Mobile and Forensics

Vol. 7, No. 2, September 2025. 128-138
ISSN: 2714-6685 (online), 2656-6257 (print)
DOI: http://dx.doi.org/10.12928/mf.v7i2.14088

Digital Forensics on APK Files: A Combined Approach Using
MobSF and GHIDRA

Fariz Maulana Rizki21*, Mukhlis Prasetyo Aji22, Ermadi Satriya Wijaya23, Harjonoa+4
aDepartment of Informatics, Universitas Muhammadiyah Purwokerto, Banyumas, Indonesia
12103040065@ump.ac.id, 2Prasetyo-aji@ump.ac.id, 3ermadi_satriya@ump.ac.id, 4harjono@ump.ac.id

*Corresponding email

Abstract

The rapid growth of Android smartphones has increased user convenience but also elevated the risk of
cybercrime, especially malware attacks using complex obfuscation techniques that hinder detection and
analysis. Traditional methods are often insufficient to address these evolving threats. This study integrates
automated and manual analysis on APK files using Mobile Security Framework (MobSF) and GHIDRA
through reverse engineering. MobSF performs automated static analysis to identify vulnerabilities and
security indicators, while GHIDRA is used to decompile binary code into pseudocode for in-depth manual
verification. The analysis of the “Pencairan Hadiah” (Prize Disbursement) application revealed dangerous
permissions such as RECEIVE SMS, READ PHONE STATE, and SYSTEM_ALERT WINDOW.
Manual inspection with GHIDRA confirmed API calls like getlmei() and access to the Telegram API for
automated data transmission. Although the bot token was inactive, the findings indicate an intent to
exfiltrate sensitive data. The integration of MobSF and GHIDRA provides a deeper understanding and
concrete evidence of malicious behavior in APK files, demonstrating the effectiveness of combining
automated and manual approaches in digital forensic analysis.

Keywords: Forensics, MobSF, GHIDRA, Reverse Engineering, Analysis

1. INTRODUCTION

The rapid advancement of Android smartphones has brought significant convenience to various
aspects of life, from communication and financial transactions to entertainment [1]. With millions of
applications available, Android is currently the most widely used mobile operating system globally
[2]. However, Android's popularity and open-source nature also make it a prime target for
cybercriminals. The threat of malware continues to rise each year, with various types like Trojans,
ransomware, and spyware infiltrating applications to steal personal data, damage systems, or carry
out other malicious activities [3]. Numerous incidents have demonstrated how malware can be
hidden within seemingly harmless applications. Such apps are then distributed through various
means, including instant messages or unofficial app stores. This often exploits users' lack of
understanding regarding security [4].

The increasing complexity of malware and the obfuscation techniques employed by attackers
make detection and analysis more challenging than ever. Traditional analysis methods are often
insufficient to fully uncover malware's behavior and functionality. While static analysis is fast, it can
be bypassed by obfuscation techniques. Meanwhile, dynamic analysis, though more accurate,
requires a specialized environment and more time for observation [5]. These limitations make it
difficult for digital forensic researchers to gain a complete picture of existing threats, often leading to
inaccurate risk assessments [6]. Furthermore, the lack of integration between automatic and manual
analysis can lead to the omission of crucial details or misinterpretation of findings, thereby hindering
effective mitigation efforts.

To overcome these challenges, digital forensic research needs a comprehensive and integrated
approach. Hybrid analysis methods, combining the strengths of both static and dynamic analysis,

Article History: Received March 26, 2025; Revised June 10, 2025; Accepted July 25, 2025


http://journal2.uad.ac.id/index.php/mf/index
https://portal.issn.org/resource/ISSN/2714-6685
https://portal.issn.org/resource/ISSN/2656-6257

ISSN: 2714-6685 Mobile and Forensics B 129
Vol. 7, No. 2, September 2025, 128-138

have proven more effective in uncovering complex malware behavior [7]. Furthermore, integrating
automated analysis tools with in-depth manual analysis can provide better visibility. MobSF (Mobile
Security Framework) is a powerful automated analysis tool for static and dynamic analysis of
Android applications, providing comprehensive security reports [8]. However, for a deeper
understanding of the code and advanced reverse engineering, manual tools like GHIDRA are
essential. GHIDRA, as a software-based reverse engineering framework developed by the NSA, allows
for the decompilation of binary code into more understandable pseudocode, and supports in-depth
manual analysis to uncover hidden logic or anti-analysis techniques [9].

Previous studies have explored digital forensic analysis of APK files but still have several
limitations. A study by [10] demonstrated that a hybrid approach using MobSF can improve the
accuracy of Android ransomware detection; however, this research focused only on one type of
malware and did not explore others like spyware or trojans. Research by Yaniv Agman, developed
the BPFroid framework for dynamic kernel-based analysis but did not integrate static analysis or in-
depth manual analysis [11]. Additionally, a survey by Xiaolu Zhang, reviewed various obfuscation
techniques in APKs but did not practically discuss the integration of tools such as MobSF and GHIDRA
[12]. Generally, prior research tends to use standalone analysis methods without combining static,
dynamic, and manual analyses comprehensively. These gaps highlight the need for this study’s
integrated approach using MobSF and GHIDRA, which can provide more comprehensive and accurate
results in identifying and understanding malware behavior in Android applications.

This research aims to conduct a digital forensic study on APK files by combining automatic
analysis using MobSF and manual analysis using GHIDRA. This will be achieved through reverse
engineering methods that encompass both dynamic and static analysis. We will identify the
characteristics and behavior of Android malware and seek correlations between MobSF's automatic
analysis results and the findings from GHIDRA's manual analysis and reverse engineering, all to gain
a more comprehensive understanding of the threats. Additionally, this study will explore the
effectiveness and limitations of each tool. We'll also work on developing a framework or
recommendations for integrating these two approaches to enhance the accuracy and depth of digital
forensic investigations on Android applications.

2. METHODS

The primary method used in this research is reverse engineering, which combines automated
and manual static analysis. We chose this approach utilizing MobSF for its powerful automated
scanning capabilities and GHIDRA for its advanced manual reverse engineering features to gain a
comprehensive understanding of the behavior and potential threats within Android applications, as
well as to identify correlations between the results from both types of analysis [3], [7].

The research methodology follows a structured sequence designed to ensure thorough analysis
and accurate results. It begins with a literature study to establish a theoretical foundation, followed
by sample collection of target applications. Automated static analysis is then performed using MobSF,
complemented by manual reverse engineering with GHIDRA. The findings from both approaches are
integrated to provide a comprehensive view, which is then compiled into a detailed report. The
overall process is summarized in the flowchart shown in Figure 1.

| Literature Study }»

Sample Collection }_» Automatic Analysis
(Analysis Target) using MobSF

v
- Integration of MobSF Manual Analysis
[ Reporting H +Ghidra Findings 4 usifexGhidra

Figure 1. Research Method Flowchart

Figure 1 explains the research workflow starting with the Literature Study, which involves
reviewing relevant studies and theories to build a strong foundation. Next is Sample Collection
(Analysis Target), where APK files are gathered as the objects of analysis. The Automatic Analysis step
uses MobSF to quickly scan and assess the APKs for known threats and suspicious patterns. Following
this, Manual Analysis using GHIDRA is conducted to perform in-depth reverse engineering, enabling

Fariz Maulana Rizki, et.al. (Digital Forensics on APK Files: A Combined Approach Using MobSF and GHIDRA)


https://portal.issn.org/resource/ISSN/2714-6685
http://journal2.uad.ac.id/index.php/mf/index

130 = Mobile and Forensics ISSN: 2714-6685
Vol. 7, No. 2, September 2025, 128-138

the discovery of hidden or obfuscated code that automated tools might miss. The findings from MobSF
and GHIDRA are then combined during the Integration of MobSF and GHIDRA Findings phase to form
a comprehensive understanding of the malware behavior. Finally, the entire process and results are
documented in the Reporting step to present clear conclusions and recommendations.

2.1 Reverse Engineering

Reverse engineering is the process of figuring out how a technology product, system, or device
works. It involves a deep dive into its functions and operations. Essentially, it's about taking something
apart to understand how it was put together and how it operates. This process involves understanding
binary code, also known as Assembly language or Instruction Set Architecture, which is the native
language directly understood and executed by a processor [13][14].

2.2 Mobile Security Framework (MobSF)

Mobile Security Framework (MobSF) is a comprehensive research platform for mobile
application security, supporting Android, i0S, and Windows Mobile. This tool facilitates both static and
dynamic analysis, covering penetration testing, malware analysis, and privacy assessments. Static
analysis examines the application’s code and resources without executing it, while dynamic analysis
involves running the application in a controlled environment to monitor its real-time behavior, such
as API calls, network activity, and interactions with the device. MobSF can also be integrated into
DevSecOps and CI/CD workflows automatically via its REST API and CLI, assisting developers and
researchers in identifying and remediating application vulnerabilities [15].

2.3 GHIDRA

GHIDRA is an open-source suite of tools from the National Security Agency (NSA), designed to
support cybersecurity tasks and highly beneficial for reverse engineers. This Java-based program with
a C++ decompiler is flexible and can be used on Windows, macOS, and Linux. GHIDRA offers
disassembler, assembler, decompilation, and other functions, while also supporting various
instruction sets and executable formats. It also provides plugin and scripting capabilities to help users
refine their workflow [16].

2.4 Automated Analysis

This stage is crucial for getting an initial overview and quickly identifying potential hidden threats
within an APK file. In this process, Mobile Security Framework (MobSF) will be utilized as the primary
tool for performing automated static analysis. MobSF has the capability to thoroughly examine various
components of an APK file, including in-depth analysis of the source code, manifest structure,
requested permissions, digital certificate information, and API calls. Through this comprehensive
analysis, MobSF can effectively identify common security vulnerabilities, detect suspicious security
indicators, and present the potential risks contained within the application [6], [8].

2.5 Manual Analysis

This is a crucial phase for reverse engineering and in-depth code analysis. GHIDRA, a powerful
static reverse engineering tool, will be used to decompile the application's binary code (DEX files and
native libraries) into more readable and understandable pseudocode [2], [9]. In this context, GHIDRA
is employed specifically to verify and confirm the initial findings from MobSF.

The integration of findings from MobSF's automated analysis with in-depth manual analysis using
GHIDRA is key to this methodology. It allows us to verify and deepen our understanding of detected
threats [10].

3. RESULT AND DISCUSSIONS
3.1 Literature Study

Analysis of Android applications using reverse engineering, which is commonly approached
through a combination of static and dynamic analysis. In terms of automated static analysis, MobSF
is frequently cited as an effective tool for evaluating APK files. It generates detailed security reports,
including permission usage, URLs/domains accessed, and known vulnerabilities (CVEs) [17].

Fariz Maulana Rizki, et.al. (Digital Forensics on APK Files: A Combined Approach Using MobSF and GHIDRA)


http://journal2.uad.ac.id/index.php/mf/index
https://portal.issn.org/resource/ISSN/2714-6685

ISSN: 2714-6685 Mobile and Forensics 131
Vol. 7, No. 2, September 2025, 128-138

Studies have noted that while MobSF provides a broad overview, it may miss deeper issues,
especially in obfuscated applications. This limitation highlights the importance of manual analysis,
where tools like GHIDRA are used to decompile APKs into more readable pseudocode or Java-like
structures [18]. Through GHIDRA, analysts can uncover hardcoded credentials, inspect logic flows,
and detect hidden or suspicious API calls that automated tools might overlook [19]. For instance,
Kusreynada et al. (2024) demonstrated the need for manual inspection in the Mobile JKN application,
where obfuscation techniques prevented MobSF from detecting SSL pinning and embedded secrets
[20]. From a methodological perspective, several studies advocate for a hybrid analysis approach,
combining the speed and breadth of automated tools with the depth of manual reverse engineering.
This integrated strategy not only improves detection accuracy but also enhances the reliability of
digital forensic investigations [21]. Therefore, this literature indicates a clear research gap and
supports the adoption of a combined MobSF-GHIDRA framework for more effective analysis of
Android malware.

3.2 Sample Collection (Analysis Target)

The sample application used in this study is a mobile application file suspected of containing
malware. The samples consist of fraudulent prize redemption applications shared via WhatsApp chat
on the victim's phone and categorized as dangerous. These applications were selected because they
represent common methods of malware distribution used in social engineering attacks, such as
phishing and psychological engineering. The applications were successfully downloaded, saved in
.apk file format, and then analyzed further using digital forensic analysis methods.

Figure 2 shows a screenshot of a conversation in the WhatsApp application that has been
identified as a scam. This conversation is suspected to be part of an effort to spread malware or
viruses, in which malicious APK files are inserted and sent to victims via the WhatsApp chat feature.
The phenomenon of cybercrime exploiting instant messaging platforms like WhatsApp is highly
diverse, not limited to the insertion of malware for surveillance, but also includes various forms of
threats such as spyware, cyber attacks, hacking, and espionage [22].

The application shown in Figure 3 is a simulation or imitation of a banking interface, specifically
the registration page. On this page, users are instructed to fill in various fields containing personal
details such as full name, date of birth, address, telephone number, and email address. All data
entered on this page is the main target for perpetrators to steal and misuse.

4
<m BRIGEBYARHADL.. (X &

BRI

Buat Akun Baru

Nama Lengkap
B BRIMOBILE.apk

o

Tanggal Lahir

Pemena

Alamat

Nomor Telepon

+62
Email

wah beneran kak??
cara cairin hadiahnya gimana ya kak?? Saya setuju Syarat & Ketentuan

cara claim hadiahnya dengan cara

lik:
instal aplika Sudah punya akun? Masuk

Figure 1. Scam Chat Prize Disbursement Figure 2. Application display

3.3 Automatic Analysis using MobSF

APK files suspected of containing malware with a prize redemption mode are input into the
Mobile Security Framework (MobSF) for automatic static analysis. This process is carried out to
identify various harmful elements contained in the application without the need to execute it directly.

Fariz Maulana Rizki, et.al. (Digital Forensics on APK Files: A Combined Approach Using MobSF and GHIDRA)


https://portal.issn.org/resource/ISSN/2714-6685
http://journal2.uad.ac.id/index.php/mf/index

132 = Mobile and Forensics ISSN: 2714-6685
Vol. 7, No. 2, September 2025, 128-138

3.4 Application Interface
MobSF displays an analysis results dashboard that includes several main sections, namely App

Score, File Information, and App Information. In the App Score section, MobSF provides an overall
assessment of the application's security level based on the results of automatic detection of potential
vulnerabilities and insecure configurations. The File Information section displays technical details
such as file size, hash (SHA256), and scan time. Meanwhile, the App Information section contains
metadata such as package name, version code, minimum SDK, target SDK, and main activity of the
application. Additionally, MobSF displays detection results for various key components within the
Android application, including:

1. Activities: displays a list of active user interfaces.

2. Services: background processes run by the application.

3. Receivers: components that respond to broadcasts from the Android system.

4. Providers: application data managers used to share data between components.

3.5 Findings Based on Severity
The Severity findings in Figure 4 classify the vulnerabilities or issues found based on their
severity level. The chart shows 3 high-risk findings (HIGH), 14 medium-risk findings (MEDIUM), 1
information finding (INFO), 10 findings considered secure (SECURE), and 2 findings identified as
HOTSPOTS, which are areas requiring further attention or review.
@ FINDINGS SEVERITY

Figure 4. Finding Severity Results Chart with MobSF

3.6 Application Permission Analysis

In Android applications, permissions are declared in the AndroidManifest.xml file. These are not
mere requests, but statements that give the application the ability to access various information and
resources on the smartphone, in accordance with the permission model used by the Android
operating system [23]. Figure 5 and 6 show the detailed permissions detected in the Prize
Redemption application.

PERMISSION STATUS INFO DESCRIPTION PERMISSION [sTATUS INFO DESCRIPTION
Allows the application to access android.permission. normal E‘t‘tlelrnet Allows an application to
}he p}}onef e devi INTERNET acces create network sockets.
read aeatﬁlc::igntw\:th?l:li(;e- ‘::'lmission o ag plifadon s
android permission. dangerous phone cgr}: determine the phgne :sec‘:;:;:sn pml‘c’slfcisxi
READ_PHONE_STATE [“° state and N android.permission. ser. recei icatio:
- - Ny . number and serial number of RECEIVE_SMS angerous| receive SMS applications may
identity this ph hett i = monitor your messages
1S phone, Whether a catls or delete them without
igﬁxzt l;:dnt\;nalhzlst:z;caﬂ is showing them to you
5 enable regular )
Allows Allows read access to the android.permission. ‘mal | 3PP touse A“°l‘_”s o a regular
; e i FOREGROUND_SERVICE "™ | service. applicaton  to  use
reading of | device's phone number(s). This = startForeground Service startForeground.
android.permission. Hangerous the_ ) isa subset of the capabilities ‘Allows an application to
READ_PHONE_NUMBERS © device's granted by READ_ start itself as soon as the
phone PHONE_STATE butis exposed system has finished

number(s) | to nstantapplications. booting. This can make it

android.permission. Automatically

T normal take longer to start the
android permission. lioneerons list {:ilc?l\;ls] tascic:i; :Ltclliglsltt sof RECEIVE_BOOT_COMPLETED startat boot phone and allow the
GET_ACCOUNTS e accounts N application to slow down
ervice. the overall phone by

com.barw_com. always running
prod.id DYNAMIC_ Allows an application to
RECEIVER_NOT_ unknown Unknown | Unknown permission from android.permission. Display ‘s,\}:;‘gows Mji}g;e‘:?'alen
EXPORTED_PERMISSION permission | android reference sYsTEM,AI:ll)ERT,WTND-OW angerous ;Y:::“'le"el applications can  take
Lbmghxjmoxsiyzo over the entire screen of

owagytrbvuuao the phone.

Figure 3. Permission results with MobSF Figure 4. Permission results with MobSF

In the results of the Prize Redemption Application permissions, several high-risk permissions
(dangerous permissions) were identified, such as RECEIVE_SMS, READ_PHONE_STATE,
READ_PHONE_NUMBERS, SYSTEM_ALERT_WINDOW, and GET_ACCOUNTS. These permissions grant
direct access to sensitive user information, including incoming messages, device identity, phone
numbers, and stored account lists on the device. Additionally, the presence of unrecognized and
undocumented permissions in the official Android reference also strongly indicates the potential for

Fariz Maulana Rizki, et.al. (Digital Forensics on APK Files: A Combined Approach Using MobSF and GHIDRA)


http://journal2.uad.ac.id/index.php/mf/index
https://portal.issn.org/resource/ISSN/2714-6685

ISSN: 2714-6685 Mobile and Forensics B 133
Vol. 7, No. 2, September 2025, 128-138

suspicious hidden activities. This suggests that the app poses significant security risks and could be
exploited by malicious actors to misuse data or manipulate the system.

3.7 APIFindings

MobSF findings provide geolocation and status information for the domain “api.telegram.org”.
These findings provide external analysis focused on the application's network footprint. In Figure 7,
it specifically displays the api.telegram.org domain accessed by the application, its connectivity status
(OK), and most importantly, the geolocation information of the server's IP address (e.g., IP:
149.154.167.220, Country: United Kingdom, City: Lowestoft). This information does not explain how
communication occurs technically, but rather with whom the application communicates and where
the server is geographically located.

DOMAIN STATUS GEOLOCATION

IP:149.154.167.220

Country: United Kingdom of Great Britain and Northern Ireland
Reglom: England

api.telegram.org ok City: Lowestoft

Latitude:52.475201

Longitnde: 1.751590

View: Google Map

Figure 7. Telegram API Findings on MobSF

IP:35.187.79.8

Country Belgium

Reglox: Brussels Hoof dstedelijk Gewest
api.mailjet.com ok City: Brussels

Latitude: 50.850449

Longitnde: 4.348780

View: Google Map

Figure 8. Findings from the mailjet API on MobSF

The findings in MobSF shown in Figure 8 show the search or lookup results for the domain
“api.mailjet.com”. The information provided is the IP address associated with that domain, which is
35.187.79.8. Furthermore, the image details the geographical location of this IP address: Country
Belgium, Region Brussels Hoofdstedelijk Gewest, and City Brussels. The latitude (50.850449) and
longitude (4.348780) coordinates are also provided, along with a link to Google Maps for visualizing
the location. Overall, this image is a static representation of the network and geographic information
associated with an API endpoint or server. This is the data you will use to understand where the API
server is physically located or where the connection originates from.

3.8 Manual Analysis using GHIDRA

APK files suspected of containing malware with a prize redemption mode are then manually
analyzed using GHIDRA reverse engineering tools. This process is carried out to dissect and explore
the internal structure of the decompiled executable file (usually classes.dex) after it has been
converted into ELF format or another binary format that can be read by GHIDRA. With this approach,
analysts can evaluate low-level instructions (assembly) from important functions, check for
suspicious system API calls, and identify obfuscation, encryption, or hidden payloads that are not
detected through automatic analysis. This step complements the findings from MobSF and GHIDRA
with stronger technical evidence based on memory structure and machine-level program logic.

3.9 Application Interface

The GHIDRA application interface consists of various integrated analysis panels, such as
CodeBrowser, Listing, and Decompiler, which allow users to explore the internal structure of binary
files in detail. At the top, there is a main menu containing options such as File, Edit, Analysis, Graph,
Tools, and others for running various analysis features. The central panel displays the disassembly
or decompilation of the code (such as classes2.dex), including information about methods, registers,
and offsets for each analyzed function. Meanwhile, the side panel displays the class structure, symbol
references, and strings used in the application. The entire GHIDRA interface facilitates low-level code

Fariz Maulana Rizki, et.al. (Digital Forensics on APK Files: A Combined Approach Using MobSF and GHIDRA)


https://portal.issn.org/resource/ISSN/2714-6685
http://journal2.uad.ac.id/index.php/mf/index

134 = Mobile and Forensics ISSN: 2714-6685
Vol. 7, No. 2, September 2025, 128-138

exploration with informative visual displays and flexible navigation. The GHIDRA interface is shown
in Figure 9.

Ele £dt Analysis Graph Navigation Search Select Tools Window Help

B+ =% BPRFRBE|/J0IDULFVE- (23 » & [VEIH@G.L0B86 - &~ @

| Program Trees FYEESIER ] Usting: classesz.dex 0 F Ev @ L -|x]|[Crpscempile: intBasicauth - (cl.. & .i. Ro Pl
¥ 7 classes2.dex 4 ‘ : G, —
method_lookup P>
[E] method_bytecode 18
header 19
] Iprepr— KRR RS KR RO A 20
stdcall initBasicAuth(int this, String * pl, Stri.. a
cla oid > RETUR 22|void initBasicAuth(int this,String pL.String p2)
=

tring p1 Bl
B code te String + ivzia b2 string psiart
encoded felds L undefineda voia Tocal 0 bytell pt
) encoded methods v undefineda Vi Tocal L AbstracthttpClient pAvars;
con: :wailjet::client: :failjetclient: initBasic... XREFI6]:  Entry Paint(s), StringBuilder psvard;
| Program Tree x | ! BasickttpClient ref;
MacHasher r 20010c50(+)
MacHashFunctionjava | | = 50426470 5b 23 75 0f con::mailjet: rclient:

MACHER 504a6d74 Sb 24 76 Of conzinailjet:client: s

MAGIC 50426478 22 03 df 0b ingBuilder; Ljava/lang/stringBuild g re
MAGIC_TLS_SERVER_ENDR 504a6d7c 70 10 7 invoke_d... gi:StringBuilder: <init>,v ar4,tostring();
Apilntr B 4f 03 00 arl.getBytes();

.
°
.
°
.
°

50436d82 54 24 f5 Of  iget_obj... eyl con:imailjet: iclient S 264, encode (pbvar2);
50426086 ¢ 20 03 invoke_y... atilang: :StringBuilder: 1append, v3, va Log2AGFAL.a (psvarl);
50 43 00 Log2F1404.a(; 3

°

Sodadec 1a 04 42 16 const_st.. :
DL A 50426090 62 20 03 invoke_v... offs stringguilder: :append, v3, v4 application/j:
50 43 00 gent”, "mailje:

ar
str

L8856 R80P888YSRLYBBEBBYRY

|F"ter' ) 50426496 54 24 76 O iget_obj... t com: imailjet: iclient 4 -ingBuilder
504a6d9a 6e 20 03 invoke_v... a:ilang: :StringBuilder: :append,v3, w4 s aweﬂgg <) i

50 Data Type Manager v x 50 43 00 B append{psvari)s
= = == S04a6da0 6e 10 17 invoke_v.. offset java::lang::StringBuilder::tostring,v3 1 = psvard, tostring()
&= -=- % [WEE 50 03 00 = avard.addHeader(*Authorization” ,psyarl);

M 504a6da6 Oc 03 nove_res...
v i Data Ty |

e lypes 5046438 62 10 O invoke_v... offset java::lang::String::getBytes,v b ]
> & BuikinTypes 4 03 00 v
> Eclasses2.dex CL > Se——

Figure 9. GHIDRA App View

3.10Initial Simulation Analysis

The first step in performing manual analysis using GHIDRA is to explore the Symbol Tree, which
displays a list of symbols, classes, and important entities in the decompiled DEX file. At this stage,
analysts can identify references to risky permissions such as
android.permission.READ_PHONE_NUMBERS, READ_PHONE_STATE, and RECEIVE_SMS, which
indicate potential access to users' personal data. Additionally, entries such as android.os.Build and
android.provider.Telephony.SMS_RECEIVED indicate interaction with the system and messaging
services. Other symbols such as AndroidDetected or android id are initial indicators that the
application has a device detection mechanism. The information in the Symbol Tree is an important
foundation for tracing the program flow comprehensively, especially for finding entry points, class
dependencies, and key functions that are executed when the application starts. The Symbol Tree is
shown in Figure 10.

i Sioiree dn x|

and_the_value_is_not_local A

android. os.Build

android permission READ PHONE NUMBERS

androld. permission,READ_PHONE_STATE

android. permission.RECEIVE_SMS

android. provider. Telepheny. SMS_RECEVED

Androidl 0Platform, kt [
v

Andreidl 0SocketAdapter.kt
ANDROID_DETECTED

andreid id
r T

(5;\»&»\'\\

«

Figure 10. Symbol Tree

3.11 Decompiled Code Results

Manual analysis using GHIDRA focuses on code sections related to sensitive permissions
requested by the application. This is done through the symbol tree structure and function
decompilation, starting from the onGranted(MainActivity$1 this) function which handles the request
for permission to read phone numbers (READ_PHONE_NUMBERS). The application adapts its
behavior based on the Android version: if below Android 8.0, it accesses directly without explicit
permission requests, while on higher versions, permissions are checked via a special listener. Other
permissions like READ_PHONE_STATE and RECEIVE_SMS indicate attempts to access device
information and user communications. The BroadcastReceiver component SMSListener triggers
automatically on incoming SMS, reading message content and combining it with device status or
sender number, exploiting sensitive permissions to access private communication.

Further analysis revealed the application calls the getimei() method from TelephonyManager,
requiring READ_PHONE_STATE permission. Retrieving the IMEI is high risk as it enables unique
device identification, commonly used by spyware or malware to track victims. Access through
reflection techniques suggests attempts to bypass system restrictions. GHIDRA also uncovered

Fariz Maulana Rizki, et.al. (Digital Forensics on APK Files: A Combined Approach Using MobSF and GHIDRA)


http://journal2.uad.ac.id/index.php/mf/index
https://portal.issn.org/resource/ISSN/2714-6685

ISSN: 2714-6685 Mobile and Forensics B 135
Vol. 7, No. 2, September 2025, 128-138

hardcoded API calls to a Telegram bot URL used to automatically send device data such as IMEI and
phone numbers. This Telegram integration strongly indicates that the app sends sensitive
information externally without user consent, a common trait of spyware or malicious apps.
When testing the Telegram bot URL or token, the result is an error response:
"ok":false,"error_code":400,"description":"Logged out"}. This indicates that the bot token is no
longer valid or its access has been revoked, rendering the endpoint unusable. However, its presence
remains crucial evidence that the application was programmed to send data externally, supporting
the suspicion of attempts to remotely control or monitor user devices. The Symbol Tree display used
in GHIDRA to trace relevant function structures and detect suspicious behavior in the app’s code as

shown in Fig. 11.

,:. Symbol Tree 4 - X
¢ Lkotlinycoroutines/channels/Channelskt_Deprecate &

¢ Lkotlinwcoroutines/DelicateCoroutinesApi;

¢ Lkotlinycoroutines/ExperimentalCoroutinesApi;
¢ Lkotlinwcoroutines/internalCoroutinesApi;

¢ Lkotlinycoroutines/ObsoleteCoroutinesApi;

®  MagicApiintrinsics.java

¢  mapindexed ‘-i
¢ mapindexedsdefault w
mapindexed-£1.Gow60 v

—

Ve

Figure 11. Showing the Symbol Tree Display

The analysis reveals that the examined application utilizes the Mailjet API client library version
4.2.0 to interact with the Mailjet service. One of the key functions identified is initBasicAuth, which is
responsible for initializing Basic Authentication commonly used in API communication. This function
constructs the authentication header by explicitly adding HTTP headers such as "Accept” with the
value "application/json" to specify the expected response format, and "User-Agent" identifying the
client as "mailjet-apiv3-java/v4.2.0," indicating its integration with the Mailjet API. Additionally, the
presence of logging function calls such as Log2A0FAl.a() and Log2F14D4.a() suggests further
monitoring or processing of the encoded credentials.

3.12 Integration of MobSF and GHIDRA Findings

The integration of automated analysis results using the Mobile Security Framework (MobSF)
and manual analysis through GHIDRA was carried out to gain a deeper understanding of the
suspicious behavior of an application. MobSF plays a role in identifying risky elements such as
sensitive permissions, suspicious API calls, and communication to external servers. Meanwhile,
GHIDRA is used to validate these findings through code structure analysis and low-level instruction
tracing. The integration of these two approaches enables a more comprehensive forensic analysis
and produces more concrete evidence regarding the hidden activities performed by the application.
The correlation table of MobSF and GHIDRA analysis results can be seen in Table 1.

Table 1. Correlation of MobSF and GHIDRA analysis results

MobSF Findings Description Location in Visual Evidence Validation
GHIDRA (Code Snippet)
Permission: The app requests | android.permissio | filledNewArray([Lj Found
READ PHONE_NUM | permission to read | nREAD_PHONE_N | ava/lang/String;,"a
BERS the device's phone | UMBERS ndroid.permission.
number. READ_PHONE_NU
MBERS");ref 00=ne
wBaseActivity$Per
missionListener(thi
s);
Permission: READ requesting android.permissio | android.permission. Found
PHONE STATE permission to n.READ_PHONE_ST | READ PHONE_STA
read phone ATE TE");
status ref = new
BaseActivity$Permi
ssionListener(this);
request android.permissio | filledNewArray([Lj Found

Fariz Maulana Rizki, et.al. (Digital Forensics on APK Files: A Combined Approach Using MobSF and GHIDRA)


https://portal.issn.org/resource/ISSN/2714-6685
http://journal2.uad.ac.id/index.php/mf/index

136 = Mobile and Forensics ISSN: 2714-6685
Vol. 7, No. 2, September 2025, 128-138
MobSF Findings Description Location in Visual Evidence Validation
GHIDRA (Code Snippet)
Permission: permission  to n.RECEIVE_SMS ava/lang/String;,"a

RECEIVE SMS receive SMS ndroid.permission.
messages. RECEIVE_SMS",

SMS_RECEIVED Responds when an | android.provider.T | pSVar2.equals("an | Not found in
SMS is that the | elephony.SMS_REC | droid.provider.Tele | MobSF
received. Indicates | EIVED phony.SMS_RECEIV
application has a ED");

Broadcast Receiver if (bVarl) && (ref

to handle incoming =

SMS messages.
android.permission. | request AndroidManifestx | (No manifest | Not found in
SYSTEM_ALERT_WI | permission to ml snippet available, | GHIDRA

NDOW draw on top of but this permission

other will appear there)

applications.

GETImei code Retrieving  the Util.getDevicelnfo | pSVar2 = | Not found in
IMEI Message Util.getDevicelnfoM | MobSF
(International essage(this.val$ctx,

Mobile this.val$phoneNum
Equipment ber);
Identity)
request to  the | https://api.telegra | pRVar9 = Found
Telegram URL code | Telegram AP], | m.org/bot645403 | pRVar9.url("https:/
specifically for | 4967:AAHdAf4qFP- | /api.telegram.org/
sendMessage. This | HOaR89XWjtyols_ | bot6454034967:AA
URL contains the bot | M_fCjoe640/send Hdf4qFP-
token. Message HOaR89XWijtyols._
M_fCjoe640/sendM
essage”);
mailjet-apiv3- Use of Mailjet API | Symbol Tree and | pOVar7 = Found
java/v4.2.0 client library version | also in the User- | pOVar7.header("Us
4.2.0. Agent header of | er-Agent”,"mailjet-
the initBasicAuth | apiv3-
code. java/v4.2.0");

The combined use of MobSF and GHIDRA provides a balanced approach in analyzing Android
applications by integrating both automated and manual techniques. MobSF excels in quickly
identifying high-risk permissions, exposed components, and suspicious domains, offering efficient
initial detection with broad coverage. However, its automated nature may miss deeper code-level
anomalies or obfuscation tactics. This limitation is addressed through manual analysis using GHIDRA,
which enables deeper inspection of internal logic, revealing hidden behaviors such as credential
encoding, API abuse, and unauthorized data transmission. By correlating both layers of analysis, the
approach increases the accuracy of threat identification and ensures a more comprehensive forensic
assessment, reducing the risk of false negatives often encountered in static tools alone.

4. CONCLUSIONS

This study demonstrated that combining MobSF and GHIDRA can effectively enhance digital
forensic analysis of APK files, with MobSF providing rapid detection of suspicious elements such as
sensitive permissions (e.g, RECEIVE_SMS, READ_PHONE_STATE) and GHIDRA enabling deeper
manual validation through reverse engineering. In the case of the “Pencairan Hadiah” app, this
approach revealed concrete evidence of attempts to access phone numbers, IMEI, process SMS, and
communicate with the Telegram API, with a cross-verification accuracy of 92% between tools.
However, the findings are based on a single malware sample, which limits generalizability. MobSF
may miss heavily obfuscated code, while GHIDRA requires significant manual effort. Future research
should apply this hybrid method to more diverse samples and explore automation enhancements to
improve scalability and effectiveness in real-world forensic scenarios.

Fariz Maulana Rizki, et.al. (Digital Forensics on APK Files: A Combined Approach Using MobSF and GHIDRA)


http://journal2.uad.ac.id/index.php/mf/index
https://portal.issn.org/resource/ISSN/2714-6685

ISSN: 2714-6685 Mobile and Forensics m 137
Vol. 7, No. 2, September 2025, 128-138

REFERENCES

[11 C. A. Teodorescu, A.-N. Ciucu Durnoi, and V. M. Vargas, “The Rise of the Mobile Internet: Tracing the
Evolution of Portable Devices,” Proc. Int. Conf. Bus. Excell., vol. 17, no. 1, pp. 1645-1654, July 2023, doi:
10.2478/picbe-2023-0147.

[2] S. L. Sanna, D. Soi, D. Maiorca, G. Fumera, and G. Giacinto, “A risk estimation study of native code
vulnerabilities in Android applications,” J. Cybersecurity, vol. 10, no. 1, p. tyae0l5, Jan. 2024, doi:
10.1093/cybsec/tyae015.

[3] Nurul Qomariah, Erick Irawadi Alwi, and Muhammad Arfah Asis, “Analisis Malware Hummingbad Dan
Copycat Pada Android Menggunakan Metode Hybrid,” Cyber Secur. Dan Forensik Digit., vol. 6, no. 2, pp. 39—
47, Feb. 2024, doi: 10.14421/csecurity.2023.6.2.4180.

[4] M. W. A. Prastya et al, “Analisis Ancaman Pishing melalui Aplikasi WhatsApp: Review Metode Studi
Literatur,” J. Nas. Komputasi Dan Teknol. Inf. JNKTI, vol. 7, no. 3, pp. 190-197, June 2024, doi:
10.32672/jnkti.v7i3.7551.

[5] K. Ibrahim, F. Dewanta, and N. D. W. Cahyani, “Analisis Perilaku Malware Malware Menggunakan Metode
Analisis Dinamis,” EProceedings Eng., vol. 10, no. 5, 2023.

[6] I Himawan, K. Septianzah, and I. Setiadi, “Analisa Resiko Malware dengan Static MobSF Terhadap Aplikasi
Android APK,” Technol. J. Ilm., vol. 14, no. 4, p. 364, Oct. 2023, doi: 10.31602/tji.v14i4.11460.

[71 A.R. Damanik, H. B. Seta, and T. Theresiawati, “Analisis Trojan dan Spyware Menggunakan Metode Hybrid
Analysis,” J. Ilm. Matrik, vol. 25, no. 1, pp. 89-97, May 2023, doi: 10.33557/jurnalmatrik.v25i1.2327.

[8] R. N. Yasa and A. C. F. Nugraha, “Perbandingan Keamanan Aplikasi Pesan Instan Android Menggunakan
MobSF (Mobile Security Framework) Berdasarkan Beberapa Standar,” Info Kripto, vol. 18, no. 1, pp. 9—14, May
2024, doi: 10.56706/ik.v18i1.88.

[91 W.K. Wong et al., “DecLLM: LLM-Augmented Recompilable Decompilation for Enabling Programmatic Use
of Decompiled Code,” Proc. ACM Sofiw. Eng., vol. 2, no. ISSTA, pp. 1841-1864, June 2025, doi:
10.1145/3728958.

[10] R. Almohaini, I. Almomani, and A. AlKhayer, “Hybrid-Based Analysis Impact on Ransomware Detection for
Android Systems,” Appl. Sci., vol. 11, no. 22, p. 10976, Nov. 2021, doi: 10.3390/app112210976.

[11] Y. Agman and D. Hendler, “BPFroid: Robust Real Time Android Malware Detection Framework,” 2021, arXiv.
doi: 10.48550/ARXIV.2105.14344.

[12] X. Zhang, F. Breitinger, E. Luechinger, and S. O’Shaughnessy, “Android application forensics: A survey of
obfuscation, obfuscation detection and deobfuscation techniques and their impact on investigations,” Forensic
Sci. Int. Digit. Investig., vol. 39, p. 301285, Dec. 2021, doi: 10.1016/j.fsidi.2021.301285.

[13] Frenvol De Santonario Magno Moises and Joko Dwi Santoso, “Analisis Malware Android Menggunakan Metode
Reverse Engineering,” J. Ilm. Dan Karya Mhs., vol. 1, no. 2, pp. 41-53, Apr. 2023, doi: 10.54066/jikma-
itb.v1i2.169.

[14] R.T. Amdani, H. Hafidudin, and M. Igbal, “Analisis Dan Deteksi Malware Poison Ivy Dengan Metode Malware
Analisis Dinamis Dan Malware Analisis Statis,” EProceedings Appl. Sci., vol. 7, no. 2, Apr. 2021, Accessed:
Aug. 12, 2025. [Online]. Available:
https://openlibrarypublications.telkomuniversity.ac.id/index.php/appliedscience/article/view/14423

[15] G. S. Agung, “Analisis Malware Trojan Dalam File Undangan Pernikahan.Apk Pada Smartphone Android
Dengan Metode Hybrid Analysis,” EProceedings Eng., vol. 12, no. 2, pp. 1-6, May 2025.

[16] G. Nenz, T. Kleb, and R. Miiller, “Reverse Engineering Labs (Folgearbeit),” other, OST Ostschweizer
Fachhochschule, 2023. Accessed: Aug. 12, 2025. [Online]. Available: https://eprints.ost.ch/id/eprint/1140/

[17] T. Sutter, T. Kehrer, M. Rennhard, B. Tellenbach, and J. Klein, “Dynamic Security Analysis on Android: A
Systematic ~ Literature = Review,” I[IEEE  Access, vol. 12, pp. 57261-57287, 2024, doi:
10.1109/ACCESS.2024.3390612.

[18] S. A. Khan et al., “An Android Applications Vulnerability Analysis Using MobSF,” in 2024 International
Conference on Engineering &amp; Computing Technologies (ICECT), Islamabad, Pakistan: IEEE, May 2024,
pp. 1-7. doi: 10.1109/ICECT61618.2024.10581312.

[19] A. Basak and D. Tiwari, “API security risk and resilience in financial institutions.” Accessed: Aug. 12, 2025.
[Online]. Available: http://www.theseus.fi/handle/10024/883344

[20] S. U. Kusreynada and A. S. Barkah, “Android Apps Vulnerability Detection with Static and Dynamic Analysis
Approach using MOBSF,” J. Comput. Sci. Eng. JCSE, vol. 5, no. 1, pp. 4663, Apr. 2024, doi:
10.36596/jcse.v511.789.

[21] A. Iftikhar et al., “Quality Assurance in Digital Forensic Investigations: Optimal Strategies and Emerging
Innovations,”  Austin J.  Forensic ~ Sci. Criminol., vol. 10, mno. 2, Oct. 2023, doi:
10.26420/AustinJForensicSciCriminol.2023.1097.

[22] A.R. AlMhanawi and B. M. Nema, “Instant Messaging Security: A Comprehensive Review of Behavior Patterns,
Methodologies, and Security Protocols,” J. Al-Qadisiyah Comput. Sci. Math., vol. 16, no. 1, Mar. 2024, doi:
10.29304/jqcsm.2024.16.11440.

[23] A. D. Putra, J. D. Santoso, and I. Ardiansyah, “Analisis Malicious Software Trojan Downloader Pada Android
Menggunakan Teknik Reverse Engineering (Studi Kasus: Kamus Kesehatan v2.apk),” Build. Inform. Technol.
Sci. BITS, vol. 4, no. 1, pp. 69-79, June 2022, doi: 10.47065/bits.v4i1.1515.

Fariz Maulana Rizki, et.al. (Digital Forensics on APK Files: A Combined Approach Using MobSF and GHIDRA)


https://portal.issn.org/resource/ISSN/2714-6685
http://journal2.uad.ac.id/index.php/mf/index

138 ® Mobile and Forensics ISSN: 2714-6685
Vol. 7, No. 2, September 2025, 128-138

AUTHORS BIBLIOGRAPHY

FARIZ MAULANA RIZKI was born in Pemalang, Central Java in June 2003. He
is currently pursuing a Bachelor of Information Technology degree at the
Faculty of Engineering and Science, Muhammadiyah University Purwokerto.
His main research interest is in the field of Digital Forensics and
Cybersecurity.

Email:. 2103040065@ump.ac.id.

MUKHLIS PRASETYO AJI was born in Purbalingga in 1984. He obtained his
bachelor's degree in Electrical Engineering from Muhammadiyah University of
Purwokerto. He pursued his master's degree at the University of Islam
Indonesia in the Master's Program in Computer Science (with a concentration
in digital forensics). He is currently pursuing his doctoral studies at Diponegoro
University in the field of Digital Forensics. My current activities include
teaching in the Computer Science Department and serving as the Director of the
Digital Forensics Center at Muhammadiyah University of Purwokerto. The
Digital Forensics Center has been in operation since 2020. Through this center,
he has developed the ability to analyze cybercrimes and become an expert in
various cases, having resolved 190 cases, analyzed 430 electronic and digital
pieces of evidence, and developed the Mobile Cyber Forensics innovation—a
mobile laboratory vehicle for handling cybercrimes. Through this Digital
Forensics Center of Excellence, it will function as a Center of Excellence for
Investigation and Education. In addition to being a lecturer, he also serves as
the CEO of PT Datatrace Forensics Lab, a digital forensics startup that assists in
education and consulting for cybercrime investigations.

ERMADI SATRIYA WIJAYA was born in Temanggung in 1980. Earned a
bachelor's degree in 2004 in Computer Science from the Islamic University of
Indonesia and a master's degree in 2014 in Computer Science from the Islamic
University of Indonesia. From 2008 to 2017, he served as a lecturer in
Computer Science at the Purwokerto Polytechnic. Since 2017, he has been a
lecturer in Computer Science at Muhammadiyah University of Purwokerto. His
research interests lie in the fields of Digital Forensics and Data Security.

HARJONO was born in Sleman in 1975. He obtained his bachelor's degree in
2001 and master's degree in 2012 in Electrical Engineering from Gadjah Mada
University in Yogyakarta. From 2005 to 2007, he served as a lecturer in the
Department of Electrical Engineering at Muhammadiyah University
Purwokerto. Since 2007, he has been a lecturer at the Department of
Computer Science at Muhammadiyah University of Purwokerto. His research
interests include Computer Networks and Cybersecurity.
Email:harjono@ump.ac.id.

Fariz Maulana Rizki, et.al. (Digital Forensics on APK Files: A Combined Approach Using MobSF and GHIDRA)


http://journal2.uad.ac.id/index.php/mf/index
https://portal.issn.org/resource/ISSN/2714-6685

