib
6. no_backup
7. shared_prefs
Telegram data/org.telegram.messenger
File Structure (non-rooted)
1. cache
2. files
data/media/0/Telegram
Files and Media Storage
1. Telegram Audio
2. Telegram Documents
3. Telegram Images
K 4. Telegram Video
Fig 3. Telegram Files' Location and Structure
Finally, we have the location data/media/0/Telegram where the app stores its files
and media. These are the files which are downloaded from the message exchanges and
are stored on either the local or an external storage if present and selected as default; in
case of external storage the path is <sd_card name>/Telegram where sd_card name is
the name of the external card (without the angled braces) dependent on the model and
make as shown in Fig 4. In comparison to the unrooted device, we found that these stored
artifacts are sometimes stored on the cache folder temporarily.
& Memory card © ¢
M > Telegram
Telegram Images
1:47 PM - (64)
Telegram Video
1:47 PM - (2)
Telegram Audio
1:47 PM - (1)
Telegram Documents
1:47 PM-(17)
Fig 4. Files stored by Telegram in external memory
2) Initialization

The initialization included the downloading and installation of the application. After
the installation, the app was launched for the time for the signup. The signup included OTP
verification. We used ADB logcat for the online forensics and Genymotion own virtual
device log generation for offline forensics.

The Fig. 5 shows the entry in the users table in the cache4.db file with the user who
just signed into the application. This provide the evidence that the activity performed can

Digital Forensic Analysis of Telegram Messenger App in Android Virtual Environment
Raza, Hassan

36
[] P-ISSN: 2656-6257 | E-ISSN: 2714-6685

be proved through this method. We signed up with a mobile number which can clearly be
(unencrypted) in blob seen in the right section of the screen capture. The unique id can also
be seen for the user which is vital for the further investigation.

Table: | || users v IS hel A
Mode: |Binary v | .2 = Import Export SetasNULL | —

3 7b 04 00 02 0 d5 7c Sb b8 07 9c 2c | AX« {...a0|[.. ,

8 03 41 76 58 09 €1 6= 74 €8 €5 6c €9 | G[~@.AvX.antheli

0 Oc 39 32 33 34 33 36 39 38 33 37 38 | on...92343698378

0 77 60 65 cc 00 00 00 00 76 b6 31 1b | 1...w'el....vql.

1 cd c6 7f bc &7 19 08 27 5d 00 00 00 | .2eQiE We.."l...

0 cd c6 7f bc 7 19 08 27 5d 00 00 00 | ra..iE We.."]l...

0 04 00 00 00 3f 70 8c 00 €0 a4 ae 60 [téd...... ?pﬁ.éﬁ®‘

< >
Type of data currently in cell: Binary .

Apply

112 byte(s)
|16 1534907872 avx;;;anthelion 1622058208 BLOB

Fig 5. Database table showing user has signed into the app

The logs were obtained through adb logcat command with further filtration of the
type of log we wanted in the analysis for example adb -e logcat
org.telegram.messenger.org for filtering by the desired application processes and adb -e
*:D for displaying all the debug process in the virtual mobile. All the logs for these
activities are in Table 1. These logs can be useful as digital evidence in court later.

Table 1. App Setup and Initiation Logs

Activity Logs
Installation 06-18 18:25:18.230 1286 1286 I Finsky : [5] VerifylnstallTask.mI(6):
Verification complete: id=0, package_name=org.telegram.messenger.web
First 06-18 18:28:16.751 534 3187 1 ActivityManager: START u0
Launch {act=android.intent.action.MAIN cat=[android.intent.category.LAUNCHER]
flg=0x10000000 pkg=org.telegram.messenger.web
cmp=org.telegram.messenger.web/org.telegram.ui.LaunchActivity} from

uid 10019
Verificatio 06-18 18:28:17.787 534 3153 D VoldConnector: SND -> {8 volume mkdirs
n /storage/emulated/0/Android/data/org.telegram.messenger.web/cache/}

Opening 06-18 18:30:35.214 534 3070 I ActivityManager: START u0
{cmp=org.telegram.messenger.web/org.telegram.ui.LaunchActivity (has extras)}
from uid 10081

Regarding the comparison with the older version of the app, the file location and
structure of the telegram files and folder including their names remain the same.

3) Contacts
As with the previous user activity, same method was utilized to obtain this data.
Online log caught the relevant data during the performance of the activities related to the
contacts where user first added the contact and then edited it and deleting it afterwards. It

MF, Vol. 4, No. 1, March 2022, 31-43.

37
MF

E-ISSN: 2714-6685 |

could be used to strengthen the case in the case where a suspect might perform these
activities.

The same location where the signed in user is stored in cache4.db is also where all
the users and contacts can be seen. Each user has an id followed by a name. In Telegram a
name is a display name (or nickname) visible to the header of a message thread in the app
and multiple users can have the same display name. Whereas a username is a unique handle
distinguishing each user from each other. Both display name and unique handle are stored
in the users table separated by three semicolons as show in Fig 6. This is a crucial piece of
artifact that shows which user holds which name and their corresponding handle which
clearly distinguishes them for the other.

Table: ||| users v @ 6| = =
uid name status data
Filter Filter Filter [Filter |
1 777000 telegram;;; 0
2 136817688 channel;;;channel_bot 0
3 586954814 Tisis -100
4 698275978 daywalker;;;bilalhassan1 -100
5 735150795 i» weathery;;;weather... 0
6 962973735 jin <grandfather>;;;ma... -100
7 1031714261 muhammad raza shahid ... 0
8 1045761172 bahram;;; -100
9 1188353915 anonymous carlo;;;anon... -101
10 1242547689 monochrome;;; -100
11 1271266957 replies;;;replies 0
12 1316272383 ijeoma okoli;;; -100
13 1351960791 muhammad umer;;;pizz... -100
14 1431643403 obama .;;;blackratguy -101
15 1469738945 the ugly;;; -100
16 1534907872 avx;;;anthelion 1622058208

Fig 6. Database table showing all the users as evidence

In case of deletion of a contact, user contact v7 with the fields userID, forename,
surname is utilized with correlation to the table user phones v7 with the fields userID,
phone, sphone, and deleted which shows which contacts once were saved were removed.
Table 2. shows the log acquired through online forensic during the above-mentioned user
activities.

Table 2. Contact Activity Logs

Activity Logs

Adding 06-18 18:38:42.300 1187 2697 E ContactsDatabaseHelper:
Contact Mimetypevnd.android.cursor.item/vnd.org.telegram.messenger.android.pro
file not found in the MIMETYPES table

Editing 06-18 18:39:35.644 3783 3792 I chatty :
uid=10081(org.telegram.messenger.web) FinalizerDaemon identical 1 line

Deleting 06-18 18:59:31.215 1069 1876 I NetworkScheduler.Stats:

Contact Taskcom.google.android.gms/com.google.android.gms.icing.proxy.Icinglnte
rnalCorporaUpdateService finished executing. cause:9 result: 1
elapsed_millis: 95 uptime_millis: 95 exec_start_elapsed_seconds: 2822
[CONTEXT service_id=218]file "/data/app/org.telegram.messenger.web-
Wx9XXQMPqMBLM90V7iw0Dw==/base.apk"],nativeLibraryDirectories=[/
data/app/org.telegram.messenger.web-
Wx9XXQMPgMBLM90V7iw0Dw==/lib/x86,
/data/app/org.telegram.messenger.web-

Digital Forensic Analysis of Telegram Messenger App in Android Virtual Environment
Raza, Hassan

38

P-ISSN: 2656-6257 | E-ISSN: 2714-6685

4)

Wx9XXQMPqMBLM90V7iw0Dw==/base.apk!/lib/x86, /system/lib,
/system/vendor/lib]]

Opening 06-18 18:30:35.214 534 3070 I ActivityManager: START u0
{cmp=org.telegram.messenger.web/org.telegram.ui.LaunchActivity (has
extras)} from uid 10081

Uninstall 06-18 18:23:54.900 1286 1286 I Finsky : [5] sjg.s(3): Package no longer
installed: org.telegram.messenger.web

Regarding the comparison with the older version of minor changes are there within
the cache4.db database file i.e., the table names user_phone v3 and user contact v3 are
now changed to user phones v7 and user contact v7 respectively which seems to change
along with app’s version number.

Chat Messages

In this scenario, there were a few use cases performed — first, a simple text message
was sent to one of the contacts; secondly, an image was shared; after that, a media file was
sent followed by sharing a saved contact; finally, location was shared. All the logs were
accessed the same way as with the previous cases — through ADB and Genymotion’s own
log generation. Thought all the logs were massive in number filtering them out based on
the timestamp were necessary.

Fig 7. shows the messages table in the cache4.db file. Entry number 17 shows the
uid with 1188353915 identifying the user who sent the message and the blob displaying
the message itself unencrypted. This simple text is useful to the investigator finding out
the actual content of the message and other related information such as timestamp and
whether the message was sent or read until the acquisition.

Table: | |" | messages v @ 6| '™ \,5:] New Record,| | D

mid uid read_state send_state date data

Mode: |Binary v | |2 = Import Export Set as NULL

0000 d2 83 e3 bc 00 00 00 00 82 05 00 00 6d bc bl 9d | . *&84.... ...mht
0010 7b d7 d4 46 61 bé 76 €0 Ob €3 €8 €9 6c éc 20 6d | {xOFafv' .chill m
0020 €1 €1 72 6f 01 20 00 00 aaro. ..

Type of data currently in cell: Binary
40 byte(s)

I T e O 2 = u 1uivesuTee v

Apply

17 1410 1188353915 3 0 1618392673 BLOB 0
Fig 7. Screenshot showing entry in the cach4.db for a text message

Although any plain text message is visible in the SQLite database browser, the
media message is however, not readable. As described in [18] the message’s media file
name is visible in Telegram v3.4.2 it is not, however, the case with our analysis as shown
in Fig. 8. It is to be noted that any caption relating to a media message can be seen in the
section above and in some cases the snippet including in a URL is also saved in the database
in media_v2 table.

MF, Vol. 4, No. 1, March 2022, 31-43.

39
MF

E-ISSN: 2714-6685 |

5)

Mode: |Binary v | |52

0050 S5f 6a 96 cf 20 4f b% 9b 14 23 55 6d 8d c2 00 00 | j I 0 .#UmfA..
0060 97 99 ae €0 15 c4 b5 lc 04 00 00 00 2e bc b0 €0 ® .Ap...... u°a
0070 01 69 00 00 6a 01 28 17 8d 94 45 1f Ob cO a4 08 | .i..j. (.8 E..An.
0080 92 a6 71 90 6a el 84 30 cl 19 06 ab 3d b3 cé db | Riq#ij4 0. .«=E0
0090 al 07 03 b5 00 52 9a dl 94 =5 06 45 15 7e 39 15 | j..u.R N &.E.~9.
00a0 d3 2d 85 3e £4 50 05 fd 94 15 a7 46 eb 22 06 42 | O-F>36P.¥ .SF&".B
00b0 08 3d c5 3a 80 29 cd 66 92 £5 25 4f a8 ef 45 S5a | .=A:) IfR3%07iEZ
00cO 22 8a 00 cO b5 bd 92 dc 8c lc aé 79 15 b7 6f 71 | "¥.AwRUE. !v. -oq
00d0 1d c2 6e 8d be a3 d2 8a 28 02 Sa 28 a2 80 3f 00 | .An#elF(.zZ (¢ 2.
00e0 1b bé bf 77 01 6d 00 00 cd cé 7f bc d7 31 32 2e | .9¢w.m..IE wx12.
00£0 5d 00 00 00 97 13 02 00 b4 00 00 00 40 01 00 00 [J... ...’ ...@...
nlan 57 24 o0 00 1h he hf 77 01 78 00 00 cd cf 7f he W— Fiw w TF s

Type of data currently in cell: Binary
340 byte(s)

Database Structure Browse Data Edit Pragmas Execute SQL

Table: ||| media_v2 ~ @ 6| 'R LE:]

mid uid date type data
Filter Filter Filter |F\ ter Filter

24 6011 -597928325 1622055319 0 BLOB

Fig 8. Database showing contents of a media message

The logs were captured using the online forensics in the message exchanges as can
be seen in Table 3.

Table 3. Evidence of Logs in Message Exchanges

Activity Logs
Sending 06-18 19:05:09.601 3783 3788 1 zygote : Compiler allocated 14MB to
Plain Text compile void org.telegram.messenger.SendMessagesHelper.sendMessage
Receiving 06-18 19:06:52.528 391 4954 D AudioTrack: Client defaulted
Plain Text notificationFrames to 8169 for frameCount 24508
Sending 06-18 19:06:14.152 3783 3788 1 zygote : Compiler allocated 9MB to compile
Image void org.telegram.ui.Cells.DialogCell.buildLayout()
Sending 06-18 19:08:55.553 3783 3783 1 zygote : Deoptimizing void
File org.telegram.messenger.ImageReceiver.setlmage(org.telegram.messenger.l
mageLocation, java.lang.String, org.telegram.messenger.ImageLocation,
java.lang.String, org.telegram.messenger.ImageLocation, java.lang.String,
android.graphics.drawable.Drawable, int, java.lang.String, java.lang.Object,
int) due to JIT same target
Sending 06-18 19:10:22.254 471 471 D SurfaceFlinger: duplicate layer name:
Contact changing org.telegram.messenger.web/org.telegram.ui.LaunchActivity to
org.telegram.messenger.web/org.telegram.ui.LaunchActivity#2
Deleting 06-18 19:07:49.550 3783 3783 I zygote : Deoptimizing void
Message org.telegram.ui.ActionBar.ActionBarMenu.hideAllPopupMenus() due to JIT
inline cache

Source Code

Telegram uses TDS (Telegram Data Structure) to encode the information it stores.
Most of the user’s information the application stores are in the shared preferences which is
the mechanism to save states to the application after it has been terminated in Android OS
e.g., appLocked, loginTime, lastMyLocationShareTime, sharingMyLocationUntil,
passcodeRetryInMs etc. As discussed in the first section of the investigation process in File
Structure section the shared preference is stored in the shared prefs>userconfig.xml. One
of the most important pieces of information the stores is the user information in a serialized
form.

Digital Forensic Analysis of Telegram Messenger App in Android Virtual Environment
Raza, Hassan

40

P-ISSN: 2656-6257 | E-ISSN: 2714-6685

As shown in Fig. 9 one of the data types is the string with the user value for the user
to which the account belongs to. Telegram allows the feature to add more than one account
in which separate user configuration file is generated with names userconfigl and
userconfig2 and so on. These serialized strings are then deserialized using the TDS
extracted from the source code. The deserialization was not performed in our process as
this was not part of our proposed methodology. However, [19] provides all the schema
related to the data structures and all the other variables the application uses inside the code.
The source code provided [20] us useful in corelating the java classes with TDS which are
then can be used for the deserialization process.

<string
namez“f’:'”>wViEk3sEAALngxbuAecLEdbrNgDQXZYCWFud
GhlbGlvbgAADDKkyMzQzNjk4Mzc4MQAAAHAgZcwA
 ; AAAAd
rYxGxgy+FHan+85kuJlOAAABy4AUAch/vOcZCCddAAAAdO
AFAAQAAAA/chA4KSuYA——“’\ </string>

<int name="2dialogsLoadOffsetDate" value="0" />

Fig 9. Serialized String in userconfig.xml file

Regarding the comparison of the old and newer versions of the application we found
some changes being made to the TDS e.g., the case with user’s details the parameters used
are id, first name, last name, phone, photo, status, username as shown in Fig. 10 used to
deserialize the string is unchanged according to [https://core.telegram.org/schema]. As
with the case of java classes the source only provides the code up until v5 and cannot
therefore compare it accurately. However, comparing the analyzed code in [10] with the
v3, the class names does seem to be retaining their names.

Parameters

Name Type Description

id int User identifier

first_name string First name (see below)
last_name string Last name (see below)
access_hash long Checksum, dependant on user ID
phone string Phone number

photo UserProfilePhoto Profile photo

status UserStatus Current status

username string Username

Parameter added in Layer 18.

Fig 10. Name, their Data Type and Description for a User TDS

The analysis provided is guide that can be utilized by the investigators and forensic
analyst that could improve knowledge for cyberlaw professionals in finding artifacts on
Telegram Messenger application. We obtained some important data by performing some
pre-designed user activities on the app that gave us insight to how the application behaves
when certain actions are performed.

Table 4 shows the precise comparisons between the work conducted on the
Telegram v3.15 in 2017 and our four years later with the v7.7.2. With change to the
application version the Android OS itself has upgraded so it was important that we

MF, Vol. 4, No. 1, March 2022, 31-43.

41
MF

E-ISSN: 2714-6685 |

conducted our investigation on a newer version of the smartphone; in comparison we used
Android v8.1 to the older version v.4.4 and v7.1. Similarly, instead of using an actual
physical smartphone we setup a virtual environment to try and dig out the artifacts and
weigh out how much they differ. Finally, with the acquisition tools we used ADB in
comparison to the propriety Cellebrite UFED4PC in the original work.

Table 4. Comparison in the Forensic Setup Performed in [10] and in this work

Telegram v3.15 [10] Telegram v7.7.2
Android Mobile Device Emulator VirtualBox and Genymotion
Android v4.4-7.1 Android v8.1
Samsung Galaxy Core Plus Custom Phone
Cellebrite UFED4PC Android Debug Bridge

The gathered data was then put in comparison with the results of the forensics of the
old version of application. We compared the app artifacts’ locations, performed actions
related to contact’s addition, modification and deletion and difference type of messages
were exchanged. Upon the analysis we found that some of the database’s table names were
different such as user phone v3 and user contact v3 are now changed to user phones_v7
and user_contact v7 respectively which seems to change along with app’s version number.

Furthermore, the case with the message exchanges involving media, the location to
where the media was stored on the phone was unreadable. In the case of the source code
analysis, we were able to compare the v3 to v5 code and did not find any major changes
such as different java classes’ name and their location in the java package.

We present a brief guide to our findings at the end of our investigation. Table 5
shows two columns — the activities we performed and the locations that had an effect from
those activities. In short, either the database file was updated in case of activities with
signing in, contacts and plain messages. Whereas the location where all the media and files
are stored was impacted with the activities involving message exchanges with images,
location or contact sharing. This guide can provide insight to the investigators when looking
for the certain evidence in a potential cybercrime case.

Table 5. Activities Performed and Their Impacted Location on Telegram

Activity Locations
Signing up \data\data\org.telegram.messenger\files\cache4.db
Uninstallation \data\media\0\Telegram*
Contact Add \data\data\org.telegram.messenger\files\cache4.db
Contact Modify \data\data\org.telegram.messenger\files\cache4.db
Contact Deletion \data\data\org.telegram.messenger\files\cache4.db
Text Message \data\data\org.telegram.messenger\files\cache4.db
Media Message \data\media\0\Telegram*
Location Sharing \data\media\0\Telegram*
Contact Sharing \data\media\0\Telegram*

CONCLUSIONS
Based on the results obtained by the five major scenarios we conducted on Telegram Messenger
v7.7.2 on Android OS 8.1, this paper lays out the details of the artifacts and addition to those it

Digital Forensic Analysis of Telegram Messenger App in Android Virtual Environment
Raza, Hassan

42
[] P-ISSN: 2656-6257 | E-ISSN: 2714-6685

compares them to the older version as well. This not only provide a clearer perspective to the
forensic analysis to the application but also tries to map out the functionalities of the app, how
they impact the data and updates the forensic process accordance to the newer version. As a
conclusion, this work can be used by the digital forensic analyst on the field as a reference relating
to the data discovery and artifacts in a crime scene.

REFERENCES

[1] M. Landwehr, A. Borning, and V. Wulf, ‘The High Cost of Free Services: Problems with
Surveillance Capitalism and Possible Alternatives for IT Infrastructure’, in Proceedings of the
Fifth Workshop on Computing within Limits, Lappeenranta Finland, Jun. 2019, pp. 1-10. doi:
10.1145/3338103.3338106.

[2] C.Q.Lau, A. Cronberg, L. Marks, and A. Amaya, ‘In Search of the Optimal Mode for Mobile
Phone Surveys in Developing Countries. A Comparison of [IVR, SMS, and CATI in Nigeria’,
Survey Research Methods, pp. 305-318 Pages, Dec. 2019, doi: 10.18148/SRM/2019.V1313.7375.
[3] T. text provides general information S. assumes no liability for the information given being
complete or correct D. to varying update cycles and S. C. D. M. up-to-D. D. T. R. in the Text,
‘Topic: Internet usage worldwide’, Statista. https://www statista.com/topics/1145/internet-usage-
worldwide/ (accessed Mar. 07, 2022).

[4] C. Ruiz-Mafe, E. Bigné-Alcafiiz, and R. Curras-Pérez, ‘The effect of emotions, eWOM
quality and online review sequence on consumer intention to follow advice obtained from digital
services’, JOSM, vol. 31, no. 3, pp. 465—487, Jun. 2020, doi: 10.1108/JOSM-11-2018-0349.

[5] Department of IT Convergence Engineering, School of Electronic Engineering, Kumoh
National Institute of Technology, Gumi, South Korea, G. B. Satrya, and S. Y. Shin, ‘Optimizing
Rule on Open Source Firewall Using Content and PCRE Combination’, JACN, vol. 3, no. 4, pp.
308-314, 2015, doi: 10.18178/JACN.2015.3.4.188.

[6] G.B. Satrya, N. D. W. Cahyani, and R. F. Andreta, ‘The Detection of 8§ Type Malware botnet
using Hybrid Malware Analysis in Executable File Windows Operating Systems’, in Proceedings
of the 17th International Conference on Electronic Commerce 2015 - ICEC ’15, Seoul, Republic
of Korea, 2015, pp. 1-4. doi: 10.1145/2781562.2781567.

[7] G.B. Satrya, P. T. Daely, and S. Y. Shin, ‘Android forensics analysis: Private chat on social
messenger’, in 2016 Eighth International Conference on Ubiquitous and Future Networks
(ICUFN), Vienna, Austria, Jul. 2016, pp. 430-435. doi: 10.1109/ICUFN.2016.7537064.

[8] S.C. Sathe and N. M. Dongre, ‘Data acquisition techniques in mobile forensics’, in 2018 2nd
International Conference on Inventive Systems and Control (ICISC), Coimbatore, Jan. 2018, pp.
280-286. doi: 10.1109/ICISC.2018.8399079.

[9] L. D. Turner et al., ‘Evidence to support common application switching behaviour on
smartphones’, R. Soc. open sci., vol. 6, no. 3, p. 190018, Mar. 2019, doi: 10.1098/rs0s.190018.
[10]C. Anglano, M. Canonico, and M. Guazzone, ‘Forensic analysis of Telegram Messenger on
Android smartphones’, Digital Investigation, vol. 23, pp. 3149, Dec. 2017, doi:
10.1016/;.diin.2017.09.002.

[11]A. Mahajan, M. S. Dahiya, and H. P. Sanghvi, ‘Forensic Analysis of Instant Messenger
Applications on Android Devices’, IJCA, vol. 68, no. 8, pp. 3844, Apr. 2013, doi:
10.5120/11602-6965.

[12]A. K. Agrawal, A. Sharma, and P. Khatri, ‘Digital Forensic Analysis of Facebook App in
Virtual Environment’, 2019 6th International Conference on Computing for Sustainable Global
Development (INDIACom), Mar. 2019.

[13]M. R. Arshad, M. Hussain, H. Tahir, S. Qadir, F. I. Ahmed Memon, and Y. Javed, ‘Forensic
Analysis of Tor Browser on Windows 10 and Android 10 Operating Systems’, [EEE Access, vol.
9, pp. 141273-141294, 2021, doi: 10.1109/ACCESS.2021.3119724.

[14]A. Afzal, M. Hussain, S. Saleem, M. K. Shahzad, A. T. S. Ho, and K.-H. Jung, ‘Encrypted
Network Traffic Analysis of Secure Instant Messaging Application: A Case Study of Signal

MF, Vol. 4, No. 1, March 2022, 31-43.

43
MF E-ISSN: 2714-6685 |

Messenger App’, Applied Sciences, vol. 11, no. 17, p. 7789, Aug. 2021, doi:
10.3390/app11177789.

[15]N. Anwar, M. M. Mardhia, and L. Ryanto, ‘Live Forensics on GPS inactive Smartphone’,
mob.forensics.j, vol. 3, no. 1, pp. 32—44, Mar. 2021, doi: 10.12928/mf.v3i1.3847.

[16]N. Al Mutawa, J. Bryce, V. N. L. Franqueira, A. Marrington, and J. C. Read, ‘Behavioural
Digital Forensics Model: Embedding Behavioural Evidence Analysis into the Investigation of
Digital Crimes’, Digital Investigation, vol. 28, pp. 70-82, Mar. 2019, doi:
10.1016/j.diin.2018.12.003.

[17]B. O. Gardner, S. Kelley, D. C. Murrie, and 1. E. Dror, ‘What do forensic analysts consider
relevant to their decision making?’, Science & Justice, vol. 59, no. 5, pp. 516-523, Sep. 2019,
doi: 10.1016/j.scijus.2019.04.005.

[18]T. Hermawan, Y. Suryanto, F. Alief, and L. Roselina, ‘Android Forensic Tools Analysis for
Unsend Chat on Social Media’, in 2020 3rd International Seminar on Research of Information
Technology and Intelligent Systems (ISRITI), Yogyakarta, Indonesia, Dec. 2020, pp. 233-238.
doi: 10.1109/ISRITI51436.2020.9315364.

[19]°‘Schema’. https://core.telegram.org/schema (accessed Mar. 07, 2022).

[20]DrKLO, DrKLO/Telegram. 2022. Accessed: Jan. 07, 2022. [Online]. Available:
https://github.com/DrKLO/Telegram

Digital Forensic Analysis of Telegram Messenger App in Android Virtual Environment
Raza, Hassan

