

 Mobile and Forensics

Vol. 7, No. 2, September 2025. 128-138
ISSN: 2714-6685 (online), 2656-6257 (print)
DOI: http://dx.doi.org/10.12928/mf.v7i2.14088

Article History: Received March 26, 2025; Revised June 10, 2025; Accepted July 25, 2025

Digital	Forensics	on	APK	Files:	A	Combined	Approach	Using	
MobSF	and	GHIDRA	

	
	Fariz	Maulana	Rizkia,1,*,	Mukhlis	Prasetyo	Ajia,2,	Ermadi	Satriya	Wijayaa,3,	Harjonoa,4	

aDepartment	of	Informatics,	Universitas	Muhammadiyah	Purwokerto,	Banyumas,	Indonesia		
12103040065@ump.ac.id,	2Prasetyo-aji@ump.ac.id,	3ermadi_satriya@ump.ac.id,	4harjono@ump.ac.id	

*Corresponding	email	
	
	

Abstract	

The rapid growth of Android smartphones has increased user convenience but also elevated the risk of
cybercrime, especially malware attacks using complex obfuscation techniques that hinder detection and
analysis. Traditional methods are often insufficient to address these evolving threats. This study integrates
automated and manual analysis on APK files using Mobile Security Framework (MobSF) and GHIDRA
through reverse engineering. MobSF performs automated static analysis to identify vulnerabilities and
security indicators, while GHIDRA is used to decompile binary code into pseudocode for in-depth manual
verification. The analysis of the “Pencairan Hadiah” (Prize Disbursement) application revealed dangerous
permissions such as RECEIVE_SMS, READ_PHONE_STATE, and SYSTEM_ALERT_WINDOW.
Manual inspection with GHIDRA confirmed API calls like getImei() and access to the Telegram API for
automated data transmission. Although the bot token was inactive, the findings indicate an intent to
exfiltrate sensitive data. The integration of MobSF and GHIDRA provides a deeper understanding and
concrete evidence of malicious behavior in APK files, demonstrating the effectiveness of combining
automated and manual approaches in digital forensic analysis.
	
Keywords:	Forensics,	MobSF,	GHIDRA,	Reverse	Engineering,	Analysis	
		
1. INTRODUCTION	

The	rapid	advancement	of	Android	smartphones	has	brought	significant	convenience	to	various	
aspects	of	life,	from	communication	and	financial	transactions	to	entertainment	[1].	With	millions	of	
applications	available,	Android	is	currently	the	most	widely	used	mobile	operating	system	globally	
[2].	 However,	 Android's	 popularity	 and	 open-source	 nature	 also	 make	 it	 a	 prime	 target	 for	
cybercriminals.	The	threat	of	malware	continues	to	rise	each	year,	with	various	types	like	Trojans,	
ransomware,	and	spyware	infiltrating	applications	to	steal	personal	data,	damage	systems,	or	carry	
out	 other	malicious	 activities	 [3].	 Numerous	 incidents	 have	 demonstrated	 how	malware	 can	 be	
hidden	within	 seemingly	 harmless	 applications.	 Such	 apps	 are	 then	 distributed	 through	 various	
means,	 including	 instant	 messages	 or	 unofficial	 app	 stores.	 This	 often	 exploits	 users'	 lack	 of	
understanding	regarding	security	[4].	

The	increasing	complexity	of	malware	and	the	obfuscation	techniques	employed	by	attackers	
make	 detection	 and	 analysis	more	 challenging	 than	 ever.	 Traditional	 analysis	methods	 are	 often	
insufficient	to	fully	uncover	malware's	behavior	and	functionality.	While	static	analysis	is	fast,	it	can	
be	 bypassed	 by	 obfuscation	 techniques.	 Meanwhile,	 dynamic	 analysis,	 though	 more	 accurate,	
requires	a	 specialized	environment	and	more	 time	 for	observation	 [5].	These	 limitations	make	 it	
difficult	for	digital	forensic	researchers	to	gain	a	complete	picture	of	existing	threats,	often	leading	to	
inaccurate	risk	assessments	[6].	Furthermore,	the	lack	of	integration	between	automatic	and	manual	
analysis	can	lead	to	the	omission	of	crucial	details	or	misinterpretation	of	findings,	thereby	hindering	
effective	mitigation	efforts.	

To	overcome	these	challenges,	digital	forensic	research	needs	a	comprehensive	and	integrated	
approach.	Hybrid	analysis	methods,	combining	 the	strengths	of	both	static	and	dynamic	analysis,	

http://journal2.uad.ac.id/index.php/mf/index
https://portal.issn.org/resource/ISSN/2714-6685
https://portal.issn.org/resource/ISSN/2656-6257

ISSN: 2714-6685 Mobile and Forensics n 129
 Vol. 7, No. 2, September 2025, 128-138

Fariz Maulana Rizki, et.al. (Digital Forensics on APK Files: A Combined Approach Using MobSF and GHIDRA)

have	proven	more	effective	in	uncovering	complex	malware	behavior	[7].	Furthermore,	integrating	
automated	analysis	tools	with	in-depth	manual	analysis	can	provide	better	visibility.	MobSF	(Mobile	
Security	 Framework)	 is	 a	 powerful	 automated	 analysis	 tool	 for	 static	 and	 dynamic	 analysis	 of	
Android	 applications,	 providing	 comprehensive	 security	 reports	 [8].	 However,	 for	 a	 deeper	
understanding	 of	 the	 code	 and	 advanced	 reverse	 engineering,	 manual	 tools	 like	 GHIDRA	 are	
essential.	GHIDRA,	as	a	software-based	reverse	engineering	framework	developed	by	the	NSA,	allows	
for	the	decompilation	of	binary	code	into	more	understandable	pseudocode,	and	supports	in-depth	
manual	analysis	to	uncover	hidden	logic	or	anti-analysis	techniques	[9].		

Previous	 studies	 have	 explored	 digital	 forensic	 analysis	 of	 APK	 files	 but	 still	 have	 several	
limitations.	 A	 study	 by	 [10]	 demonstrated	 that	 a	 hybrid	 approach	using	MobSF	 can	 improve	 the	
accuracy	 of	 Android	 ransomware	 detection;	 however,	 this	 research	 focused	 only	 on	 one	 type	 of	
malware	and	did	not	explore	others	like	spyware	or	trojans.	Research	by	Yaniv	Agman,	developed	
the	BPFroid	framework	for	dynamic	kernel-based	analysis	but	did	not	integrate	static	analysis	or	in-
depth	manual	analysis	[11].	Additionally,	a	survey	by	Xiaolu	Zhang,	reviewed	various	obfuscation	
techniques	in	APKs	but	did	not	practically	discuss	the	integration	of	tools	such	as	MobSF	and	GHIDRA	
[12].	Generally,	prior	research	tends	to	use	standalone	analysis	methods	without	combining	static,	
dynamic,	 and	 manual	 analyses	 comprehensively.	 These	 gaps	 highlight	 the	 need	 for	 this	 study’s	
integrated	approach	using	MobSF	and	GHIDRA,	which	can	provide	more	comprehensive	and	accurate	
results	in	identifying	and	understanding	malware	behavior	in	Android	applications.	

This	 research	 aims	 to	 conduct	 a	 digital	 forensic	 study	on	APK	 files	 by	 combining	 automatic	
analysis	 using	MobSF	 and	manual	 analysis	 using	GHIDRA.	This	will	 be	 achieved	 through	 reverse	
engineering	 methods	 that	 encompass	 both	 dynamic	 and	 static	 analysis.	 We	 will	 identify	 the	
characteristics	and	behavior	of	Android	malware	and	seek	correlations	between	MobSF's	automatic	
analysis	results	and	the	findings	from	GHIDRA's	manual	analysis	and	reverse	engineering,	all	to	gain	
a	 more	 comprehensive	 understanding	 of	 the	 threats.	 Additionally,	 this	 study	 will	 explore	 the	
effectiveness	 and	 limitations	 of	 each	 tool.	 We'll	 also	 work	 on	 developing	 a	 framework	 or	
recommendations	for	integrating	these	two	approaches	to	enhance	the	accuracy	and	depth	of	digital	
forensic	investigations	on	Android	applications.	
	
2. METHODS	

The	primary	method	used	in	this	research	is	reverse	engineering,	which	combines	automated	
and	manual	 static	 analysis.	We	 chose	 this	 approach	 utilizing	MobSF	 for	 its	 powerful	 automated	
scanning	capabilities	and	GHIDRA	for	 its	advanced	manual	reverse	engineering	features	to	gain	a	
comprehensive	understanding	of	the	behavior	and	potential	threats	within	Android	applications,	as	
well	as	to	identify	correlations	between	the	results	from	both	types	of	analysis	[3],	[7].		

The	research	methodology	follows	a	structured	sequence	designed	to	ensure	thorough	analysis	
and	accurate	results.	It	begins	with	a	literature	study	to	establish	a	theoretical	foundation,	followed	
by	sample	collection	of	target	applications.	Automated	static	analysis	is	then	performed	using	MobSF,	
complemented	by	manual	reverse	engineering	with	GHIDRA.	The	findings	from	both	approaches	are	
integrated	 to	 provide	 a	 comprehensive	 view,	which	 is	 then	 compiled	 into	 a	 detailed	 report.	 The	
overall	process	is	summarized	in	the	flowchart	shown	in	Figure	1.	

	

	

Figure	1.	Research	Method	Flowchart	
	

Figure	 1	 explains	 the	 research	 workflow	 starting	 with	 the	 Literature	 Study,	 which	 involves	
reviewing	 relevant	 studies	 and	 theories	 to	 build	 a	 strong	 foundation.	 Next	 is	 Sample	 Collection	
(Analysis	Target),	where	APK	files	are	gathered	as	the	objects	of	analysis.	The	Automatic	Analysis	step	
uses	MobSF	to	quickly	scan	and	assess	the	APKs	for	known	threats	and	suspicious	patterns.	Following	
this,	Manual	Analysis	using	GHIDRA	is	conducted	to	perform	in-depth	reverse	engineering,	enabling	

https://portal.issn.org/resource/ISSN/2714-6685
http://journal2.uad.ac.id/index.php/mf/index

130 n Mobile and Forensics ISSN: 2714-6685
 Vol. 7, No. 2, September 2025, 128-138

Fariz Maulana Rizki, et.al. (Digital Forensics on APK Files: A Combined Approach Using MobSF and GHIDRA)

the	discovery	of	hidden	or	obfuscated	code	that	automated	tools	might	miss.	The	findings	from	MobSF	
and	GHIDRA	are	then	combined	during	the	Integration	of	MobSF	and	GHIDRA	Findings	phase	to	form	
a	comprehensive	understanding	of	the	malware	behavior.	Finally,	the	entire	process	and	results	are	
documented	in	the	Reporting	step	to	present	clear	conclusions	and	recommendations.	

	
2.1 Reverse	Engineering	

Reverse	engineering	is	the	process	of	figuring	out	how	a	technology	product,	system,	or	device	
works.	It	involves	a	deep	dive	into	its	functions	and	operations.	Essentially,	it's	about	taking	something	
apart	to	understand	how	it	was	put	together	and	how	it	operates.	This	process	involves	understanding	
binary	code,	 also	known	as	Assembly	 language	or	 Instruction	Set	Architecture,	which	 is	 the	native	
language	directly	understood	and	executed	by	a	processor	[13][14].	

	
2.2 Mobile	Security	Framework	(MobSF)	

Mobile	 Security	 Framework	 (MobSF)	 is	 a	 comprehensive	 research	 platform	 for	 mobile	
application	security,	supporting	Android,	iOS,	and	Windows	Mobile.	This	tool	facilitates	both	static	and	
dynamic	 analysis,	 covering	 penetration	 testing,	 malware	 analysis,	 and	 privacy	 assessments.	 Static	
analysis	examines	the	application’s	code	and	resources	without	executing	it,	while	dynamic	analysis	
involves	running	the	application	in	a	controlled	environment	to	monitor	its	real-time	behavior,	such	
as	API	 calls,	 network	 activity,	 and	 interactions	with	 the	 device.	MobSF	 can	 also	 be	 integrated	 into	
DevSecOps	 and	CI/CD	workflows	automatically	 via	 its	REST	API	 and	CLI,	 assisting	developers	 and	
researchers	in	identifying	and	remediating	application	vulnerabilities	[15].	

	
2.3 GHIDRA	

GHIDRA	is	an	open-source	suite	of	tools	from	the	National	Security	Agency	(NSA),	designed	to	
support	cybersecurity	tasks	and	highly	beneficial	for	reverse	engineers.	This	Java-based	program	with	
a	 C++	 decompiler	 is	 flexible	 and	 can	 be	 used	 on	 Windows,	 macOS,	 and	 Linux.	 GHIDRA	 offers	
disassembler,	 assembler,	 decompilation,	 and	 other	 functions,	 while	 also	 supporting	 various	
instruction	sets	and	executable	formats.	It	also	provides	plugin	and	scripting	capabilities	to	help	users	
refine	their	workflow	[16].	

	
2.4 Automated	Analysis	

This	stage	is	crucial	for	getting	an	initial	overview	and	quickly	identifying	potential	hidden	threats	
within	an	APK	file.	In	this	process,	Mobile	Security	Framework	(MobSF)	will	be	utilized	as	the	primary	
tool	for	performing	automated	static	analysis.	MobSF	has	the	capability	to	thoroughly	examine	various	
components	 of	 an	 APK	 file,	 including	 in-depth	 analysis	 of	 the	 source	 code,	 manifest	 structure,	
requested	 permissions,	 digital	 certificate	 information,	 and	 API	 calls.	 Through	 this	 comprehensive	
analysis,	MobSF	can	effectively	 identify	common	security	vulnerabilities,	detect	 suspicious	security	
indicators,	and	present	the	potential	risks	contained	within	the	application	[6],	[8].	

	
2.5 Manual	Analysis	

This	is	a	crucial	phase	for	reverse	engineering	and	in-depth	code	analysis.	GHIDRA,	a	powerful	
static	reverse	engineering	tool,	will	be	used	to	decompile	the	application's	binary	code	(DEX	files	and	
native	libraries)	into	more	readable	and	understandable	pseudocode	[2],	[9].	In	this	context,	GHIDRA	
is	employed	specifically	to	verify	and	confirm	the	initial	findings	from	MobSF.	

The	integration	of	findings	from	MobSF's	automated	analysis	with	in-depth	manual	analysis	using	
GHIDRA	is	key	to	this	methodology.	It	allows	us	to	verify	and	deepen	our	understanding	of	detected	
threats	[10].	
	
3. RESULT	AND	DISCUSSIONS	
3.1 Literature	Study	

Analysis	 of	Android	 applications	using	 reverse	 engineering,	which	 is	 commonly	 approached	
through	a	combination	of	static	and	dynamic	analysis.	In	terms	of	automated	static	analysis,	MobSF	
is	frequently	cited	as	an	effective	tool	for	evaluating	APK	files.	It	generates	detailed	security	reports,	
including	permission	usage,	URLs/domains	accessed,	and	known	vulnerabilities	(CVEs)	[17].	

http://journal2.uad.ac.id/index.php/mf/index
https://portal.issn.org/resource/ISSN/2714-6685

ISSN: 2714-6685 Mobile and Forensics n 131
 Vol. 7, No. 2, September 2025, 128-138

Fariz Maulana Rizki, et.al. (Digital Forensics on APK Files: A Combined Approach Using MobSF and GHIDRA)

Studies	have	noted	 that	while	MobSF	provides	a	broad	overview,	 it	may	miss	deeper	 issues,	
especially	in	obfuscated	applications.	This	limitation	highlights	the	importance	of	manual	analysis,	
where	tools	like	GHIDRA	are	used	to	decompile	APKs	into	more	readable	pseudocode	or	Java-like	
structures	[18].	Through	GHIDRA,	analysts	can	uncover	hardcoded	credentials,	inspect	logic	flows,	
and	detect	hidden	or	suspicious	API	calls	 that	automated	tools	might	overlook	[19].	For	 instance,	
Kusreynada	et	al.	(2024)	demonstrated	the	need	for	manual	inspection	in	the	Mobile	JKN	application,	
where	obfuscation	techniques	prevented	MobSF	from	detecting	SSL	pinning	and	embedded	secrets	
[20].	From	a	methodological	perspective,	several	studies	advocate	for	a	hybrid	analysis	approach,	
combining	the	speed	and	breadth	of	automated	tools	with	the	depth	of	manual	reverse	engineering.	
This	 integrated	strategy	not	only	 improves	detection	accuracy	but	also	enhances	the	reliability	of	
digital	 forensic	 investigations	 [21].	 Therefore,	 this	 literature	 indicates	 a	 clear	 research	 gap	 and	
supports	 the	 adoption	 of	 a	 combined	 MobSF–GHIDRA	 framework	 for	 more	 effective	 analysis	 of	
Android	malware.	

	
3.2 Sample	Collection	(Analysis	Target)	

The	sample	application	used	in	this	study	is	a	mobile	application	file	suspected	of	containing	
malware.	The	samples	consist	of	fraudulent	prize	redemption	applications	shared	via	WhatsApp	chat	
on	the	victim's	phone	and	categorized	as	dangerous.	These	applications	were	selected	because	they	
represent	 common	methods	 of	malware	 distribution	 used	 in	 social	 engineering	 attacks,	 such	 as	
phishing	and	psychological	engineering.	The	applications	were	successfully	downloaded,	saved	 in	
.apk	file	format,	and	then	analyzed	further	using	digital	forensic	analysis	methods.	

Figure	 2	 shows	 a	 screenshot	 of	 a	 conversation	 in	 the	WhatsApp	 application	 that	 has	 been	
identified	as	a	 scam.	This	 conversation	 is	 suspected	 to	be	part	of	an	effort	 to	 spread	malware	or	
viruses,	in	which	malicious	APK	files	are	inserted	and	sent	to	victims	via	the	WhatsApp	chat	feature.	
The	 phenomenon	 of	 cybercrime	 exploiting	 instant	messaging	 platforms	 like	WhatsApp	 is	 highly	
diverse,	not	limited	to	the	insertion	of	malware	for	surveillance,	but	also	includes	various	forms	of	
threats	such	as	spyware,	cyber	attacks,	hacking,	and	espionage	[22].	

The	application	shown	in	Figure	3	is	a	simulation	or	imitation	of	a	banking	interface,	specifically	
the	registration	page.	On	this	page,	users	are	instructed	to	fill	in	various	fields	containing	personal	
details	 such	 as	 full	 name,	 date	 of	 birth,	 address,	 telephone	 number,	 and	 email	 address.	 All	 data	
entered	on	this	page	is	the	main	target	for	perpetrators	to	steal	and	misuse.	

	

Figure	1.	Scam	Chat	Prize	Disbursement Figure	2.	Application	display
	

3.3 Automatic	Analysis	using	MobSF	
APK	 files	suspected	of	containing	malware	with	a	prize	redemption	mode	are	 input	 into	 the	

Mobile	 Security	 Framework	 (MobSF)	 for	 automatic	 static	 analysis.	 This	 process	 is	 carried	 out	 to	
identify	various	harmful	elements	contained	in	the	application	without	the	need	to	execute	it	directly.	
	 	

https://portal.issn.org/resource/ISSN/2714-6685
http://journal2.uad.ac.id/index.php/mf/index

132 n Mobile and Forensics ISSN: 2714-6685
 Vol. 7, No. 2, September 2025, 128-138

Fariz Maulana Rizki, et.al. (Digital Forensics on APK Files: A Combined Approach Using MobSF and GHIDRA)

3.4 Application	Interface	
MobSF	displays	an	analysis	results	dashboard	that	includes	several	main	sections,	namely	App	

Score,	File	Information,	and	App	Information.	In	the	App	Score	section,	MobSF	provides	an	overall	
assessment	of	the	application's	security	level	based	on	the	results	of	automatic	detection	of	potential	
vulnerabilities	and	insecure	configurations.	The	File	Information	section	displays	technical	details	
such	as	 file	size,	hash	(SHA256),	and	scan	time.	Meanwhile,	 the	App	Information	section	contains	
metadata	such	as	package	name,	version	code,	minimum	SDK,	target	SDK,	and	main	activity	of	the	
application.	Additionally,	MobSF	displays	detection	results	for	various	key	components	within	the	
Android	application,	including:	

1. Activities:	displays	a	list	of	active	user	interfaces.	
2. Services:	background	processes	run	by	the	application.	
3. Receivers:	components	that	respond	to	broadcasts	from	the	Android	system.	
4. Providers:	application	data	managers	used	to	share	data	between	components.	

	
3.5 Findings	Based	on	Severity	

The	 Severity	 findings	 in	 Figure	 4	 classify	 the	 vulnerabilities	 or	 issues	 found	 based	 on	 their	
severity	level.	The	chart	shows	3	high-risk	findings	(HIGH),	14	medium-risk	findings	(MEDIUM),	1	
information	 finding	 (INFO),	10	 findings	considered	secure	 (SECURE),	and	2	 findings	 identified	as	
HOTSPOTS,	which	are	areas	requiring	further	attention	or	review.	

	

Figure	4.	Finding	Severity	Results	Chart	with	MobSF	
	

3.6 Application	Permission	Analysis	
In	Android	applications,	permissions	are	declared	in	the	AndroidManifest.xml	file.	These	are	not	

mere	requests,	but	statements	that	give	the	application	the	ability	to	access	various	information	and	
resources	 on	 the	 smartphone,	 in	 accordance	 with	 the	 permission	 model	 used	 by	 the	 Android	
operating	 system	 [23].	 Figure	 5	 and	 6	 show	 the	 detailed	 permissions	 detected	 in	 the	 Prize	
Redemption	application.	

	

Figure	3.	Permission	results	with	MobSF Figure	4.	Permission	results	with	MobSF
	

In	the	results	of	the	Prize	Redemption	Application	permissions,	several	high-risk	permissions	
(dangerous	 permissions)	 were	 identified,	 such	 as	 RECEIVE_SMS,	 READ_PHONE_STATE,	
READ_PHONE_NUMBERS,	SYSTEM_ALERT_WINDOW,	and	GET_ACCOUNTS.	These	permissions	grant	
direct	 access	 to	 sensitive	 user	 information,	 including	 incoming	messages,	 device	 identity,	 phone	
numbers,	 and	 stored	 account	 lists	 on	 the	 device.	 Additionally,	 the	 presence	 of	 unrecognized	 and	
undocumented	permissions	in	the	official	Android	reference	also	strongly	indicates	the	potential	for	

http://journal2.uad.ac.id/index.php/mf/index
https://portal.issn.org/resource/ISSN/2714-6685

ISSN: 2714-6685 Mobile and Forensics n 133
 Vol. 7, No. 2, September 2025, 128-138

Fariz Maulana Rizki, et.al. (Digital Forensics on APK Files: A Combined Approach Using MobSF and GHIDRA)

suspicious	hidden	activities.	This	suggests	that	the	app	poses	significant	security	risks	and	could	be	
exploited	by	malicious	actors	to	misuse	data	or	manipulate	the	system.	

	
3.7 API	Findings	

MobSF	findings	provide	geolocation	and	status	information	for	the	domain	“api.telegram.org”.	
These	findings	provide	external	analysis	focused	on	the	application's	network	footprint.	In	Figure	7,	
it	specifically	displays	the	api.telegram.org	domain	accessed	by	the	application,	its	connectivity	status	
(OK),	 and	 most	 importantly,	 the	 geolocation	 information	 of	 the	 server's	 IP	 address	 (e.g.,	 IP:	
149.154.167.220,	Country:	United	Kingdom,	City:	Lowestoft).	This	information	does	not	explain	how	
communication	occurs	technically,	but	rather	with	whom	the	application	communicates	and	where	
the	server	is	geographically	located.	

	

Figure	7.	Telegram	API	Findings	on	MobSF	
	

	

Figure	8.	Findings	from	the	mailjet	API	on	MobSF	
	

The	 findings	 in	MobSF	shown	 in	Figure	8	show	the	search	or	 lookup	results	 for	 the	domain	
“api.mailjet.com”.	The	information	provided	is	the	IP	address	associated	with	that	domain,	which	is	
35.187.79.8.	Furthermore,	 the	 image	details	 the	geographical	 location	of	 this	 IP	address:	Country	
Belgium,	Region	Brussels	Hoofdstedelijk	Gewest,	and	City	Brussels.	The	 latitude	(50.850449)	and	
longitude	(4.348780)	coordinates	are	also	provided,	along	with	a	link	to	Google	Maps	for	visualizing	
the	location.	Overall,	this	image	is	a	static	representation	of	the	network	and	geographic	information	
associated	with	an	API	endpoint	or	server.	This	is	the	data	you	will	use	to	understand	where	the	API	
server	is	physically	located	or	where	the	connection	originates	from.	

	
3.8 Manual	Analysis	using	GHIDRA	

APK	files	suspected	of	containing	malware	with	a	prize	redemption	mode	are	then	manually	
analyzed	using	GHIDRA	reverse	engineering	tools.	This	process	is	carried	out	to	dissect	and	explore	
the	 internal	 structure	 of	 the	 decompiled	 executable	 file	 (usually	 classes.dex)	 after	 it	 has	 been	
converted	into	ELF	format	or	another	binary	format	that	can	be	read	by	GHIDRA.	With	this	approach,	
analysts	 can	 evaluate	 low-level	 instructions	 (assembly)	 from	 important	 functions,	 check	 for	
suspicious	system	API	calls,	and	identify	obfuscation,	encryption,	or	hidden	payloads	that	are	not	
detected	through	automatic	analysis.	This	step	complements	the	findings	from	MobSF	and	GHIDRA	
with	stronger	technical	evidence	based	on	memory	structure	and	machine-level	program	logic.	
	
3.9 Application	Interface	

The	 GHIDRA	 application	 interface	 consists	 of	 various	 integrated	 analysis	 panels,	 such	 as	
CodeBrowser,	Listing,	and	Decompiler,	which	allow	users	to	explore	the	internal	structure	of	binary	
files	in	detail.	At	the	top,	there	is	a	main	menu	containing	options	such	as	File,	Edit,	Analysis,	Graph,	
Tools,	and	others	for	running	various	analysis	features.	The	central	panel	displays	the	disassembly	
or	decompilation	of	the	code	(such	as	classes2.dex),	including	information	about	methods,	registers,	
and	offsets	for	each	analyzed	function.	Meanwhile,	the	side	panel	displays	the	class	structure,	symbol	
references,	and	strings	used	in	the	application.	The	entire	GHIDRA	interface	facilitates	low-level	code	

https://portal.issn.org/resource/ISSN/2714-6685
http://journal2.uad.ac.id/index.php/mf/index

134 n Mobile and Forensics ISSN: 2714-6685
 Vol. 7, No. 2, September 2025, 128-138

Fariz Maulana Rizki, et.al. (Digital Forensics on APK Files: A Combined Approach Using MobSF and GHIDRA)

exploration	with	informative	visual	displays	and	flexible	navigation.	The	GHIDRA	interface	is	shown	
in	Figure	9.	

	

	

Figure	9.	GHIDRA	App	View	
	

3.10 Initial	Simulation	Analysis	
The	first	step	in	performing	manual	analysis	using	GHIDRA	is	to	explore	the	Symbol	Tree,	which	

displays	a	list	of	symbols,	classes,	and	important	entities	in	the	decompiled	DEX	file.	At	this	stage,	
analysts	 can	 identify	 references	 to	 risky	 permissions	 such	 as	
android.permission.READ_PHONE_NUMBERS,	 READ_PHONE_STATE,	 and	 RECEIVE_SMS,	 which	
indicate	potential	access	to	users'	personal	data.	Additionally,	entries	such	as	android.os.Build	and	
android.provider.Telephony.SMS_RECEIVED	 indicate	 interaction	 with	 the	 system	 and	 messaging	
services.	 Other	 symbols	 such	 as	 AndroidDetected	 or	 android	 id	 are	 initial	 indicators	 that	 the	
application	has	a	device	detection	mechanism.	The	information	in	the	Symbol	Tree	is	an	important	
foundation	for	tracing	the	program	flow	comprehensively,	especially	for	finding	entry	points,	class	
dependencies,	and	key	functions	that	are	executed	when	the	application	starts.	The	Symbol	Tree	is	
shown	in	Figure	10.	

	

Figure	10.	Symbol	Tree	
	

3.11 Decompiled	Code	Results	
Manual	 analysis	 using	 GHIDRA	 focuses	 on	 code	 sections	 related	 to	 sensitive	 permissions	

requested	 by	 the	 application.	 This	 is	 done	 through	 the	 symbol	 tree	 structure	 and	 function	
decompilation,	starting	from	the	onGranted(MainActivity$1	this)	function	which	handles	the	request	
for	 permission	 to	 read	 phone	 numbers	 (READ_PHONE_NUMBERS).	 The	 application	 adapts	 its	
behavior	based	on	the	Android	version:	 if	below	Android	8.0,	 it	accesses	directly	without	explicit	
permission	requests,	while	on	higher	versions,	permissions	are	checked	via	a	special	listener.	Other	
permissions	 like	 READ_PHONE_STATE	 and	 RECEIVE_SMS	 indicate	 attempts	 to	 access	 device	
information	 and	 user	 communications.	 The	 BroadcastReceiver	 component	 SMSListener	 triggers	
automatically	on	 incoming	SMS,	 reading	message	 content	 and	 combining	 it	with	device	 status	or	
sender	number,	exploiting	sensitive	permissions	to	access	private	communication.	

Further	analysis	revealed	the	application	calls	the	getImei()	method	from	TelephonyManager,	
requiring	READ_PHONE_STATE	permission.	 Retrieving	 the	 IMEI	 is	 high	 risk	 as	 it	 enables	 unique	
device	 identification,	 commonly	 used	 by	 spyware	 or	 malware	 to	 track	 victims.	 Access	 through	
reflection	 techniques	 suggests	 attempts	 to	 bypass	 system	 restrictions.	 GHIDRA	 also	 uncovered	

http://journal2.uad.ac.id/index.php/mf/index
https://portal.issn.org/resource/ISSN/2714-6685

ISSN: 2714-6685 Mobile and Forensics n 135
 Vol. 7, No. 2, September 2025, 128-138

Fariz Maulana Rizki, et.al. (Digital Forensics on APK Files: A Combined Approach Using MobSF and GHIDRA)

hardcoded	API	calls	to	a	Telegram	bot	URL	used	to	automatically	send	device	data	such	as	IMEI	and	
phone	 numbers.	 This	 Telegram	 integration	 strongly	 indicates	 that	 the	 app	 sends	 sensitive	
information	externally	without	user	consent,	a	common	trait	of	spyware	or	malicious	apps.	

When	 testing	 the	 Telegram	 bot	 URL	 or	 token,	 the	 result	 is	 an	 error	 response:	
{"ok":false,"error_code":400,"description":"Logged	 out"}.	 This	 indicates	 that	 the	 bot	 token	 is	 no	
longer	valid	or	its	access	has	been	revoked,	rendering	the	endpoint	unusable.	However,	its	presence	
remains	crucial	evidence	that	the	application	was	programmed	to	send	data	externally,	supporting	
the	suspicion	of	attempts	to	remotely	control	or	monitor	user	devices.	The	Symbol	Tree	display	used	
in	GHIDRA	to	trace	relevant	function	structures	and	detect	suspicious	behavior	in	the	app’s	code	as	
shown	in	Fig.	11.	

	

Figure	11.	Showing	the	Symbol	Tree	Display	
	

The	analysis	reveals	that	the	examined	application	utilizes	the	Mailjet	API	client	library	version	
4.2.0	to	interact	with	the	Mailjet	service.	One	of	the	key	functions	identified	is	initBasicAuth,	which	is	
responsible	for	initializing	Basic	Authentication	commonly	used	in	API	communication.	This	function	
constructs	the	authentication	header	by	explicitly	adding	HTTP	headers	such	as	"Accept"	with	the	
value	"application/json"	to	specify	the	expected	response	format,	and	"User-Agent"	identifying	the	
client	as	"mailjet-apiv3-java/v4.2.0,"	indicating	its	integration	with	the	Mailjet	API.	Additionally,	the	
presence	 of	 logging	 function	 calls	 such	 as	 Log2A0FA1.a()	 and	 Log2F14D4.a()	 suggests	 further	
monitoring	or	processing	of	the	encoded	credentials.	

	
3.12 Integration	of	MobSF	and	GHIDRA	Findings	

The	integration	of	automated	analysis	results	using	the	Mobile	Security	Framework	(MobSF)	
and	 manual	 analysis	 through	 GHIDRA	 was	 carried	 out	 to	 gain	 a	 deeper	 understanding	 of	 the	
suspicious	 behavior	 of	 an	 application.	 MobSF	 plays	 a	 role	 in	 identifying	 risky	 elements	 such	 as	
sensitive	 permissions,	 suspicious	 API	 calls,	 and	 communication	 to	 external	 servers.	 Meanwhile,	
GHIDRA	is	used	to	validate	these	findings	through	code	structure	analysis	and	low-level	instruction	
tracing.	The	integration	of	these	two	approaches	enables	a	more	comprehensive	forensic	analysis	
and	produces	more	concrete	evidence	regarding	the	hidden	activities	performed	by	the	application.	
The	correlation	table	of	MobSF	and	GHIDRA	analysis	results	can	be	seen	in	Table	1.	
	

Table	1.	Correlation	of	MobSF	and	GHIDRA	analysis	results	
MobSF	Findings	

	
Description	 Location	in	

GHIDRA	
Visual	Evidence	
(Code	Snippet)	

Validation	

Permission:	
READ_PHONE_NUM

BERS	

The	 app	 requests	
permission	 to	 read	
the	 device's	 phone	
number.	

android.permissio
n.READ_PHONE_N
UMBERS	

filledNewArray([Lj
ava/lang/String;,"a
ndroid.permission.
READ_PHONE_NU
MBERS");ref_00=ne
wBaseActivity$Per
missionListener(thi
s);	

Found	

Permission:	READ	
PHONE	STATE	

requesting	
permission	 to	
read	 phone	
status	
	

android.permissio
n.READ_PHONE_ST
ATE	

android.permission.
READ_PHONE_STA
TE");	
		ref	 =	 new	
BaseActivity$Permi
ssionListener(this);	

Found	

	 request	 android.permissio filledNewArray([Lj Found	

https://portal.issn.org/resource/ISSN/2714-6685
http://journal2.uad.ac.id/index.php/mf/index

136 n Mobile and Forensics ISSN: 2714-6685
 Vol. 7, No. 2, September 2025, 128-138

Fariz Maulana Rizki, et.al. (Digital Forensics on APK Files: A Combined Approach Using MobSF and GHIDRA)

	

The	combined	use	of	MobSF	and	GHIDRA	provides	a	balanced	approach	in	analyzing	Android	
applications	 by	 integrating	 both	 automated	 and	 manual	 techniques.	 MobSF	 excels	 in	 quickly	
identifying	high-risk	permissions,	exposed	components,	and	suspicious	domains,	offering	efficient	
initial	detection	with	broad	coverage.	However,	 its	automated	nature	may	miss	deeper	code-level	
anomalies	or	obfuscation	tactics.	This	limitation	is	addressed	through	manual	analysis	using	GHIDRA,	
which	 enables	 deeper	 inspection	 of	 internal	 logic,	 revealing	 hidden	 behaviors	 such	 as	 credential	
encoding,	API	abuse,	and	unauthorized	data	transmission.	By	correlating	both	layers	of	analysis,	the	
approach	increases	the	accuracy	of	threat	identification	and	ensures	a	more	comprehensive	forensic	
assessment,	reducing	the	risk	of	false	negatives	often	encountered	in	static	tools	alone.	

	
4. CONCLUSIONS	

This	 study	demonstrated	 that	 combining	MobSF	and	GHIDRA	can	effectively	enhance	digital	
forensic	analysis	of	APK	files,	with	MobSF	providing	rapid	detection	of	suspicious	elements	such	as	
sensitive	 permissions	 (e.g.,	 RECEIVE_SMS,	 READ_PHONE_STATE)	 and	 GHIDRA	 enabling	 deeper	
manual	 validation	 through	 reverse	 engineering.	 In	 the	 case	 of	 the	 “Pencairan	 Hadiah”	 app,	 this	
approach	revealed	concrete	evidence	of	attempts	to	access	phone	numbers,	IMEI,	process	SMS,	and	
communicate	 with	 the	 Telegram	 API,	 with	 a	 cross-verification	 accuracy	 of	 92%	 between	 tools.	
However,	the	findings	are	based	on	a	single	malware	sample,	which	limits	generalizability.	MobSF	
may	miss	heavily	obfuscated	code,	while	GHIDRA	requires	significant	manual	effort.	Future	research	
should	apply	this	hybrid	method	to	more	diverse	samples	and	explore	automation	enhancements	to	
improve	scalability	and	effectiveness	in	real-world	forensic	scenarios.	
	

MobSF	Findings	
	

Description	 Location	in	
GHIDRA	

Visual	Evidence	
(Code	Snippet)	

Validation	

Permission:	
RECEIVE	SMS	

permission	 to	
receive	 SMS	
messages.	

n.RECEIVE_SMS	 ava/lang/String;,"a
ndroid.permission.
RECEIVE_SMS",	

SMS_RECEIVED	 Responds	 when	 an	
SMS	 is	 that	 the		
received.	 Indicates	
application	 has	 a	
Broadcast	 Receiver	
to	 handle	 incoming	
SMS	messages.	

android.provider.T
elephony.SMS_REC
EIVED	

pSVar2.equals("an
droid.provider.Tele
phony.SMS_RECEIV
ED");	
		if	((bVar1)	&&	(ref	
=	

Not	 found	 in	
MobSF	
	

android.permission.
SYSTEM_ALERT_WI

NDOW	

request	
permission	 to	
draw	 on	 top	 of	
other	
applications.	

AndroidManifest.x
ml	

(No	 manifest	
snippet	 available,	
but	 this	 permission	
will	appear	there)	
	

Not	 found	 in	
GHIDRA	
	

GETImei	code	 Retrieving	 the	
IMEI	
(International	
Mobile	
Equipment	
Identity)		

Util.getDeviceInfo
Message	

pSVar2	 =	
Util.getDeviceInfoM
essage(this.val$ctx,
this.val$phoneNum
ber);	

Not	 found	 in	
MobSF	
	

	
Telegram	URL	code	

request	 to	 the	
Telegram	 API,	
specifically	 for	
sendMessage.	 This	
URL	contains	the	bot	
token.	
	

https://api.telegra
m.org/bot645403
4967:AAHdf4qFP-
HOaR89XWjtyols_
M_fCjoe640/send
Message	

pRVar9	 =	
pRVar9.url("https:/
/api.telegram.org/
bot6454034967:AA
Hdf4qFP-
HOaR89XWjtyols_
M_fCjoe640/sendM
essage");	

Found	

mailjet-apiv3-
java/v4.2.0	

Use	 of	 Mailjet	 API	
client	library	version	
4.2.0.	
	

Symbol	 Tree	 and	
also	 in	 the	 User-
Agent	 header	 of	
the	 initBasicAuth	
code.	

pOVar7	 =	
pOVar7.header("Us
er-Agent","mailjet-
apiv3-
java/v4.2.0");	

Found	

http://journal2.uad.ac.id/index.php/mf/index
https://portal.issn.org/resource/ISSN/2714-6685

ISSN: 2714-6685 Mobile and Forensics n 137
 Vol. 7, No. 2, September 2025, 128-138

Fariz Maulana Rizki, et.al. (Digital Forensics on APK Files: A Combined Approach Using MobSF and GHIDRA)

REFERENCES	
[1] C. A. Teodorescu, A.-N. Ciucu Durnoi, and V. M. Vargas, “The Rise of the Mobile Internet: Tracing the

Evolution of Portable Devices,” Proc. Int. Conf. Bus. Excell., vol. 17, no. 1, pp. 1645–1654, July 2023, doi:
10.2478/picbe-2023-0147.

[2] S. L. Sanna, D. Soi, D. Maiorca, G. Fumera, and G. Giacinto, “A risk estimation study of native code
vulnerabilities in Android applications,” J. Cybersecurity, vol. 10, no. 1, p. tyae015, Jan. 2024, doi:
10.1093/cybsec/tyae015.

[3] Nurul Qomariah, Erick Irawadi Alwi, and Muhammad Arfah Asis, “Analisis Malware Hummingbad Dan
Copycat Pada Android Menggunakan Metode Hybrid,” Cyber Secur. Dan Forensik Digit., vol. 6, no. 2, pp. 39–
47, Feb. 2024, doi: 10.14421/csecurity.2023.6.2.4180.

[4] M. W. A. Prastya et al., “Analisis Ancaman Pishing melalui Aplikasi WhatsApp: Review Metode Studi
Literatur,” J. Nas. Komputasi Dan Teknol. Inf. JNKTI, vol. 7, no. 3, pp. 190–197, June 2024, doi:
10.32672/jnkti.v7i3.7551.

[5] K. Ibrahim, F. Dewanta, and N. D. W. Cahyani, “Analisis Perilaku Malware Malware Menggunakan Metode
Analisis Dinamis,” EProceedings Eng., vol. 10, no. 5, 2023.

[6] I. Himawan, K. Septianzah, and I. Setiadi, “Analisa Resiko Malware dengan Static MobSF Terhadap Aplikasi
Android APK,” Technol. J. Ilm., vol. 14, no. 4, p. 364, Oct. 2023, doi: 10.31602/tji.v14i4.11460.

[7] A. R. Damanik, H. B. Seta, and T. Theresiawati, “Analisis Trojan dan Spyware Menggunakan Metode Hybrid
Analysis,” J. Ilm. Matrik, vol. 25, no. 1, pp. 89–97, May 2023, doi: 10.33557/jurnalmatrik.v25i1.2327.

[8] R. N. Yasa and A. C. F. Nugraha, “Perbandingan Keamanan Aplikasi Pesan Instan Android Menggunakan
MobSF (Mobile Security Framework) Berdasarkan Beberapa Standar,” Info Kripto, vol. 18, no. 1, pp. 9–14, May
2024, doi: 10.56706/ik.v18i1.88.

[9] W. K. Wong et al., “DecLLM: LLM-Augmented Recompilable Decompilation for Enabling Programmatic Use
of Decompiled Code,” Proc. ACM Softw. Eng., vol. 2, no. ISSTA, pp. 1841–1864, June 2025, doi:
10.1145/3728958.

[10] R. Almohaini, I. Almomani, and A. AlKhayer, “Hybrid-Based Analysis Impact on Ransomware Detection for
Android Systems,” Appl. Sci., vol. 11, no. 22, p. 10976, Nov. 2021, doi: 10.3390/app112210976.

[11] Y. Agman and D. Hendler, “BPFroid: Robust Real Time Android Malware Detection Framework,” 2021, arXiv.
doi: 10.48550/ARXIV.2105.14344.

[12] X. Zhang, F. Breitinger, E. Luechinger, and S. O’Shaughnessy, “Android application forensics: A survey of
obfuscation, obfuscation detection and deobfuscation techniques and their impact on investigations,” Forensic
Sci. Int. Digit. Investig., vol. 39, p. 301285, Dec. 2021, doi: 10.1016/j.fsidi.2021.301285.

[13] Frenvol De Santonario Magno Moises and Joko Dwi Santoso, “Analisis Malware Android Menggunakan Metode
Reverse Engineering,” J. Ilm. Dan Karya Mhs., vol. 1, no. 2, pp. 41–53, Apr. 2023, doi: 10.54066/jikma-
itb.v1i2.169.

[14] R. T. Amdani, H. Hafidudin, and M. Iqbal, “Analisis Dan Deteksi Malware Poison Ivy Dengan Metode Malware
Analisis Dinamis Dan Malware Analisis Statis,” EProceedings Appl. Sci., vol. 7, no. 2, Apr. 2021, Accessed:
Aug. 12, 2025. [Online]. Available:
https://openlibrarypublications.telkomuniversity.ac.id/index.php/appliedscience/article/view/14423

[15] G. S. Agung, “Analisis Malware Trojan Dalam File Undangan Pernikahan.Apk Pada Smartphone Android
Dengan Metode Hybrid Analysis,” EProceedings Eng., vol. 12, no. 2, pp. 1–6, May 2025.

[16] G. Nenz, T. Kleb, and R. Müller, “Reverse Engineering Labs (Folgearbeit),” other, OST Ostschweizer
Fachhochschule, 2023. Accessed: Aug. 12, 2025. [Online]. Available: https://eprints.ost.ch/id/eprint/1140/

[17] T. Sutter, T. Kehrer, M. Rennhard, B. Tellenbach, and J. Klein, “Dynamic Security Analysis on Android: A
Systematic Literature Review,” IEEE Access, vol. 12, pp. 57261–57287, 2024, doi:
10.1109/ACCESS.2024.3390612.

[18] S. A. Khan et al., “An Android Applications Vulnerability Analysis Using MobSF,” in 2024 International
Conference on Engineering & Computing Technologies (ICECT), Islamabad, Pakistan: IEEE, May 2024,
pp. 1–7. doi: 10.1109/ICECT61618.2024.10581312.

[19] A. Basak and D. Tiwari, “API security risk and resilience in financial institutions.” Accessed: Aug. 12, 2025.
[Online]. Available: http://www.theseus.fi/handle/10024/883344

[20] S. U. Kusreynada and A. S. Barkah, “Android Apps Vulnerability Detection with Static and Dynamic Analysis
Approach using MOBSF,” J. Comput. Sci. Eng. JCSE, vol. 5, no. 1, pp. 46–63, Apr. 2024, doi:
10.36596/jcse.v5i1.789.

[21] A. Iftikhar et al., “Quality Assurance in Digital Forensic Investigations: Optimal Strategies and Emerging
Innovations,” Austin J. Forensic Sci. Criminol., vol. 10, no. 2, Oct. 2023, doi:
10.26420/AustinJForensicSciCriminol.2023.1097.

[22] A. R. AlMhanawi and B. M. Nema, “Instant Messaging Security: A Comprehensive Review of Behavior Patterns,
Methodologies, and Security Protocols,” J. Al-Qadisiyah Comput. Sci. Math., vol. 16, no. 1, Mar. 2024, doi:
10.29304/jqcsm.2024.16.11440.

[23] A. D. Putra, J. D. Santoso, and I. Ardiansyah, “Analisis Malicious Software Trojan Downloader Pada Android
Menggunakan Teknik Reverse Engineering (Studi Kasus: Kamus Kesehatan v2.apk),” Build. Inform. Technol.
Sci. BITS, vol. 4, no. 1, pp. 69–79, June 2022, doi: 10.47065/bits.v4i1.1515.

https://portal.issn.org/resource/ISSN/2714-6685
http://journal2.uad.ac.id/index.php/mf/index

138 n Mobile and Forensics ISSN: 2714-6685
 Vol. 7, No. 2, September 2025, 128-138

Fariz Maulana Rizki, et.al. (Digital Forensics on APK Files: A Combined Approach Using MobSF and GHIDRA)

AUTHORS	BIBLIOGRAPHY	
	

	 FARIZ	MAULANA	RIZKI	was	born	in	Pemalang,	Central	Java	in	June	2003.	He	
is	currently	pursuing	a	Bachelor	of	Information	Technology	degree	at	the	
Faculty	of	Engineering	and	Science,	Muhammadiyah	University	Purwokerto.	
His	main	research	interest	is	in	the	field	of	Digital	Forensics	and	
Cybersecurity.		
Email:.	2103040065@ump.ac.id.		
	

	 	

	 MUKHLIS	PRASETYO	AJI	was	born	 in	Purbalingga	 in	1984.	He	obtained	his	
bachelor's	degree	in	Electrical	Engineering	from	Muhammadiyah	University	of	
Purwokerto.	 He	 pursued	 his	 master's	 degree	 at	 the	 University	 of	 Islam	
Indonesia	in	the	Master's	Program	in	Computer	Science	(with	a	concentration	
in	digital	forensics).	He	is	currently	pursuing	his	doctoral	studies	at	Diponegoro	
University	 in	 the	 field	 of	 Digital	 Forensics.	 My	 current	 activities	 include	
teaching	in	the	Computer	Science	Department	and	serving	as	the	Director	of	the	
Digital	 Forensics	 Center	 at	 Muhammadiyah	 University	 of	 Purwokerto.	 The	
Digital	Forensics	Center	has	been	in	operation	since	2020.	Through	this	center,	
he	has	developed	the	ability	to	analyze	cybercrimes	and	become	an	expert	in	
various	cases,	having	resolved	190	cases,	analyzed	430	electronic	and	digital	
pieces	of	evidence,	and	developed	the	Mobile	Cyber	Forensics	 innovation—a	
mobile	 laboratory	 vehicle	 for	 handling	 cybercrimes.	 Through	 this	 Digital	
Forensics	 Center	 of	 Excellence,	 it	will	 function	 as	 a	 Center	 of	 Excellence	 for	
Investigation	and	Education.	In	addition	to	being	a	lecturer,	he	also	serves	as	
the	CEO	of	PT	Datatrace	Forensics	Lab,	a	digital	forensics	startup	that	assists	in	
education	and	consulting	for	cybercrime	investigations.		

 	
 ERMADI	 SATRIYA	 WIJAYA	 was	 born	 in	 Temanggung	 in	 1980.	 Earned	 a	
bachelor's	degree	in	2004	in	Computer	Science	from	the	Islamic	University	of	
Indonesia	and	a	master's	degree	in	2014	in	Computer	Science	from	the	Islamic	
University	 of	 Indonesia.	 From	 2008	 to	 2017,	 he	 served	 as	 a	 lecturer	 in	
Computer	Science	at	 the	Purwokerto	Polytechnic.	Since	2017,	he	has	been	a	
lecturer	in	Computer	Science	at	Muhammadiyah	University	of	Purwokerto.	His	
research	interests	lie	in	the	fields	of	Digital	Forensics	and	Data	Security.		

 	
 HARJONO	was	born	in	Sleman	in	1975.	He	obtained	his	bachelor's	degree	in	
2001	and	master's	degree	in	2012	in	Electrical	Engineering	from	Gadjah	Mada	
University	in	Yogyakarta.	From	2005	to	2007,	he	served	as	a	lecturer	in	the	
Department	of	Electrical	Engineering	at	Muhammadiyah	University	
Purwokerto.	Since	2007,	he	has	been	a	lecturer	at	the	Department	of	
Computer	Science	at	Muhammadiyah	University	of	Purwokerto.	His	research	
interests	include	Computer	Networks	and	Cybersecurity.	
Email:harjono@ump.ac.id.		
	

	

http://journal2.uad.ac.id/index.php/mf/index
https://portal.issn.org/resource/ISSN/2714-6685

