
Mobile and Forensics (MF)
Vol. 4, No. 1, February 2022, pp. 31-43
P-ISSN: 2656-6257, E-ISSN: 2714-6685, DOI: http://dx.doi.org/10.12928/mf.v4i1.5537

Received January 2, 2022; Revised January 25, 2022; Accepted February 3 ,2022

DIGITAL	FORENSIC	ANALYSIS	OF	TELEGRAM	MESSENGER	APP	
IN	ANDROID	VIRTUAL	ENVIRONMENT	

	
1Ahmed	Raza,	2Muhammad	Bilal	Hassan	

1,2	School	of	Electrical	Engineering	and	Computer	Sciences	(SEECS),		
National	University	of	Sciences	and	Technology	(NUST),	Islamabad,	Pakistan	

1	araza.msis20seecs@seecs.edu.pk;	2	mhassan.msis20seecs@seecs.edu.pk*correspondence	email	

	
Abstract	

	

The	 paper	 provides	 an	 in-depth	 analysis	 of	 the	 artifacts	 generated	 by	 the	 Telegram	 Messenger	
application	on	Android	OS	which	provides	 secure	 communications	between	 individuals,	 groups,	 and	
channels.	Since	the	past	few	years,	the	application	went	through	major	changes	and	updates	and	the	
latest	 version’s	 artifacts	 varied	 from	 the	 previous	 ones.	 Our	 methodology	 is	 based	 on	 the	 set	 of	
experiments	designed	to	generate	the	artifacts	from	various	use	cases	on	the	virtualized	environment.	
The	 acquired	 artifacts	 such	 as	messages,	 their	 location,	 and	 data	 structure	 how	 they	 relate	 to	 one	
another	were	 studied	and	were	 then	compared	 to	 the	older	 versions.	By	 correlating	 the	artifacts	of	
newer	version	with	the	older	ones,	it	shows	how	the	application	have	been	upgraded	behind	the	scenes	
and	by	incorporating	those	results	can	provide	investigators	better	understanding	and	insight	for	the	
certain	evidence	in	a	potential	cybercrime	case.	

	
Keywords:	Telegram,	Android,	Digital	forensics.	
		
	
INTRODUCTION	

Various social media applications over the internet nowadays provide a variety of
interesting set of features from texting, group chatting, notifications, location, contacts, file
sharing to statuses updates all free of cost [1]. This is especially accelerated as with the rise of 4,
5G era, making the old Short Message Service (SMS) out of age [2].

According to [3] the internet has 3.97 billion user – almost half the world’s population with
the highest usage in Asia. Applications are readily available at the any user’s ease offering
services at various levels and industries. This increasing usage with the rise of digital services has
led to the unlawful acts as well [4]. Any violation of law committed using computer technology
is now being identifies as cybercrime [5][6][7]. One of the most serious of those crimes may
include fraud, impersonation, and blackmailing.

In recent literature, smartphone forensics has been widely studied mainly focusing on
Android and iOS platforms due to their pervasiveness [8]. As a result, a vast range of techniques
and, methodologies are available that are used to extract and analysis the evidence from the
smartphones [9]. We try to leverage these body of work for extraction and analysis of the
Telegram application.

Anglano et al. 2017 [10] conducted forensic analysis on the Telegram application on
Android. The authors reconstructed the contact list and messages that were exchanged between
users. Using the logs file, they were able to map out the messages in chronological order with the
details of who, when, the messages were exchanged and when they deleted. However, the hash
functions were not used in this work.

Mahajan [11] carried out the forensic analysis on WhatsApp and Viber – two of the most
popular instant messaging applications on the platform. They tried to find any data on the internal
memory of the device i.e., messages or media files etc. However, the paper does not focus on the
details of the artifacts or the evidence of their location.

32
 ■ P-ISSN: 2656-6257 | E-ISSN: 2714-6685

MF, Vol. 4, No. 1, March 2022, 31-43.

Agrawal et al. 2019 [12] performed the forensic analysis on Facebook application on the
virtualized android environment. They acquired the artifacts and performed user action and
monitored the changes in device and over the network as well. The analysis only focused on the
limited number of user activities.

Arshad et al. [13] explored the artifacts from Tor browser on the latest versions of Windows
10 and Android OS. They utilized storage, ADB logs. RAM and ZRAM on Android devices; a
first-time analysis of an Android swap file. The investigation showed that a significant evidence
extraction from these techniques can be achieved - approximately 60% and can be a considerable
alternative to performing RAM investigations especially when there are privacy applications in
question.

Asmara et al. [14] proposed a network forensic strategy for social messenger app named
Signal that identify the artifacts from the encrypted network traffic. Proposed strategy can easily
detect activities such as chatting, media messages, audio, and video calls by looking at the payload
patterns from the from encrypted traffic.

Anwar et al. [15] investigated the location data collected by Google when the GPS is
disabled on Android devices. They employed the live forensics on RAM with no evidence of such
data, however they found some similarities in the data collected by the associated Google account
which collects GPS locations from cellular networks, sensors and Wi-Fis with varying accuracy.

The paper focuses on the investigation into the digital forensics of social messaging
applications available on Android OS smartphones [16]. These applications are available through
Google Play Store and most of them are accessible free of cost. The goal of this paper to better
help understand to forensic analysis of the application Telegram and the process through which
and investigator may face during a cybercrime case.

The methodology of this paper can be summarized as follows:
1) Forensic methodology for an app running on Android smartphones.
2) Interpret the acquired artifacts from the analysis with predesigned user activities.
3) Furthermore, compare the results with the older version of the Telegram application.

In section II we map out our methodology used in the process. In, section III, we discuss

the results of the forensic and finally, we present the conclusions of this work in section IV.
	

METHODS	
Given the objective of the forensic analysis the analysist must be allowed to obtain the

evidence by the app. The analysis methodology we proposed can be categorized in four different
sub parts.

	
A.	 Identification	

We consider the role of the writers as a forensic investigators or analyst [17]. This part of
the methodology deals with the evidence identification. Where the said evidence is located or
stored, what materials re being used as digital evidence what activities are being performed by
the user on the application in question.

B.	 Preservation	

In this part we preserve the evidence acquired during the entire acquisition in the forensic
analysis process. It is the most important part of the investigation where every artifact must be
preserved the way it was originally found as any modification intentionally or accidently may
cause inaccuracies in the analysis process further down the case and can even lead to the
cancellation of a well-established digital forensic case.

The process for acquisition in this paper was performed by Android Debug Bridge (ADB)
v31.0.2, Virtual Box v6.1, Gennymotion v.3.2.1, SQLite Database Browser v3.11.2 (Portable

33
MF E-ISSN: 2714-6685 ■

Digital Forensic Analysis of Telegram Messenger App in Android Virtual Environment
Raza, Hassan

version), Amaze file explorer and Notepad++ v7.5.4. The acquisition can only be done on a rooted
Android smartphone.

C.	 Analysis	

After the digital evidence produced in the previous process of preservation, it must be read
for the analysis. The data cannot, however, be read directly. The help of tools as mentioned
previously were required and with those we were able to carry out the analysis process. The
method we used for this was to compare the results of the previous analysis [10] that uses an older
version of the telegram with the newest version that is now available today.
Fig.1 shoes the activities which are to be performed:
1) The initialization of the app: installation, signup, verification, launch.
2) CRUD operations on the contact: add, update, delete.
3) Messaging: sending text, media, contact, file, location sharing.
4) Furthermore, the uninstallation of the app.
5) Finally, the source code analysis and comparing all the above-mentioned parts one to one

with the old version of the app.
	

Fig	1.	Workflow	of	the	application	analysis	and	individual	experiments	

	
D.	 Presentation	and	Documentation	

When all the previous mentioned steps have been carried out the final stage is to present
the results and conclusions resulted in the process. The artifacts generated as a result would be
compared with a previous version of the Telegram i.e., v3.15 which came out in 2016. The final
object is to figure out what changes, if any, is there to the application and verify if there is any
major change needed to carry out the forensic of the app now which will always help forensic
analyst prove the cybercrime committed in a relevant court.	
	
RESULT	AND	DISCUSSIONS
A. Setup	and	Preparations	

In this paper, the scope was to determine the residual data from an Android device using
sound forensic techniques on Telegram Messenger. User activities performed on the app is
necessary to perform a thorough investigation such as: downloading and installation of the
application, signing up into the app and then launching it for the first time; contacts creation,
update, deletion; message exchanges including sending out the text message, receiving the

34
 ■ P-ISSN: 2656-6257 | E-ISSN: 2714-6685

MF, Vol. 4, No. 1, March 2022, 31-43.

message, sending image; sharing contact and file. The test took place on a virtual Android
smartphone configured with generic settings for eliminating the specificity of hardware.

For this work a virtual phone was used customized according to an average android
smartphone configuration – 2GB of RAM, 2 Core processor, 16GB of storage with Android 8.1
having API level 27. Telegram Application version used was 7.7.2 (2293) which was the latest
release of the forensic analysis. Fig 2. Shows the startup and signing in the app in virtual
environment.
	

	

	
Fig	2.	Virtual	Smartphone	Setup	using	Gennymotion	v.3.2.1	

For the acquisition of the artifacts, we used live and as well as online tools while the
activities were happening in real time. We incorporated different tools to aid us to the access to a
rooted virtual device, file explorer and command line interface for analyzing the logs of the events
performed. At the end all the data generated along the activities were compiled to presented
including the files, files’ contents, and their locations.
	
B. Investigation	
1)	 File	Structure	

During the extraction of the data, we found different files and folders relating to
the app directory in multiple location. Fig 3 shows the results of the findings. Firstly,
data/data/org.telegram.messenger.web contains multiple files important to the evidence
recovery. It stores all the files in the smartphone’s local storage relating to the activities
performed. The files folder contains the cache4.db file containing all the local cached
database including tables having data of contacts, users, groups, messages etc. In contrast,
data/org.telegram.messenger shows the normal directory in a non-rooted smartphone
where the most important files and shared_prefs are not accessible.

35
MF E-ISSN: 2714-6685 ■

Digital Forensic Analysis of Telegram Messenger App in Android Virtual Environment
Raza, Hassan

	

	
Fig	3.	Telegram	Files'	Location	and	Structure	

Finally, we have the location data/media/0/Telegram where the app stores its files
and media. These are the files which are downloaded from the message exchanges and
are stored on either the local or an external storage if present and selected as default; in
case of external storage the path is <sd_card_name>/Telegram where sd_card_name is
the name of the external card (without the angled braces) dependent on the model and
make as shown in Fig 4. In comparison to the unrooted device, we found that these stored
artifacts are sometimes stored on the cache folder temporarily.

	

	
Fig	4.	Files	stored	by	Telegram	in	external	memory	

2) Initialization	
The initialization included the downloading and installation of the application. After

the installation, the app was launched for the time for the signup. The signup included OTP
verification. We used ADB logcat for the online forensics and Genymotion own virtual
device log generation for offline forensics.

The Fig. 5 shows the entry in the users table in the cache4.db file with the user who
just signed into the application. This provide the evidence that the activity performed can

36
 ■ P-ISSN: 2656-6257 | E-ISSN: 2714-6685

MF, Vol. 4, No. 1, March 2022, 31-43.

be proved through this method. We signed up with a mobile number which can clearly be
(unencrypted) in blob seen in the right section of the screen capture. The unique id can also
be seen for the user which is vital for the further investigation.

	

	
Fig	5.	Database	table	showing	user	has	signed	into	the	app	

The logs were obtained through adb logcat command with further filtration of the
type of log we wanted in the analysis for example adb -e logcat
org.telegram.messenger.org for filtering by the desired application processes and adb -e
*:D for displaying all the debug process in the virtual mobile. All the logs for these
activities are in Table 1. These logs can be useful as digital evidence in court later.

Table	1.	App	Setup	and	Initiation	Logs	

Activity	 Logs	
Installation	 06-18	18:25:18.230	1286	1286	I	Finsky	:	[5]	VerifyInstallTask.mI(6):	

Verification	complete:	id=0,	package_name=org.telegram.messenger.web	
First	
Launch	

06-18	18:28:16.751	534	3187	I	ActivityManager:	START	u0	
{act=android.intent.action.MAIN	cat=[android.intent.category.LAUNCHER]	
flg=0x10000000	pkg=org.telegram.messenger.web	
cmp=org.telegram.messenger.web/org.telegram.ui.LaunchActivity}	from	
uid	10019	

Verificatio
n	

06-18	18:28:17.787	534	3153	D	VoldConnector:	SND	->	{8	volume	mkdirs	
/storage/emulated/0/Android/data/org.telegram.messenger.web/cache/}	

Opening	 06-18	18:30:35.214	534	3070	I	ActivityManager:	START	u0	
{cmp=org.telegram.messenger.web/org.telegram.ui.LaunchActivity	(has	extras)}	
from	uid	10081	

	
Regarding the comparison with the older version of the app, the file location and

structure of the telegram files and folder including their names remain the same.

3) Contacts	
As with the previous user activity, same method was utilized to obtain this data.

Online log caught the relevant data during the performance of the activities related to the
contacts where user first added the contact and then edited it and deleting it afterwards. It

37
MF E-ISSN: 2714-6685 ■

Digital Forensic Analysis of Telegram Messenger App in Android Virtual Environment
Raza, Hassan

could be used to strengthen the case in the case where a suspect might perform these
activities.

The same location where the signed in user is stored in cache4.db is also where all
the users and contacts can be seen. Each user has an id followed by a name. In Telegram a
name is a display name (or nickname) visible to the header of a message thread in the app
and multiple users can have the same display name. Whereas a username is a unique handle
distinguishing each user from each other. Both display name and unique handle are stored
in the users table separated by three semicolons as show in Fig 6. This is a crucial piece of
artifact that shows which user holds which name and their corresponding handle which
clearly distinguishes them for the other.

	
	

	
Fig	6.	Database	table	showing	all	the	users	as	evidence	

In case of deletion of a contact, user_contact_v7 with the fields userID, forename,
surname is utilized with correlation to the table user_phones_v7 with the fields userID,
phone, sphone, and deleted which shows which contacts once were saved were removed.
Table 2. shows the log acquired through online forensic during the above-mentioned user
activities.

	
Table	2.	Contact	Activity	Logs	

Activity	 Logs	
Adding	
Contact	

06-18	18:38:42.300	1187	2697	E	ContactsDatabaseHelper:	
Mimetypevnd.android.cursor.item/vnd.org.telegram.messenger.android.pro
file	not	found	in	the	MIMETYPES	table	

Editing		 06-18	18:39:35.644	3783	3792	I	chatty	:	
uid=10081(org.telegram.messenger.web)	FinalizerDaemon	identical	1	line	

Deleting	
Contact	

06-18	18:59:31.215	1069	1876	I	NetworkScheduler.Stats:	
Taskcom.google.android.gms/com.google.android.gms.icing.proxy.IcingInte
rnalCorporaUpdateService	finished	executing.	cause:9	result:	1	
elapsed_millis:	95	uptime_millis:	95	exec_start_elapsed_seconds:	2822	
[CONTEXT	service_id=218]file	"/data/app/org.telegram.messenger.web-
Wx9XXQMPqMBLM9OV7iw0Dw==/base.apk"],nativeLibraryDirectories=[/
data/app/org.telegram.messenger.web-
Wx9XXQMPqMBLM9OV7iw0Dw==/lib/x86,	
/data/app/org.telegram.messenger.web-

38
 ■ P-ISSN: 2656-6257 | E-ISSN: 2714-6685

MF, Vol. 4, No. 1, March 2022, 31-43.

Wx9XXQMPqMBLM9OV7iw0Dw==/base.apk!/lib/x86,	/system/lib,	
/system/vendor/lib]]	

Opening	 06-18	18:30:35.214	534	3070	I	ActivityManager:	START	u0	
{cmp=org.telegram.messenger.web/org.telegram.ui.LaunchActivity	(has	
extras)}	from	uid	10081	

Uninstall	 06-18	18:23:54.900	1286	1286	I	Finsky	:	[5]	sjg.s(3):	Package	no	longer	
installed:	org.telegram.messenger.web	

	
Regarding the comparison with the older version of minor changes are there within

the cache4.db database file i.e., the table names user_phone_v3 and user_contact_v3 are
now changed to user_phones_v7 and user_contact_v7 respectively which seems to change
along with app’s version number.

	
4) Chat	Messages	

In this scenario, there were a few use cases performed – first, a simple text message
was sent to one of the contacts; secondly, an image was shared; after that, a media file was
sent followed by sharing a saved contact; finally, location was shared. All the logs were
accessed the same way as with the previous cases – through ADB and Genymotion’s own
log generation. Thought all the logs were massive in number filtering them out based on
the timestamp were necessary.

Fig 7. shows the messages table in the cache4.db file. Entry number 17 shows the
uid with 1188353915 identifying the user who sent the message and the blob displaying
the message itself unencrypted. This simple text is useful to the investigator finding out
the actual content of the message and other related information such as timestamp and
whether the message was sent or read until the acquisition.

	

	
Fig	7.	Screenshot	showing	entry	in	the	cach4.db	for	a	text	message	

Although any plain text message is visible in the SQLite database browser, the
media message is however, not readable. As described in [18] the message’s media file
name is visible in Telegram v3.4.2 it is not, however, the case with our analysis as shown
in Fig. 8. It is to be noted that any caption relating to a media message can be seen in the
section above and in some cases the snippet including in a URL is also saved in the database
in media_v2 table.

39
MF E-ISSN: 2714-6685 ■

Digital Forensic Analysis of Telegram Messenger App in Android Virtual Environment
Raza, Hassan

	

	
Fig	8.	Database	showing	contents	of	a	media	message	

The logs were captured using the online forensics in the message exchanges as can
be seen in Table 3.

	
Table	3.	Evidence	of	Logs	in	Message	Exchanges	

Activity	 Logs	
Sending	
Plain	Text	

06-18	19:05:09.601	3783	3788	I	zygote	:	Compiler	allocated	14MB	to	
compile	void	org.telegram.messenger.SendMessagesHelper.sendMessage	

Receiving	
Plain	Text	

06-18	19:06:52.528	391	4954	D	AudioTrack:	Client	defaulted	
notificationFrames	to	8169	for	frameCount	24508	

Sending	
Image	

06-18	19:06:14.152	3783	3788	I	zygote	:	Compiler	allocated	9MB	to	compile	
void	org.telegram.ui.Cells.DialogCell.buildLayout()	

Sending	
File	

06-18	19:08:55.553	3783	3783	I	zygote	:	Deoptimizing	void	
org.telegram.messenger.ImageReceiver.setImage(org.telegram.messenger.I
mageLocation,	java.lang.String,	org.telegram.messenger.ImageLocation,	
java.lang.String,	org.telegram.messenger.ImageLocation,	java.lang.String,	
android.graphics.drawable.Drawable,	int,	java.lang.String,	java.lang.Object,	
int)	due	to	JIT	same	target	

Sending	
Contact	

06-18	19:10:22.254	471	471	D	SurfaceFlinger:	duplicate	layer	name:	
changing	org.telegram.messenger.web/org.telegram.ui.LaunchActivity	to	
org.telegram.messenger.web/org.telegram.ui.LaunchActivity#2	

Deleting	
Message	

06-18	19:07:49.550	3783	3783	I	zygote	:	Deoptimizing	void	
org.telegram.ui.ActionBar.ActionBarMenu.hideAllPopupMenus()	due	to	JIT	
inline	cache	

	
5) Source	Code	

Telegram uses TDS (Telegram Data Structure) to encode the information it stores.
Most of the user’s information the application stores are in the shared preferences which is
the mechanism to save states to the application after it has been terminated in Android OS
e.g., appLocked, loginTime, lastMyLocationShareTime, sharingMyLocationUntil,
passcodeRetryInMs etc. As discussed in the first section of the investigation process in File
Structure section the shared preference is stored in the shared_prefs>userconfig.xml. One
of the most important pieces of information the stores is the user information in a serialized
form.

40
 ■ P-ISSN: 2656-6257 | E-ISSN: 2714-6685

MF, Vol. 4, No. 1, March 2022, 31-43.

As shown in Fig. 9 one of the data types is the string with the user value for the user
to which the account belongs to. Telegram allows the feature to add more than one account
in which separate user configuration file is generated with names userconfig1 and
userconfig2 and so on. These serialized strings are then deserialized using the TDS
extracted from the source code. The deserialization was not performed in our process as
this was not part of our proposed methodology. However, [19] provides all the schema
related to the data structures and all the other variables the application uses inside the code.
The source code provided [20] us useful in corelating the java classes with TDS which are
then can be used for the deserialization process.

	
	

	
Fig	9.	Serialized	String	in	userconfig.xml	file	

Regarding the comparison of the old and newer versions of the application we found
some changes being made to the TDS e.g., the case with user’s details the parameters used
are id, first name, last name, phone, photo, status, username as shown in Fig. 10 used to
deserialize the string is unchanged according to [https://core.telegram.org/schema]. As
with the case of java classes the source only provides the code up until v5 and cannot
therefore compare it accurately. However, comparing the analyzed code in [10] with the
v3, the class names does seem to be retaining their names.

	
	

Fig	10.	Name,	their	Data	Type	and	Description	for	a	User	TDS	

The analysis provided is guide that can be utilized by the investigators and forensic
analyst that could improve knowledge for cyberlaw professionals in finding artifacts on
Telegram Messenger application. We obtained some important data by performing some
pre-designed user activities on the app that gave us insight to how the application behaves
when certain actions are performed.

Table 4 shows the precise comparisons between the work conducted on the
Telegram v3.15 in 2017 and our four years later with the v7.7.2. With change to the
application version the Android OS itself has upgraded so it was important that we

41
MF E-ISSN: 2714-6685 ■

Digital Forensic Analysis of Telegram Messenger App in Android Virtual Environment
Raza, Hassan

conducted our investigation on a newer version of the smartphone; in comparison we used
Android v8.1 to the older version v.4.4 and v7.1. Similarly, instead of using an actual
physical smartphone we setup a virtual environment to try and dig out the artifacts and
weigh out how much they differ. Finally, with the acquisition tools we used ADB in
comparison to the propriety Cellebrite UFED4PC in the original work.

	
Table	4.	Comparison	in	the	Forensic	Setup	Performed	in	[10]	and	in	this	work	

Telegram	v3.15	[10]	 Telegram	v7.7.2	
Android	Mobile	Device	Emulator	 VirtualBox	and	Genymotion	

Android	v4.4-7.1	 Android	v8.1	
Samsung	Galaxy	Core	Plus	 Custom	Phone	

Cellebrite	UFED4PC	 Android	Debug	Bridge	
	 	

	
The gathered data was then put in comparison with the results of the forensics of the

old version of application. We compared the app artifacts’ locations, performed actions
related to contact’s addition, modification and deletion and difference type of messages
were exchanged. Upon the analysis we found that some of the database’s table names were
different such as user_phone_v3 and user_contact_v3 are now changed to user_phones_v7
and user_contact_v7 respectively which seems to change along with app’s version number.

Furthermore, the case with the message exchanges involving media, the location to
where the media was stored on the phone was unreadable. In the case of the source code
analysis, we were able to compare the v3 to v5 code and did not find any major changes
such as different java classes’ name and their location in the java package.

We present a brief guide to our findings at the end of our investigation. Table 5
shows two columns – the activities we performed and the locations that had an effect from
those activities. In short, either the database file was updated in case of activities with
signing in, contacts and plain messages. Whereas the location where all the media and files
are stored was impacted with the activities involving message exchanges with images,
location or contact sharing. This guide can provide insight to the investigators when looking
for the certain evidence in a potential cybercrime case.

Table	5.	Activities	Performed	and	Their	Impacted	Location	on	Telegram	

Activity	 Locations	
Signing	up	 \data\data\org.telegram.messenger\files\cache4.db	

Uninstallation	 \data\media\0\Telegram*	
Contact	Add	 \data\data\org.telegram.messenger\files\cache4.db	
Contact	Modify	 \data\data\org.telegram.messenger\files\cache4.db	
Contact	Deletion	 \data\data\org.telegram.messenger\files\cache4.db	
Text	Message	 \data\data\org.telegram.messenger\files\cache4.db	
Media	Message	 \data\media\0\Telegram*	
Location	Sharing	 \data\media\0\Telegram*	
Contact	Sharing	 \data\media\0\Telegram*	

	
	
	
CONCLUSIONS	
Based on the results obtained by the five major scenarios we conducted on Telegram Messenger
v7.7.2 on Android OS 8.1, this paper lays out the details of the artifacts and addition to those it

42
 ■ P-ISSN: 2656-6257 | E-ISSN: 2714-6685

MF, Vol. 4, No. 1, March 2022, 31-43.

compares them to the older version as well. This not only provide a clearer perspective to the
forensic analysis to the application but also tries to map out the functionalities of the app, how
they impact the data and updates the forensic process accordance to the newer version. As a
conclusion, this work can be used by the digital forensic analyst on the field as a reference relating
to the data discovery and artifacts in a crime scene.
	
REFERENCES	
[1] M. Landwehr, A. Borning, and V. Wulf, ‘The High Cost of Free Services: Problems with
Surveillance Capitalism and Possible Alternatives for IT Infrastructure’, in Proceedings of the
Fifth Workshop on Computing within Limits, Lappeenranta Finland, Jun. 2019, pp. 1–10. doi:
10.1145/3338103.3338106.
[2] C. Q. Lau, A. Cronberg, L. Marks, and A. Amaya, ‘In Search of the Optimal Mode for Mobile
Phone Surveys in Developing Countries. A Comparison of IVR, SMS, and CATI in Nigeria’,
Survey Research Methods, pp. 305-318 Pages, Dec. 2019, doi: 10.18148/SRM/2019.V13I3.7375.
[3] T. text provides general information S. assumes no liability for the information given being
complete or correct D. to varying update cycles and S. C. D. M. up-to-D. D. T. R. in the Text,
‘Topic: Internet usage worldwide’, Statista. https://www.statista.com/topics/1145/internet-usage-
worldwide/ (accessed Mar. 07, 2022).
[4] C. Ruiz-Mafe, E. Bigné-Alcañiz, and R. Currás-Pérez, ‘The effect of emotions, eWOM
quality and online review sequence on consumer intention to follow advice obtained from digital
services’, JOSM, vol. 31, no. 3, pp. 465–487, Jun. 2020, doi: 10.1108/JOSM-11-2018-0349.
[5] Department of IT Convergence Engineering, School of Electronic Engineering, Kumoh
National Institute of Technology, Gumi, South Korea, G. B. Satrya, and S. Y. Shin, ‘Optimizing
Rule on Open Source Firewall Using Content and PCRE Combination’, JACN, vol. 3, no. 4, pp.
308–314, 2015, doi: 10.18178/JACN.2015.3.4.188.
[6] G. B. Satrya, N. D. W. Cahyani, and R. F. Andreta, ‘The Detection of 8 Type Malware botnet
using Hybrid Malware Analysis in Executable File Windows Operating Systems’, in Proceedings
of the 17th International Conference on Electronic Commerce 2015 - ICEC ’15, Seoul, Republic
of Korea, 2015, pp. 1–4. doi: 10.1145/2781562.2781567.
[7] G. B. Satrya, P. T. Daely, and S. Y. Shin, ‘Android forensics analysis: Private chat on social
messenger’, in 2016 Eighth International Conference on Ubiquitous and Future Networks
(ICUFN), Vienna, Austria, Jul. 2016, pp. 430–435. doi: 10.1109/ICUFN.2016.7537064.
[8] S. C. Sathe and N. M. Dongre, ‘Data acquisition techniques in mobile forensics’, in 2018 2nd
International Conference on Inventive Systems and Control (ICISC), Coimbatore, Jan. 2018, pp.
280–286. doi: 10.1109/ICISC.2018.8399079.
[9] L. D. Turner et al., ‘Evidence to support common application switching behaviour on
smartphones’, R. Soc. open sci., vol. 6, no. 3, p. 190018, Mar. 2019, doi: 10.1098/rsos.190018.
[10] C. Anglano, M. Canonico, and M. Guazzone, ‘Forensic analysis of Telegram Messenger on
Android smartphones’, Digital Investigation, vol. 23, pp. 31–49, Dec. 2017, doi:
10.1016/j.diin.2017.09.002.
[11] A. Mahajan, M. S. Dahiya, and H. P. Sanghvi, ‘Forensic Analysis of Instant Messenger
Applications on Android Devices’, IJCA, vol. 68, no. 8, pp. 38–44, Apr. 2013, doi:
10.5120/11602-6965.
[12] A. K. Agrawal, A. Sharma, and P. Khatri, ‘Digital Forensic Analysis of Facebook App in
Virtual Environment’, 2019 6th International Conference on Computing for Sustainable Global
Development (INDIACom), Mar. 2019.
[13] M. R. Arshad, M. Hussain, H. Tahir, S. Qadir, F. I. Ahmed Memon, and Y. Javed, ‘Forensic
Analysis of Tor Browser on Windows 10 and Android 10 Operating Systems’, IEEE Access, vol.
9, pp. 141273–141294, 2021, doi: 10.1109/ACCESS.2021.3119724.
[14] A. Afzal, M. Hussain, S. Saleem, M. K. Shahzad, A. T. S. Ho, and K.-H. Jung, ‘Encrypted
Network Traffic Analysis of Secure Instant Messaging Application: A Case Study of Signal

43
MF E-ISSN: 2714-6685 ■

Digital Forensic Analysis of Telegram Messenger App in Android Virtual Environment
Raza, Hassan

Messenger App’, Applied Sciences, vol. 11, no. 17, p. 7789, Aug. 2021, doi:
10.3390/app11177789.
[15] N. Anwar, M. M. Mardhia, and L. Ryanto, ‘Live Forensics on GPS inactive Smartphone’,
mob.forensics.j, vol. 3, no. 1, pp. 32–44, Mar. 2021, doi: 10.12928/mf.v3i1.3847.
[16] N. Al Mutawa, J. Bryce, V. N. L. Franqueira, A. Marrington, and J. C. Read, ‘Behavioural
Digital Forensics Model: Embedding Behavioural Evidence Analysis into the Investigation of
Digital Crimes’, Digital Investigation, vol. 28, pp. 70–82, Mar. 2019, doi:
10.1016/j.diin.2018.12.003.
[17] B. O. Gardner, S. Kelley, D. C. Murrie, and I. E. Dror, ‘What do forensic analysts consider
relevant to their decision making?’, Science & Justice, vol. 59, no. 5, pp. 516–523, Sep. 2019,
doi: 10.1016/j.scijus.2019.04.005.
[18] T. Hermawan, Y. Suryanto, F. Alief, and L. Roselina, ‘Android Forensic Tools Analysis for
Unsend Chat on Social Media’, in 2020 3rd International Seminar on Research of Information
Technology and Intelligent Systems (ISRITI), Yogyakarta, Indonesia, Dec. 2020, pp. 233–238.
doi: 10.1109/ISRITI51436.2020.9315364.
[19] ‘Schema’. https://core.telegram.org/schema (accessed Mar. 07, 2022).
[20] DrKLO, DrKLO/Telegram. 2022. Accessed: Jan. 07, 2022. [Online]. Available:
https://github.com/DrKLO/Telegram
	

