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The purpose of this study is to analyze the probability and uncertainty of electron 

linear momentum in 𝐻𝑒+with the Heisenberg uncertainty approach. Measurement 

of the position and momentum of atomic electrons is probabilistic. The probability 

and uncertainty of electron linear momentum are analysed analytically, and 

simulations of hydrogenic atoms' normalized radial wave function are performed. 

𝐻𝑒+ they can be viewed as hydrogenic atoms with only one electron orbital. The 

probability and uncertainty of electron linear momentum in 𝐻𝑒+decrease with 

increasing values of the principal quantum number n ≤ 3. While the uncertainty of 

the electron position is increasing.  The results of this study are in accordance with 

the characteristics of position and linear momentum that are not commutable. The 

increase in the value of the main quantum number means that the electron's 

position against this is getting farther, and the speed in the orbital is getting smaller. 

This is an open-access article under the CC–BY-SA license. 
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I. Introduction  

Based on the consideration of the symmetry of 

nature, in 1924, de Broglie hypothesized that if waves 

can be particles, then particles should also be viewed as 

waves. As a result of this hypothesis about particle-wave 

dualism, a new theory known as quantum mechanics was 

developed [1]. In quantum physics, the physical 

quantities resulting from measurement are probabilistic. 

Uncertainty is a fundamental property associated with 

the measurement of physical quantities. The Heisenberg 

uncertainty principle adds further complexity to the 

understanding of subatomic behaviour. This principle 

asserts that fundamental limits exist to measure a 

particle's position and momentum simultaneously. The 

higher the accuracy of a particle's position measurement, 

the greater the uncertainty in its momentum, and vice 

versa [2]. According to Born's interpretation, the 

absolute value of the square of the wave function, |𝜓𝑟,𝑡|
2
 

indicates the probability density of the electron in the 

nucleus's vicinity.  In quantum mechanics, the position 

of an electron can only be described statistically [3]. 𝜓(𝑟) 

is the Schrodinger wave function is the solution of the 

time-free (steady-state) non-relativistic Schrodinger 

equation that can provide comprehensive quantum 

system information [4]. 

Probability is the chance of finding an electron in 

an atom or ion. Analytically, the probability of getting an 

electron in a hydrogenic atom is  

 

𝑃 =  ∫ |Ψ𝑟,𝑡|2 𝑑𝑉
∞

−∞
 [5] (1) 

 

This calculation results in the electron radial 

probability density/distribution, which is a number that 

provides information about the relative probability of 

finding an electron at a particular point in space [5]. The 

radial probability distribution depends on the main 

quantum number (n) and azimuthal (l), determining the 

chance of finding an electron at a certain distance from 

the nucleus, with nodes in higher-energy orbitals and 

probability peaks around the Bohr radius [6]. Ref's 

research supports this [7] that the larger the values of 𝑛 

and 𝑙, the more vertices and the more complex the orbital 
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shape, so the radial probability distribution helps to 

understand the position of the electron and its interaction 

with the atomic nucleus. The average position values in 

hydrogenic atoms for the ground state 𝑛 = 1 show that 

electrons are most likely to be at an average distance 

equal to the Bohr radius. In addition, the average of 

momentum values shows a quantized electron 

momentum distribution, increasing at higher energy 

levels. This fact aligns with quantum mechanical theory, 

which states that neither the position nor the momentum 

of electrons in the hydrogen atom can be determined with 

certainty but only in a probability distribution [8]. 

Based on the principle of wave-particle dualism, 

uncertainty is not a limitation of measuring instruments 

but a fundamental characteristic of quantum reality itself 

[9]. The position of an electron in an atom is probabilistic 

because it changes as a function of its position. Electron 

position uncertainty ∆r and electron momentum 

uncertainty ∆p in atoms cacn be solved analytically and 

numerically using the equation (2) [9]. 

 

∆𝑟 =  √〈𝑟2〉 − 〈𝑟〉2   and 

∆𝑝 =  √〈𝑝2〉 − 〈𝑝〉2  
(2) 

 

This is supported by the research of Ref [10] which 

shows that the uncertainty of position and momentum in 

hydrogenic atoms can be analyzed using the method of 

average of the square value of position and momentum. 

Ref [11] states that the position of electrons in an atom 

cannot be determined with certainty, which can be 

determined by the probability of finding electrons as a 

function of distance from the atomic nucleus. An 

increase in the principal quantum number and orbitals 

leads to a decrease in the probability. However, the 

greater the interval value of the particle position r 

measured from the atomic nucleus, the greater the 

probability value because this probability value is 

directly proportional to r2. 

𝐻𝑒+ are ionized helium atoms that release an 

electron so that they only have one orbital electron. The 

utilization of 𝐻𝑒+in everyday life includes cooling when 

in a liquid state [12], as a semiconductor magnet such as 

in Magnetic Resonance Imaging (MRI) and Nuclear 

Magnetic Resonance (NMR) [13]. In the industrial field, 

𝐻𝑒+can help increase the spotting rate of beryllium 

materials to make thin films in various industries, which 

can later be used to make various things, such as making 

semiconductors, hard drives, and solar panels [14]. 

Therefore, it is necessary to review the basic behaviour 

of helium ion electrons, including Heisenberg's 

probability and uncertainty in the position space wave 

function. 

 

II. Theory 

Radial Wave Function of Hydrogenic Atoms 

Solving problems in hydrogenic atoms can be done 

by solving the Schrodinger equation in a spherical 

coordinate system. By using the potential energy value, 

 

𝑉 =  −
1

4𝜋𝜖0

𝑍𝑒2

𝑟
∇2Ψ𝑟 +

2𝑚

ℏ2
(𝐸 − 𝑉)Ψ𝑟 = 0   (3) 

 

the Schrodinger equation of the hydrogenic atom is 

written as: 

 

∇2Ψ𝑟 +
2𝑚

ℏ2
(𝐸 − 𝑉)Ψ𝑟 = 0  (4) 

 

The radial Schrodinger equation and the angular 

Schrodinger equation are obtained using the variable 

separation method. The solution of the radial part of the 

Schrodinger equation is the radial wave function. The 

normalized radial wave function of a hydrogenic atom is 

obtained by applying the Laquerre function and the 

associated Laguerre function, 

 

𝑅𝑛𝑙(𝑟) = 𝑁𝑛𝑙  𝑒
−

𝑧𝑟

𝑛𝑎0 (
2𝑧𝑟

𝑛𝑎0
)

𝑙

𝐿𝑛+1
2𝑙+1 (

2𝑧𝑟

𝑛𝑎0
)  (5) 

 

with  𝑁𝑛𝑙 = − (
𝟐𝒛

𝒏𝒂𝟎
)

𝟑
𝟐⁄

√
(𝒏−𝒍−𝟏)!

𝟐𝒏[(𝒏+𝒍)!]𝟑  [15]. The radial 

wave functions of hydrogenic atoms at n ≤ 3 are shown 

in Table 1. 

Table 1. Normalized Radial Wave Function of Hydrogenic 

Atom at n ≤ 3 

n l Orbital 𝑹𝒏𝒍(r) 

1 0 1s 2 (
𝑍

𝑎0
)

3/2
𝑒−𝑍𝑟/𝑎0  

2 0 2s 1

2√2
(

𝑍

𝑎0
)

3

2
(2 −

𝑍𝑟

𝑎0
)𝑒−𝑍𝑟/𝑎0  

2 1 2p 1

4√6
(

𝑍

𝑎0
)

3

2 𝑍𝑟

𝑎0
𝑒−𝑍𝑟/𝑎0  

3 0 3s 1

9√3
(

𝑍

𝑎0
)

3

2
(6 −

4𝑍𝑟

𝑎0
+

4𝑍2

9𝑎0
2) 𝑒−𝑍𝑟/3𝑎0  

3 1 3p 1

27√6
(

𝑍

𝑎0
)

3

2
(4 −

2𝑍𝑟

3𝑎0
)

2𝑍𝑟

𝑎0
𝑒−𝑍𝑟/3𝑎0  

3 2 3d 1

81√30
(

𝑍

𝑎0
)

3

2 4𝑍2𝑟2

𝑎0
2 𝑒−𝑍𝑟/3𝑎0  

 

Probability and Expectation of Electron Position 
The probability equation for finding an electron in 

a hydrogenic atom is expressed in equation (1). Since 

probability is a function of position, with the separation 

of variables method, the probability equation can also be 

expressed as: 

 

𝑃𝑛𝑙(𝑟) = ∫ 𝑟2|𝑅𝑛𝑙(𝑟)|2 𝑑𝑟
∞

−∞
  (6) 

 
|𝑅𝑛𝑙(𝑟)| is the normalized radial wave function [11]. The 

position of electrons in the atom is probabilistic, so the 

average position of electrons in the atom is called the 

expectation value. 
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The average value of the position or expectation of 

the electron position in the atom is formulated as [15]: 

 

〈𝑟〉 =  ∫ 𝑟|𝛹(𝑟, 𝑡)|2 𝑑𝑣
∞

−∞
  

      =  ∫ Ψ(𝑟,𝑡)
∗ 𝑟 Ψ(𝑟,𝑡)

∞

−∞
 𝑑𝑉 

(7) 

 

In spherical coordinates, the expectation value can also 

be formulated: 

 

〈𝑟〉 =  ∫ 𝑟3|𝑅𝑛𝑙(𝑟)|2 𝑑𝑟
∞

−∞
  (8) 

 

From equation (8), the electron’s position 

expectation value is determined by the principal quantum 

number n and the azimuthal quantum number l. Ref [16] 

indicates that as the principal quantum number and 

azimuthal quantum number increase, the electron 

probability value decreases. Therefore, there is a 

possibility of not finding electrons at increasingly far 

orbital distances. Based on equation (7), the value of the 

square expectation of the electron position can be 

formulated: 

 

〈𝑟2〉 = ∫ Ψ(𝑟,𝑡)
∗ 𝑟2 Ψ(𝑟,𝑡)𝑑𝑉

∞

−∞
  

        = ∫ 𝑟4∞

−∞
 |𝑅𝑛𝑙(𝑟)|2 𝑑𝑟 

(9) 

 

Heisenberg Uncertainty of the Hydrogenic Atom 
Heisenberg's uncertainty explains that it is 

impossible to simultaneously measure a particle's 

position and momentum with infinite accuracy [17]. The 

uncertainty value between the position and momentum 

operators is addressed in equation (10). 

 

𝛥𝑟𝛥𝑝 ≥
1

2
|〈[�̃�, 𝑝]〉|  (10) 

 

�̃� = 𝑟 and 𝑝 = −𝑖ℏ
𝜕

𝜕𝑟
 are the position operator and 

momentum operator, respectively. The position and 

momentum operators are non-commuting, [�̃�, 𝑝] = 𝑖ℏ. 

According to the definition of expected value and the 

commutator property, we get: 

 

〈�̃�, 𝑝〉 =
1

2
|∫ 𝜓∗(𝑖 ℏ) 𝜓 𝑑𝑟 

∞

−∞
|  (11) 

 

Then equation (10) can be simplified to: 

 

𝛥𝑟𝛥𝑝 ≥
1

2
|𝑖 ℏ| or (12) 

𝛥𝑟𝛥𝑝 ≥
ℏ

2
  (13) 

 

Based on equation (13), the more Δr increases, the 

more the wave packet will spread (the wave nature is 

clearer), and the particle nature is less clear [18]. Electron 

position uncertainty is the standard deviation by taking 

the root of the variance [19]. So, the equation for the 

position uncertainty value is written in the equation: 

 

∆𝑟 = √〈𝑟2〉 − 〈𝑟〉2  (14) 

 

Based on the Heisenberg uncertainty equation (13), the 

momentum uncertainty can be expressed as: 

 

∆𝑝 ≥
ħ

2∆𝑟
  (15) 

 

Ions of He (𝑯𝒆+) 
Helium is a chemical element in the periodic table 

with the symbol He and atomic number 2. It is known 

that this element has eight isotopes [18]. Like noble gases 

in general, Helium has stable, unreactive energy and a 

high ionization energy [19]. Positive 𝐻𝑒+ are formed 

from Helium atoms in which one electron is ionized and 

leaves one electron. After one of the electrons is ionized, 

the helium atom becomes a helium ion and behaves as a 

hydrogenic atom [20]. 

𝐻𝑒+ are commonly observed in hot stars like the 

sun due to the high temperatures that cause helium atoms 

to move rapidly. In the sun’s very hot atmosphere, these 

atoms collide with other atoms, releasing electrons and 

forming Helium ions. (𝐻𝑒+) After losing one electron, 

this ion has only one electron left, so it is hydrogenic 

[21]. 

Using the Bohr atomic model, the radius of the 

electron orbitals in the hydrogenic atom is 𝑟𝑛 = 𝑛2 𝑎0. 

𝑛 = 1, 2, 3, ⋯ is the main quantum number, 𝑎0 = 

0.02645 𝑛𝑚 is the radius of the helium ion in the ground 

state 𝑛 = 1 mathematically formulated: 

𝑎0 =
4𝜋𝜀0ℏ2

𝑍𝑚𝑒2   (16) 

and 𝑚 is reduction mass of 𝐻𝑒+ formulated: 

 

𝑚 =
me mI

me+ mI
  (17) 

 

with 𝑚𝑒 = 9.10938215 × 10−31𝑘𝑔  is a mass of 

electron and 𝑚𝐼 = 6.644 𝑥 10−27 𝑘𝑔 is a helium ion 

nuclei mass [9].  

 

III. Method 

This research employs a non-experimental method, 

building upon existing theories. This research is to 

calculate the value of electron probability and 

momentum uncertainty through the Heisenberg 

uncertainty equation for helium ions.  This study aims to 

analyze the relationship between the value of the main 

quantum number, n with the probability value, 𝑃(𝑟) and 

the value of momentum uncertainty, ∆𝑝 through the 

Heisenberg uncertainty equation.   

http://issn.pdii.lipi.go.id/issn.cgi?daftar&1526275227&1&&
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The first step in this study is to determine the radius 

of the hydrogen atom in the ground state, 𝑎0 using 

equation (16), namely: 

𝑎0 =
4𝜋𝜀0ℏ2

𝑍𝑚𝑒2   

 

With reduction mass =
me mI

me+ mI
.  Next, find the 

probability of electrons in hydrogen ions at quantum 

numbers 𝑛 = 1, 2 𝑑𝑎𝑛 3 using equation (6), namely: 

 

𝑃𝑛𝑙(𝑟) = ∫ 𝑟2|𝑅𝑛𝑙(𝑟)|2 𝑑𝑟
𝑏

𝑎
  (18) 

 

Where |𝑅𝑛𝑙(𝑟)| s the radial function of electrons in 𝐻𝑒+ 

as shown in Table 1. 

The uncertainty of helium ion electron momentum, 

∆p using the Heisenberg uncertainty approach, goes 

through several stages, namely: 

(i) Determine the average of the position and average 

of the square position of helium ion electrons at 

quantum numbers 𝑛 = 1, 2, & 3  using the equation: 

 

〈𝑟〉  = ∫ 𝑟3 |𝑅𝑛𝑙(𝑟)|2 𝑑𝑟
𝑟2

𝑟1
  (19a) 

〈𝑟2〉 = ∫ 𝑟4 |𝑅𝑛𝑙(𝑟)|2 𝑑𝑟
𝑟2

𝑟1
  (19b) 

 

(ii) Determine the position uncertainty, ∆𝑟 by using 

equation (14), that is: 

 

∆𝑟 = √〈𝑟2〉 − 〈𝑟〉2  (20) 

 

(iii) Calculate the Helium-ion electron momentum 

uncertainty (𝑛 ≤ 3) using Heisenberg’s 

Uncertainty principle, that is: 

 

∆𝑝 =
ħ

2∆𝑟
  (21) 

 

The probability and uncertainty of electron position 

in 𝐻𝑒+at quantum number 𝑛 ≤ 3  are performed 

analytically and also numerically. The uncertainty of 

momentum is analyzed using an analytical approach.  

Numerical probability calculation using Matlab 

R2021b simulation. The stages are Flowchart in Figure 

1. 

 

IV. Results and Discussion 

The research was conducted by calculating the 

probability value to find electrons and the uncertainty of 

the position of helium ion electrons at 𝑛 ≤ 3 analytically 

and numerically. The uncertainty of electron momentum 

is calculated analytically through the radial wave 

function in position space through the Heisenberg 

uncertainty equation or according to equation (13). 

 

 

Figure 1. Numerical Probability Flowchart 

The mass of 𝐻𝑒+is the combined reduced mass 

between the mass of the nucleus and the mass of 

electrons as formulated in equation (17), as obtained: 

  𝑚 =
(6.644 𝑥 10−27)(9.1094 × 10−31)

6.644 𝑥 10−27 +9.1094 × 10−31  

      = 9.0987 𝑥 10−31𝑘𝑔 

Using equation (16), In the ground state (n = 1), the 

helium ion has a radius of 𝑎0 = 2.65 𝑥 10−11 𝑚. The 

atomic number will be inversely proportional to the 

atomic radius because the more protons, the smaller the 

distance between the atomic nucleus and its outer 

electrons. The mass of reduced 𝐻𝑒+is smaller than the 

rest mass of the electrons, so it can affect the atomic 

radius because the number of neutrons and binding 

forces in this will be greater with the radius of the 

electron trajectory getting smaller [22]. 

Information about electron behaviour can be known 

through wave functions. The radial wave function 

solution in Table 2 can be used to determine the 

electron's probability value and the Heisenberg 

uncertainty. The normalized radial wave function 

depends on the principal quantum number (n) and orbital 

quantum number (l). 

The probability of finding an electron in a helium 

ion at the principal quantum number n ≤ 3 is obtained 

through equation (18) using integration limits a = 0 and 

𝑏 =  𝑎0, 2𝑎0, ⋯ , 9𝑎0. Analytically, the probability value 

at (𝑛, 𝑙) = (1, 0) with 𝑏 =  𝑎0 is: 

 

  𝑃10 = ∫ 𝑟2|𝑅10|2𝑑𝑟
𝑎0

0
  

         = ∫ 𝑟2 |2 (
2

𝑎0
)

3/2

𝑒−2𝑟/𝑎0|
2

𝑑𝑟
𝑎0

0
  

         =
32

𝑎0
3 ∫ 𝑟2 𝑒

−
4𝑟

𝑎0𝑑𝑟
𝑎0

0
  

http://issn.pdii.lipi.go.id/issn.cgi?daftar&1526275227&1&&
http://issn.pdii.lipi.go.id/issn.cgi?daftar&1526650381&1&&


 

Indonesian Review of Physics (IRIP) 
Vol.7, No.1, June 2024, pp. 35 - 42 

39 

 

 

Supriadi et al. Probability and Heisenberg Uncertainty of He+ at … p-ISSN: 2621-3761  

e-ISSN: 2621-2889 

 

         =
32

𝑎0
3 [−𝑟2 𝑎0

4
𝑒

−
4𝑟

𝑎0 − 2𝑟
𝑎0

2

16
𝑒

−
4𝑟

𝑎0 − 2
𝑎0

3

64
𝑒

−
4𝑟

𝑎0]
0

𝑎0

  

 =  
32

𝑎0
3  {

(−
𝑎0

3

4
−

𝑎0
3

8
−

𝑎0
3

32
)

𝑒4 − (−
𝑎0

3

32
)} 

          = 32 [(
−13

32(2,71828183)4) +
1

32
]  

 

So, the probability of finding helium ion electrons 

in the combination of (𝑛, 𝑙) = (1, 0) with 𝑏 =  𝑎0 is 

𝑃10 = 0.761896704 or about 76.19 %. While (𝑛, 𝑙) =
(3, 2) obtained 𝑃32 =  0.0004682  or 0.047% in the 

region with a radius 𝑟 =  𝑎0 and 𝑃32 =
0.95417769342 or about 95.42% in the region with 

electron orbital radius 𝑟 = 9𝑎0.  

Numerical calculation of probability values using 

Simpson's numerical integration method through Matlab 

R2021b simulation. The simulation method has been 

validated by comparing the results of the probability and 

average of electrons with an average error below 0.001 

on other hydrogenic atoms. The complete results of 

numerical calculations of the probability of finding 

electrons in 𝐻𝑒+at 𝑛 ≤ 3  are presented in Table 2.

Table 2. Electron Probability 

𝒓 
𝒏 = 𝟏 𝒏 = 𝟐 𝒏 = 𝟑 

𝒍 = 𝟎 𝒍 = 𝟎 𝒍 = 𝟏 𝒍 = 𝟎 𝒍 = 𝟏 𝒍 = 𝟐 

𝑎0 0.7618966944467 0.0526530173437 0.0526530173437 0.0143532099691 0.0169244974007 0.0004682578378 

2𝑎0 0.9862460322603 0.1757962500075 0.3711630648201 0.0535487650770 0.0887935335069 0.0193884510601 

3𝑎0 0.9994777419716 0.5364733429661 0.7149434996834 0.1106739784034 0.1106739784026 0.1106739784026 

4𝑎0 0.9999836824679 0.8144891667785 0.9003675995130 0.1171017983033 0.1336791580723 0.2879993072182 

5𝑎0 0.9999995446517 0.9404806921022 0.9707473119230 0.1783256640072 0.2512581909487 0.4995391337493 

6𝑎0 0.9999999885294 0.9835519435733 0.9923996093189 0.3373867626547 0.4423492915501 0.6866257224636 

7𝑎0 1.0000000003491 0.9959130364256 0.9981947511508 0.5375365667322 0.6363544071582 0.8219189267092 

8𝑎0 1.0000000010853 0.9990617943849 0.9995995623366 0.7143517332237 0.7874015537858 0.9066095478845 

9𝑎0 1.0000000017492 0.9997973957981 0.9999158239019 0.8402197578165 0.8862276198534 0.9541776931113 

 

The results of analytical and numerical probability 

calculations give the same results, namely, the 

probability value of electrons in 𝐻𝑒+is getting smaller 

with the increase in the value of the main quantum 

number. Increasing the value of the main quantum 

number provides information that the radius of the 

electron orbital in the ion is getting bigger. In the Bohr 

atomic model, the radius of the electron orbit is 

formulated as 𝑟𝑛 = 𝑛2𝑎0. The larger the orbital radius, 

the smaller the probability density value [1]. Based on 

Table 2, the smallest probability value on the quantum 

cross (𝑛, 𝑙) = (3, 2) at the position of the electron 𝑟 =
𝑎0, which is 0.0004682. This result shows that electrons 

are very difficult to find or even not found in the orbital. 

Table 2 also shows the probability value of finding 

the largest electron in the quantum number n = 1 when 

the electron position 𝑟 =  𝑎0. In the combination of 
(𝑛, 𝑙) =  (1, 0) the probability value of electrons in the 

orbit region  𝑟 = 0 −  𝑎0 is 76.19%, while in the region 

𝑎0 − 4𝑎0 is 23.80%, and in the region 4𝑎0 − 9𝑎0 is 

0.01%. At (𝑛, 𝑙) = (2, 1), the probability value in the  

𝑟 = 0 − 𝑎0 orbit region is 5.26%, while in the region 

𝑎0 − 4𝑎0 is 84.77% and in the region 4𝑎0 − 9𝑎0 is 

9.95%.  And for quantum number (𝑛, 𝑙) = (3, 2) the 

probability value in orbit  𝑟 = 0 −  𝑎0 is 0.05%, while in 

the region 𝑎0 − 4𝑎0 is 28.75 % and in the region 4𝑎0 −
9𝑎0 is 66.62%. This means that the electrons are most 

often in the position 𝑟𝑛 = 𝑛2𝑎0 so the probability is 

getting bigger. The probability of finding electrons 

decreases as the distance from the atomic nucleus 

increases and approaches zero at a very long distance. 

Hence, the possibility of finding electrons in the region 

is very small. The probability of finding an electron on a 

hydrogenic atom, Deuterium, in momentum space, 

decreases with the increasing value of electron 

momentum. In momentum space, the value of electron 

momentum 𝑝𝑛 = 𝑛2𝑝0 [4]. The probability meeting of 

electrons in molecular ions 𝐻2
+P is getting smaller with 

the distance of electrons to the nucleus under symmetry 

conditions (if the distance between protons is close to 

zero, it appears that the electron distribution in the 

ground state is like a single atom with 2 protons in the 

nucleus) [11]. 

In representing the probability of electrons in space 

per unit volume can be shown through the following 

probability density graph in Figure 2. 

 

Figure 2. Probability Distribution of Helium Ion Electron 
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The probability distribution graph above shows the 

graph of the P(r) function in various orbitals. The largest 

probability is in the orbital 𝑟 = 𝑎0 at quantum number n 

= 1. An increase in quantum number leads to decreased 

probability density peaks due to orbital expansion. The 

greater the value of the orbital quantum number l, the 

peak of the distribution shifts towards a smaller distance, 

r. The orbital quantum number l is also called the orbital 

angular momentum quantum number which determines 

the amount of orbital angular momentum and describes 

the shape of the orbital. Orbital s or l = 0, electrons have 

the simplest symmetrical spherical orbital, which 

indicates that electrons have the same density, while at l 

= 1 or orbital p, the electron density is not evenly 

distributed but concentrated in two regions that are 

divided equally and located on two opposite sides of the 

core located in the centre [23]. The electron probability 

distribution of 𝐻𝑒+presented in Figure 2 has the same 

pattern as the electron probability distribution of 

deuterium atoms in momentum space [24] and molecular 

systems under the influence of the Kratzer potential [25].  

The position of electrons in 𝐻𝑒+is probabilistically. 

Therefore, the average position of helium electrons at the 

(𝑛, 𝑙) is calculated using equation (19a) with specified 

integration limits 𝑟1 = 0 dan 𝑟2 =  𝑎0, 2𝑎0, ⋯ , 9𝑎0. 

Analytically, the expected value of the electron position 

at (𝑛, 𝑙) = (1, 0) with 𝑟2 =  𝑎0  is: 

  〈𝑟〉 = ∫ 𝑟3|𝑅10|2𝑑𝑟
𝑎0

0
  

= ∫ 𝑟3 |2 (
2

𝑎0
)

3/2

𝑒−2𝑟/𝑎0|
2

𝑑𝑟
𝑎0

0
  

=
32

𝑎0
3 ∫ 𝑟3𝑒−4𝑟/𝑎0𝑑𝑟

𝑎0

0
  

 =
32

𝑎0
3 [(−𝑟3 𝑎0

4
− 3𝑟2 𝑎0

2

16
− 6𝑟

𝑎0
3

64
− 6

𝑎0
4

256
) 𝑒

−
4𝑟

𝑎0]
0

𝑎0

 

 =
32

𝑎0
3 [(

−0,5546875𝑎0
4

2,718281834 ) − (−0,0234375𝑎0
4)]  

 

So, the expected value of the position of helium ion 

electrons at (𝑛, 𝑙) = (1, 0) using 𝑟2 =  𝑎0  is 〈𝑟〉 =
0.42489741056𝑎0. The expected value of the square of 

the position of helium ion electrons in the same quantum 

number state and integration limit is: 

  〈𝑟2〉 = ∫ 𝑟4|𝑅10|2𝑑𝑟
𝑎0

0
  

= ∫ 𝑟4 |2 (
2

𝑎0
)

3/2

𝑒−2𝑟/𝑎0|
2

𝑑𝑟
𝑎0

0
  

=
32

𝑎0
3 ∫ 𝑟4𝑒−4𝑟/𝑎0𝑑𝑟

𝑎0

0
   

=
32

𝑎0
3 [−𝑟4 𝑎0

4
𝑒

−
4𝑟

𝑎0 − 4𝑟3 𝑎0
2

16
𝑒

−
4𝑟

𝑎0 − 12𝑟2 𝑎0
3

64
𝑒

−
4𝑟

𝑎0 −

24𝑟
𝑎0

4

256
− 24

𝑎0
5

1024
𝑒

−
4𝑟

𝑎0]
0

𝑎0

  

=
32

𝑎0
3 [(

−0,8046875𝑎0
5

2,718281834 ) − (−0,0234375𝑎0
5)]  

 

So, the expected value of the square of the position 

of the helium ion electron at (𝑛, 𝑙) = (1, 0) using 𝑟2 =
𝑎0  is 〈𝑟2〉 = 0.27837229984𝑎0

2. By using the expected 

value of the position and the expected square of the 

position of the helium ion electron, the uncertainty of its 

electron position can be calculated using equation (20), 

namely: 

 

 Δ𝑟 = √〈𝑟2〉 − 〈𝑟〉2 

       = 0.3128 𝑎0 = 0.08270094174 × 10−10𝑚   

 

Analytical position uncertainty in (𝑛, 𝑙) = (2, 1) 

with 𝑏 = 4𝑎0 is Δ𝑟 = 1.0280 𝑎0 = 0.27242031801 ×
10−10 𝑚. While at (𝑛, 𝑙) = (3, 2) with 𝑏 = 9𝑎0 is Δ𝑟 =
1.940941927𝑎0 = 0.513188603 × 10−10𝑚. In the 

simulation, the uncertainty of the electron position of 

𝐻𝑒+in position space at n ≤ 3 is presented in Table 3. 

Table 3. Helium Ion Electron Position Uncertainty 

𝒏 𝒍 𝒓 ∆𝒓 

1 0 

𝑎0 0.082700941535841 × 10−10 

4𝑎0 0.114429634507704 × 10−10 

9𝑎0 0.114489352289300 × 10−10 

2 

0 

𝑎0 0.027735379555852 × 10−10 

4𝑎0 0.335375424116796 × 10−10 

9𝑎0 0.323050293897786 × 10−10 

1 

𝑎0 0.047510614271400 × 10−10 

4𝑎0 0.272420318012262 × 10−10 

9𝑎0 0.295163339984104 × 10−10 

3 

0 

𝑎0 0.014128940498643 × 10−10 

4𝑎0 0.182109467929346 × 10−10 

9𝑎0 0.761150495880383 × 10−10 

1 

𝑎0 0.027237113711577 × 10−10 

4𝑎0 0.195802659687906 × 10−10 

9𝑎0 0.694288693276678 × 10−10 

2 

𝑎0 0.004951810916410 × 10−10 

4𝑎0 0.383032020024593 × 10−10 

9𝑎0 0.513188603004719 × 10−10 

 

From Table 3, it can be seen that the uncertainty of 

the position of the helium ion electron, ∆𝑟 with 𝑟𝑛 =
𝑛2𝑎0 will get bigger with increasing quantum number 

values. Based on equation (14), the position uncertainty 

is proportional to the root of the difference between the 

squared position average and the squared position 

average. The main quantum number 𝑛 affects the 

expected value of the Lithium-ion position [24]. 

Position and momentum operators do not commute, 

mathematically formulated as [�̂�, �̂�𝑟] = 𝑖ℏ ≠ 0. This 

means that position and linear momentum cannot be 

measured simultaneously. Measurement of particle 

momentum in the x-axis direction can be done with 

uncertainty ∆𝑝𝑥  then to measure position in the x−axis 

direction simultaneously cannot have an accuracy greater 
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than ∆𝑥 =  
ℏ

2∆𝑝𝑥
 [8]. The uncertainty relationship of 

position and momentum is expressed in the Heisenberg 

uncertainty equation as formulated in equation (13), 

namely:  

  

 Δ𝑟 ∙ Δ𝑝 ≥
ℏ

2
; with ℏ =

ℎ

2𝜋
= 1,054 × 10−34𝐽𝑠 

or Δ𝑝 ≥
ℏ

2∆𝑟
. 

 

The measurement of the electron position of 𝐻𝑒+is 

done with the uncertainties as presented in Table 3, and 

then the maximum accuracy of the measurement of the 

momentum of the helium ion simultaneously is Δ𝑝 =
ℏ

2 ∆𝑟
. This means that the minimum linear momentum 

uncertainty of the helium ion electron in its position 

space is Δ𝑝 =
ℏ

2 ∆𝑟
. Details are presented in Table 4. 

Table 4. Momentum Uncertainty of Helium Ion Electrons in 

Position Space 

𝒏 𝒍 𝒓 ∆𝒑 

1 0 

𝑎0 0.637235792257103 × 10−23 

4𝑎0 0.460545034743182 × 10−23 

9𝑎0 0.460304813908228 × 10−23 

2 

0 

𝑎0 0.190010019130530 × 10−22 

4𝑎0 0.015713733389614 × 10−22 

9𝑎0 0.016313249359456 × 10−22 

1 

𝑎0 0.110922581844460 × 10−22 

4𝑎0 0.019345106262459 × 10−22 

9𝑎0 0.017854520823229 × 10−22 

3 

0 

𝑎0 0.372993289943167 × 10−22 

4𝑎0 0.028938638171436 × 10−22 

9𝑎0 0.006923729313090 × 10−22 

1 

𝑎0 0.193485993259264 × 10−22 

4𝑎0 0.026914854008623 × 10−22 

9𝑎0 0.007590502410645 × 10−22 

2 

𝑎0 0.106425711501543 × 10−21 

4𝑎0 0.001375864085635 × 10−21 

9𝑎0 0.001026912906706 × 10−21 

 

From Table 4, it can be seen that the uncertainty of 

the momentum of helium ion electrons in position space 

is as follows: 

(1) It decreases with the further position of the electron 

to the nucleus; 

(2) It decreases with increasing main quantum number; 

(3) It decreases with increasing orbital quantum 

number. 

With the smaller the uncertainty, the measurement 

accuracy of helium ion electron momentum increases. 

 

V. Conclusion 

The probability of a helium ion electron in position 

space depends on the distance of the electron to the 

atomic nucleus. The larger the main quantum number, 

the larger the electron orbital and the smaller the 

probability of finding the electron. The highest electron 

position probability meeting when n = 1 and the peak of 

the probability meeting will shift towards r getting 

smaller as the orbital quantum number increases. The 

uncertainty of the position of helium ion electrons is 

getting bigger as the main quantum number increases. 

Momentum measurement accuracy increases with 

increasing quantum number n.  

The uncertainty of electron momentum through the 

Heisenberg uncertainty equation assumes that the radial 

wave function is a Gaussian function, so ∆p ∆r = ℏ/2. 

Generally, the wave function of physical quantities is not 

always Gaussian. 

 

VI. Acknowledgement 

This research can run well thanks to the help of 

various parties, including the Supervisor and Physics 

Education Students (according to the names listed), so 

the authors would like to thank all those who contributed 

to the preparation of this article and also thank the 

Reviewers who have deigned to review, review and 

provide input and suggestions for the development and 

improvement of the scientific quality of this article. 

 

References 
[1] K. S. Krane, Modern Physics, 3rd ed. New York: John 

Wiley & Sons, 2019. 

[2] V. Bezverkhniy, “Heisenberg’s Uncertainty Principle 

and Wave-Particle Dualism,” SSRN Electron. J., 2021, 

https://doi.org/10.2139/ssrn.3865301. 

[3] B. Supriadi, S. L. Lorensia, F. Shahira, A. M. Prabandari, 

and A. A. W. Putri, “Probability of Deuterium Atom 

Electrons in Momentum Space at Quantum Numbers n ≤ 

3,” Aceh Int. J. Sci. Technol., vol. 12, no. 2, pp. 239–245, 

Aug. 2023, https://doi.org/10.13170/aijst.12.2.32226.  

[4] V. Christianto, “A Review of Schrödinger Equation & 

Classical Wave Equation,” Prespacetime J., vol. 5, no. 5, 

pp. 400–413, 2014, [Online]. Available: 

https://citeseerx.ist.psu.edu/document?repid=rep1&type

=pdf&doi=cfd1cec7225098877108fcb9c6d8b7ebd758d

0a6  

[5] B. Supriadi, A. Z. L. Kinanti, E. E. Putri, A. R. R, D. 

Natasha, and C. Sutantri, “Application of Laguerre 

Polynomial Equation In Solving Schrodinger Equation 

Radial Section of Helium Ion,” IOSR J. Appl. Phys., vol. 

16, no. Series-1 (Jan. – Feb. 2024), pp. 22–31, 2024, 

https://doi.org/10.9790/4861-1601012231.  

[6] S. Dürr and G. Rempe, “Can wave–particle duality be 

based on the uncertainty relation?,” Am. J. Phys., vol. 68, 

no. 11, pp. 1021–1024, Nov. 2000, 

https://doi.org/10.1119/1.1285869.  

[7] G. Pandu, R. K. Pingak, A. Zicko Johannes, and Z. Seba 

Ngara, “A Study on Radial Properties of Hydrogenic 

Ions using Laguerre Polynomials,” Bul. Fis., vol. 23, no. 

2, p. 78, Aug. 2021, 

https://doi.org/10.24843/BF.2022.v23.i02.p01.  

[8] B. Supriadi and L. Nuraini, Fisika Atom Teori & 

Aplikasinya. Jember: UPT Universitas Jember, 2019. 

[9] P. Borrelli and L. M, Helium Ion Microscopy: Principles 

and Applications. Cambridge University Press, 2020. 

http://issn.pdii.lipi.go.id/issn.cgi?daftar&1526275227&1&&
http://issn.pdii.lipi.go.id/issn.cgi?daftar&1526650381&1&&
https://doi.org/10.2139/ssrn.3865301
https://doi.org/10.13170/aijst.12.2.32226
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=cfd1cec7225098877108fcb9c6d8b7ebd758d0a6
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=cfd1cec7225098877108fcb9c6d8b7ebd758d0a6
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=cfd1cec7225098877108fcb9c6d8b7ebd758d0a6
https://doi.org/10.9790/4861-1601012231
https://doi.org/10.1119/1.1285869
https://doi.org/10.24843/BF.2022.v23.i02.p01


 

Indonesian Review of Physics (IRIP) 
Vol.7, No.1, June 2024, pp. 35 - 42 

42 

 

 

Supriadi et al. Probability and Heisenberg Uncertainty of He+ at … p-ISSN: 2621-3761  

e-ISSN: 2621-2889 

 

[10] B. Supriadi, H. Mardhiana, W. I. Kristiawan, D. 

Kamalia, and I. K. Sari, “Expected Value of Helium Ion 

Electron Momentum in Momentum Space with Primary 

Quantum Numbers n≤3,” J. Penelit. Pendidik. IPA, vol. 

9, no. 10, pp. 8467–8472, Oct. 2023, 

https://doi.org/10.29303/jppipa.v9i10.3861.  

[11] L. A. Alcalá Varilla, D. L. Pérez Pitalua, and F. Torres 

Hoyos, “Modeling a Helium Atom from a Collision of an 

Electron with an Ionized Helium Atom,” J. Phys. Conf. 

Ser., vol. 1386, no. 1, p. 012119, Nov. 2019, 

https://doi.org/10.1088/1742-6596/1386/1/012119.  

[12] E. Chappel, “Physical Properties of Helium and 

Application in Respiratory Care,” Encyclopedia, vol. 3, 

no. 4, pp. 1373–1386, Oct. 2023, 

https://doi.org/10.3390/encyclopedia3040098.  

[13] C. Rillo et al., “Enhancement of the Liquefaction Rate in 

Small-Scale Helium Liquefiers Working Near and 

Above the Critical Point,” Phys. Rev. Appl., vol. 3, no. 5, 

p. 051001, May 2015, 

https://doi.org/10.1103/PhysRevApplied.3.051001.  

[14] D. Li, J. Jiang, J. Wang, and Y. Jian, “Sputtering 

Behavior of Beryllium Materials Irradiated by 

Hydrogen-Helium Ions,” Nucl. Sci. Technol., vol. 07, no. 

03, pp. 73–77, 2019, 

https://doi.org/10.12677/NST.2019.73010.  

[15] B. Supriadi, S. N. H. Anggraeni, M. K. K. Wardhany, F. 

A. Iswardani, N. A. Rosyidah, and D. Pangesti, 

“Probability of He+ Ion at Quantum Number 3 ≤ n ≤ 4 in 

Momentum Space,” J. Penelit. Pendidik. IPA, vol. 10, 

no. 5, pp. 2545–2551, May 2024, 

https://doi.org/10.29303/jppipa.v10i5.6458.  

[16] L. Subagiyo and A. Nuryadin, Pengantar Fisika 

Kuantum, 1st ed. Samarinda: Mulawarman University 

Press, 2018. [Online]. Available: 

https://repository.unmul.ac.id/handle/123456789/20722  

[17] B. Bhoja Poojary, “Origin of Heisenberg’s Uncertainty 

Principle,” Am. J. Mod. Phys., vol. 4, no. 4, pp. 203–211, 

2015, https://doi.org/10.11648/j.ajmp.20150404.17.  

[18] D. J. Griffiths and D. F. Schroeter, Introduction to 

Quantum Mechanics. Cambridge University Press, 2018. 

https://doi.org/10.1017/9781316995433.  

[19] M. Halka and B. Nordstrom, Halogens and Noble Gases. 

2010. 

[20] Z. Fitri, Kimia Unsur Golongan Utama, 1st ed. Syiah 

Kuala University Press, 2020. [Online]. Available: 

https://uskpress.usk.ac.id/product/kimia-unsur-

golongan-utama-2/  

[21] M. S. Makmun, B. Supriadi, and T. Prihandono, “Fungsi 

Gelombang Ion Helium dalam Representasi Ruang 

Posisi Menggunakan Persamaan Schrodinger,” J. 

Pembelajaran Fis., vol. 9, no. 4, pp. 152–159, Dec. 2020, 

https://doi.org/10.19184/jpf.v9i4.19955.  

[22] A. R. Pratikha, B. Supriadi, and R. D. Handayani, 

“Electron’s Position Expectation Values and Energy 

Spectrum of Lithium Ion (Li^(2+)) on Principal 

Quantum Number n≤3,” J. Penelit. Pendidik. IPA, vol. 8, 

no. 1, pp. 252–256, Jan. 2022, 

https://doi.org/10.29303/jppipa.v8i1.840.  

[23] N. Sunarmi, “Distribusi Probabilitas Radial Elektron 

Sistem Molekul dalam Pengaruh Potensial Kratzer 

dengan Metode Parametrik Nikiforov-Uvarov,” J. Inov. 

Pendidik. dan Sains, vol. 4, no. 3, pp. 151–158, Dec. 

2023, https://doi.org/10.51673/jips.v4i3.1794.  

[24] D. Bouaziz, “Kratzer’s Molecular Potential In Quantum 

Mechanics With A Generalized Uncertainty Principle,” 

Ann. Phys. (N. Y)., vol. 355, pp. 269–281, Apr. 2015, 

https://doi.org/10.1016/j.aop.2015.01.032.  

[25] B. Supriadi, T. Prihandono, V. Rizqiyah, Z. R. Ridlo, N. 

Faroh, and S. Andika, “Angular Momentum Operator 

Commutator Against Position and Hamiltonian of A Free 

Particle,” J. Phys. Conf. Ser., vol. 1211, p. 012051, Apr. 

2019, https://doi.org/10.1088/1742-

6596/1211/1/012051. 

  

 

 

 

 

 

 

Declarations 
Author contribution : Bambang Supriadi was responsible for the overall research project and led the manuscript 

writing and collaboration with all authors. Zidan Afidah was responsible for data collection 

and data analysis. Maya Arsita reviewed the theoretical writing and accuracy. Simatun Ni'mah 

reviewed the research steps and edited the manuscript. Merry Khanza Kusuma Wardhany is a 

contact person and scriptwriter. Dimas Feri Hermansyah wrote and edited the manuscript. All 

authors approved the final manuscript. 

Funding statement : This research did not receive any funding. 

Conflict of interest : Both authors declare that they have no competing interests. 

Additional information : No additional information is available for this paper. 

 

http://issn.pdii.lipi.go.id/issn.cgi?daftar&1526275227&1&&
http://issn.pdii.lipi.go.id/issn.cgi?daftar&1526650381&1&&
https://doi.org/10.29303/jppipa.v9i10.3861
https://doi.org/10.1088/1742-6596/1386/1/012119
https://doi.org/10.3390/encyclopedia3040098
https://doi.org/10.1103/PhysRevApplied.3.051001
https://doi.org/10.12677/NST.2019.73010
https://doi.org/10.29303/jppipa.v10i5.6458
https://repository.unmul.ac.id/handle/123456789/20722
https://doi.org/10.11648/j.ajmp.20150404.17
https://doi.org/10.1017/9781316995433
https://uskpress.usk.ac.id/product/kimia-unsur-golongan-utama-2/
https://uskpress.usk.ac.id/product/kimia-unsur-golongan-utama-2/
https://doi.org/10.19184/jpf.v9i4.19955
https://doi.org/10.29303/jppipa.v8i1.840
https://doi.org/10.51673/jips.v4i3.1794
https://doi.org/10.1016/j.aop.2015.01.032
https://doi.org/10.1088/1742-6596/1211/1/012051
https://doi.org/10.1088/1742-6596/1211/1/012051

