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1. Introduction  

The second industrial revolution brought the internal combustion engine into people's vision, and 

then the machinery industry has developed vigorously and gradually developed into the mother of 

engineering. Since then, the engineering field cannot lack the participation of machinery. As one of 

the most common components in mechanical structures, the quality of bearings directly affects the 

regular operation of equipment [1]. However, the traditional method of bearing fault diagnosis still 

relies on borrowing the experience of the master to listen with the ears and see with the eyes, and to 

determine the location of the bearing fault through troubleshooting. Most factories currently adopt 

the traditional training mode of teachers and new employees, which consumes a lot of manpower 

and resources. And the types of bearings are extremely diverse, and a device may use several or even 

dozens of types of bearings. The purpose and manufacturing accuracy of each type of bearing vary, 

which also makes the methods and costs of bearing fault diagnosis different. Taking rolling ball 

bearings as an example, this paper conducts in-depth analysis of their fault modes using extensive 

data measured by predecessors in the field of bearing faults, and uses clustering algorithms in 
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 As industrial equipment complexity continues to rise, the importance of 

bearings within these systems has become more critical, given their pivotal 

role in equipment functionality. Bearing faults can result in severe 

production accidents and safety issues. Hence, there is an urgent need for 

advanced bearing fault diagnosis technology. This study concentrates on 

rolling bearings, analyzing their structural characteristics and key 

parameters to classify fault types—inner race faults, rolling element faults, 

and outer race faults. Utilizing a dataset of 80 sets of bearing factory data, 

time and frequency domain analyses are conducted, establishing seven 

feature parameters (five in the time domain and two in the frequency 

domain). This data is organized into a 7-dimensional matrix for subsequent 

analysis and model development. The K-Means algorithm is chosen for its 

effectiveness in automatically recognizing fault patterns in rolling 

bearings. Training on the 7-dimensional matrix identifies four clustering 

centers corresponding to normal conditions, inner race faults, rolling 

element faults, and outer race faults. The fault diagnosis system is 

implemented using Python, and algorithm optimization improves 

efficiency. The study concludes with insights drawn from the analysis and 

proposes optimization methods, which contributing to advancing bearing 

fault diagnosis technology, particularly addressing industrial equipment 

reliability and safety concerns. 
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machine learning to process the analyzed data, thus achieving automatic recognition of rolling 

bearing fault modes based on machine learning. 

With the continuous development of industrial level, Western society is gradually moving 

towards Industry 4.0 [2]. While the West proposed Industry 4.0, China also proposed the Made in 

China 2025 Plan to guide the direction of China's industrial development, which is an industrial 

development that adapts to China's national conditions. Artificial intelligence technology is the most 

important direction in the Made in China 2025 plan. Artificial intelligence technology is the major 

trend and new trend of future development, and machine learning, the most important direction under 

artificial intelligence, has broad prospects [3]. Especially with the rapid development of computer 

hardware in modern times, the birth of big data has brought broader development space for models. 

As the most core transmission component of electromechanical equipment, rolling bearings are 

known as the joints in electromechanical equipment, indicating their crucial position in the field of 

electromechanical equipment. Rolling bearings, as load-bearing components, often need to carry the 

operation of the transmission shaft. During the operation of the transmission shaft, the rotational 

speed is extremely high and accompanied by radial and axial runout, so the rolling element always 

bears variable loads during the working process of the rolling bearing. Therefore, the contact points 

between the inner and outer race raceways of the bearing and the surface of the rolling element are 

usually subjected to fluctuating cyclic contact stress [4]. The rolling element of a rolling bearing is 

in point-and-line contact with the inner and outer rings, which is a high pair connection. Therefore, 

rolling bearings are highly susceptible to wear and tear in practical use. Once wear and tear expand, 

the rolling bearing will malfunction. At this time, timely detection of bearing faults and maintenance 

or replacement can minimize equipment losses. 

This paper proposes a clustering algorithm to process the characteristic parameters of bearings 

automatically to identify rolling bearing failure modes. To achieve immediate maintenance and 

replacement in the event of rolling bearing failure, reduce equipment loss caused by rolling bearing 

failure. 

In recent years, with the outbreak of a war between Google's Alpha Dog and Go Masters, and the 

complete victory of artificial intelligence, the argument that artificial intelligence cannot achieve 

autonomous thinking has been defeated. At this point, artificial intelligence has emerged in a strong 

posture in front of people, allowing them to appreciate the charm of artificial intelligence. Although 

people have varying opinions on the development of artificial intelligence, this does not hinder its 

comprehensive development in modern times. Many countries have made the development of 

artificial intelligence a national strategy. Machine learning aims to achieve intelligence and 

intelligence in various products, but the first step towards achieving the goal is data. With the advent 

of the big data era, the scale of data is no longer what it used to be. Previously, data samples had a 

capacity of several tens of hundreds, but now the data size is often measured in tens of thousands. 

This will be a great opportunity for the development of artificial intelligence, but it is also a major 

challenge. Artificial intelligence urgently needs to seek development in the era of big data and 

achieve technological leaps in line with the times. To achieve a technological leap in the big data 

model, it is necessary to make substantive reforms and optimizations to existing technologies from 

the perspective of combining software and hardware. Using the ideas of Professor Marr, the founder 

of computer vision, we can categorize the development of artificial intelligence into three stages [5]. 

The first priority is obtaining the target's data; the second is analyzing the obtained data; And the 

third is achieving the intelligence of something by using certain ideas or algorithms. The difference 

between big data technology and machine learning is that big data tends to acquire data, while 

machine learning tends to process data and how to use data to achieve intelligence in certain things 

[6]. 

The first significant leap in machine learning was due to the intersection and integration of the 

computer and mathematics fields that began in the 1990s, during which many significant scientific 

research achievements emerged in machine learning. For example, the birth of support vector 

machines, the proposal of decision forests, and the optimization of Bayesian theory. These scientific 

research achievements have laid a solid foundation for the rise of machine learning in the future. 

https://doi.org/10.26555/ijish.v3i2.2222
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Nowadays, machine learning has penetrated into various industries, and it can be said that 

artificial intelligence is ubiquitous in the modern world. Machine learning not only has great 

development in its own field, but also provides favorable tools for the fields of data statistics and 

data analysis. Machine learning is undoubtedly a hot research field, especially in the field of 

mechanical engineering. Combining machine learning with traditional machinery can form a new 

direction, committed to making the manufacturing process intelligent and further liberating people's 

hands. Therefore, many universities in China have included artificial intelligence and machine 

learning as compulsory courses in their student training programs. 

Machine learning can undoubtedly be seen as the application direction of artificial intelligence. 

So, machine learning needs to play its role as a tool in engineering. In recent years, machine learning 

has been widely applied in the field of engineering, such as deep learning and machine vision, which 

are currently particularly popular. In today's society, machine learning has achieved considerable 

success in the field of engineering, such as the voice wake-up service on mobile phones and the voice 

switching function on smart speakers, which are all successful applications of machine learning [7]. 

Machine learning is a newly established discipline in China, but it has received sufficient attention 

and achieved significant results quickly. However, very few scholars specialize in machine learning 

in China, so the cutting-edge research achievements in machine learning in China are indeed not 

significant enough. This is also an aspect that we urgently need to seek change. 

Under the continuous operation of bearings, there will inevitably be vibration and sound 

generation, and the vibration frequency and sound size generated at different periods are affected by 

factors such as speed and environment. Therefore, a basis for fault diagnosis of bearings can be 

obtained by collecting parameters with different operating characteristics and further analyzing and 

processing the collected data. Due to the various data sources collected, the parameter analysis of 

bearings can generally be divided into two categories: the sound analysis method using sound 

analysis, and the vibration analysis method using vibration analysis. 

Firstly, we attempt to use the sound analysis method of analyzing sound. However, in the actual 

operation process, we encountered great obstacles. When we tried to collect sound signals from the 

running bearings, the measured data was accompanied by a lot of noise. Later, analysis found that 

the noise other equipment emitted during data collection interfered with our measurement results. 

Due to the fact that the working environment of bearings is often in complex factory environments, 

there is inevitably noise around them. Therefore, we cannot use sound analysis method to collect 

fault data of rolling bearings. After excluding sound analysis method, we have to use vibration 

analysis method to collect fault data of bearings. 

The data in this article is measured by installing a speed sensor to measure the vibration frequency 

signal of the bearing. After further analysis and processing of the measured data, the operating 

conditions of the bearings under different conditions and states can be obtained. Because using 

vibration measurement method can significantly reduce external interference with experimental 

results, current research on bearing fault diagnosis mainly uses vibration analysis method. This 

experiment is based on the periodic pulse vibration and amplitude regulation phenomenon of bearing 

vibration signal, combined with the frequency domain analysis method, time domain analysis method 

and time-frequency analysis method in classical control theory, to extract the most reliable and 

representative five dimensionless time-domain characteristic parameters: crest factor, kurtosis, pulse 

factor, waveform factor, margin factor, and two dimensioned frequency-domain characteristic 

parameters: root mean square frequency, standard deviation as input [8]. The 80 data groups obtained 

from the experiment are divided into training set and test set, of which the training set accounts for 

80% and the test set accounts for 20%. The K-Means algorithm is trained using the training set first, 

and then the model is verified using the test set after the training is completed. Further analysis of 

empirical and generalization errors will finally train a feasible clustering algorithm model to achieve 

bearing fault diagnosis based on machine learning. 

This research identifies a significant gap in the current practices, emphasizing the need for an 

advanced, automated bearing fault diagnosis system that can address the diverse bearing types, 
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reduce reliance on manual expertise, and minimize the associated resource costs. The primary 

objective of this study is to develop an innovative bearing fault diagnosis system leveraging machine 

learning, specifically focusing on rolling ball bearings. The research aims to advance beyond 

traditional, labor-intensive diagnosis methods by proposing a clustering algorithm to process 

characteristic parameters automatically. The research seeks to efficiently categorize and identify 

different failure modes of rolling bearings. By achieving this objective, the research contributes to 

immediate maintenance and replacement actions in the event of bearing failure, ultimately reducing 

equipment losses and enhancing overall operational efficiency. 

2. Method  

According to the national standard, rolling bearings can be divided into radial bearings and thrust 

bearings. Radial bearings can be divided into radial ball bearings and radial roller bearings according 

to the different rolling elements [9]. The radial roller bearing comprises a Deep Groove Ball Bearing, 

an angular contact ball bearing, a four-point contact ball bearing, and a self-aligning ball bearing. 

Radial roller bearings include needle roller bearings, self-aligning roller bearings, tapered roller 

bearings, and cylindrical roller bearings. Thrust bearings can be divided into thrust roller bearings 

and thrust ball bearings according to the different rolling elements. Thrust roller bearings include 

thrust needle roller bearings, thrust self-aligning roller bearings, thrust cylindrical roller bearings, 

and thrust tapered roller bearings. The thrust ball shaft contract includes thrust angular contact ball 

bearings and thrust ball bearings. This article uses a widely used thrust ball bearing as the 

experimental object, and records its fault situation and data through experiments.  

In practical application scenarios, spontaneous vibration of rolling bearings is inevitable. When a 

certain fault occurs during operation, its vibration frequency and other parameters will significantly 

change, which is also the fundamental basis for collecting rolling bearing fault data. Although there 

may be sound signals during the rotation of rolling bearings, many teachers in the past also used the 

sound characteristics to determine whether the rolling bearings had faults and which type of fault 

they belonged to. In the actual working environment of rolling bearings, there will inevitably be a 

large amount of noise (the sound emitted by other surrounding equipment during operation), so it is 

difficult to collect the sound signal of rolling bearings in practical applications. This article uses the 

vibration signal of rolling bearings to determine whether there is a fault and what kind of fault exists. 

From the perspective of its structural characteristics, the faults of rolling bearings can be divided 

into bearing outer ring faults, bearing inner ring faults, and rolling element faults. We want to achieve 

fault diagnosis of rolling bearings. Firstly, we need to know which data these faults are related to. 

Secondly, we need to extract the features of these faults and compare whether the connection between 

the faults and the data is close. We need to collect the part of fault data that is most closely related to 

the fault type. Therefore, when selecting data, the following principles need to be followed: 

a. Realizability: The selected data samples should be easy to obtain. Even if a specific characteristic 

parameter is sensitive enough to the failure mode but is difficult to obtain, this parameter is 

unsuitable for use as a data sample. 

b. High sensitivity: The significance of identifying rolling bearing fault patterns is to detect the 

presence of faults when there is a slight or even imminent fault in the bearing, but the fault has 

not yet occurred, reminding technical personnel to handle the faulty bearing and avoid more 

significant losses. 

c. High reliability: The fault data of rolling bearings is measured by simulating the occurrence of 

bearing faults, but if this data cannot be used as a basis for discovering faults in bearings, then 

this type of feature parameter cannot be used as a data sample. Therefore, it's crucial to ensure 

that the simulated fault data accurately reflects real-world scenarios to maintain the reliability of 

the analysis. Without this reliability, the effectiveness of using such feature parameters as data 

samples diminishes significantly. 

The fault data used in this article comes from the data provided by Hu Jing in his research on 

rolling bearing defect diagnosis based on the BP neural network, which is the test data of a certain 

https://doi.org/10.26555/ijish.v3i2.2222
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manufacturer's rolling bearing before leaving the factory. Rolling bearings generate sound and 

vibration during operation, so collecting bearing fault data can start from these two aspects. However, 

during the experiment, it was found that the data collected using sound analysis method is always 

extremely insensitive to the fault characteristics of the bearing. This was because the noise generated 

by the operation of other equipment around the bearing impacted the experimental data. According 

to the principle of selecting test samples, sound analysis method was excluded, and therefore 

vibration analysis method was used to analyze the fault forms of rolling bearings. The vibration of 

bearings can be distinguished between the spontaneous vibration generated by the bearing itself 

during operation and the vibration generated by the target bearing caused by the vibration of other 

components on the same equipment during operation. The measurement required for diagnosing 

rolling bearing faults is the spontaneous vibration generated by the rotation of the bearing itself, so 

the impact of the second vibration should be minimized as much as possible during the experimental 

process. 

Referring to the data analysis methods in automatic control theory, we can distinguish the data 

analysis methods into two parts: time-domain analysis and frequency-domain analysis. The 

advantage of time-domain analysis is that after using sub-method analysis, the characteristic 

parameters become very sensitive to bearing faults, which means that bearing anomalies can be 

identified in the early stage of fault occurrence or when the actual fault has not yet occurred. 

However, nothing can be perfect. The data obtained through time-domain analysis is extremely 

insensitive to the vibration frequency and amplitude of frequencies. Therefore, it is necessary to use 

frequency domain analysis combined with time-domain analysis to process the data in order to meet 

the needs of rolling bearing fault diagnosis. Analyzing frequency domain characteristic parameters 

such as root mean square frequency RMSF and frequency standard deviation RVF can further 

improve the accuracy of rolling bearing fault diagnosis. 

After the initial phase of data processing, the acquisition of essential data samples for training 

becomes feasible. Employing machine learning techniques allows for a more profound analysis of 

the data, thereby enabling the identification of bearing faults through advanced machine learning 

methods. The utilization of clustering algorithms within the domain of machine learning further 

contributes to the efficient processing of these data samples, enhancing the overall effectiveness of 

fault detection. 

The principle of bearing fault pattern recognition is to use clustering algorithms as a medium to 

cluster the obtained bearing fault feature parameters, divide similar training data into the same 

cluster, and then iteratively optimize by continuously updating the cluster centers until the algorithm 

iteration ends when the coordinates of all cluster centers no longer change. At this time, the obtained 

model is relatively optimal. Using the example of Zhao Zhiyong's program, consult relevant materials 

and compile corresponding training and prediction programs based on one's own dataset. The training 

program uses training set data, which is then trained using the K-Means algorithm to generate the 

clustering center and saved in a txt file. The testing program reads the saved cluster center and test 

set data, and calls the method of calculating Euclidean distance to calculate the distance between the 

cluster center and the test set. The program prints the distance from each test data to each cluster 

center, and then analyzes the printed results to obtain the category to which each test data belongs. 

Finally, the diagnostic category is compared with the original category of the test set, and the test 

results are used to verify the algorithm's accuracy in diagnosing faults. The program designed in this 

article is written and run using Python language on the Spyder interface. The process considered in 

this paper is shown in Fig. 1. 

 

Fig. 1. The research process of this article 
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3. Results and Discussion 

This article's rolling bearing failure data comes from Hu Jing [10]. They are seven-dimensional 

data under four states of normal state, outer ring, inner ring and rolling element fault. There are 80 

groups in total, and each fault state is 20 groups of data. This article divides these eighty sets of data 

into a training set and a testing set. The training set selects the first sixteen sets of data under four 

states of rolling bearings, which means the training set consists of a total of sixty-four sets of data; 

The test set consists of sixteen sets of data selected from the remaining four states of rolling bearings 

[11-37].  

The approximate process of running the training program and prediction program is as follows: 

a) Import training set data, read the data row by row and column by column and store the read data 

in a list variable. 

b) Randomly initialize four cluster centers and generate four cluster centers within a reasonable 

range based on the training set. 

c) The algorithm for defining Euclidean distance calculates the distance between data. This step 

calculates the distance from each set of samples to the initialization cluster center and divides 

those with similar distances into a fault category. The running results display the fault category 

and distance. 

d) Store the trained clustering center in the txt document for future fault prediction. The training 

program ends at this point, and the final clustering center after iteration is shown in Fig. 2. 

 

Fig. 2. The final cluster center formed 

e) Next, import the test set data into the test program, read the data row by row and column by 

column, and store the read data in a list variable. 

f) The Euclidean distance method is used to calculate the distance between the test sample and the 

cluster center.  

g) After running the test program, the distance from each test data set to each cluster center is 

obtained. The accuracy of the test results can be determined by checking whether the category 

to which the minimum distance belongs is consistent with the order of actual test data input. This 

completes the entire program's operation. 

The above training program calculates the distance from each set of samples to the initialization 

cluster center and divides those with similar distances into a fault category, resulting in the final 

formation of four cluster centers. The program operation results show the corresponding 

classification number and the distance from the data to the cluster center, with some classifications 

shown in Table 1. 

https://doi.org/10.26555/ijish.v3i2.2222


 

IJIO Vol. 5. No 1, February 2024 p. 45-59 

 

                                                          Xia et al (Research on bearing...) 51 

 

Table 1. Classification of Cluster Centers 

For the convenience of analysis, each clustering center is defined as 2, 0, 1, and 3 based on the 

training results. Defined by the data order of the input training set, 2 is the normal rolling bearing 

cluster, 0 is the outer ring defect rolling bearing cluster, 1 is the inner ring defect rolling bearing 

cluster, and 3 is the rolling element defect rolling bearing cluster. 

The distance from each set of test data calculated in the testing program to each cluster center is 

shown in Fig. 3. According to Fig. 2 , the test results are classified as follows in Table 2. 

 

Fig. 3 Distance from the test sample to the cluster center 

Cluster 

center 

number 

The distance from the training set 

to the initial clustering center 

Cluster center 

number 

The distance from the training 

set to the initial clustering center 

2 

3.73324081e+03 

0 

2.34936634e+04 

2.44274449e+03 1.71988482e+04 

1.72594223e+03 1.64573249e+04 

1.93495224e+03 2.33917214e+04 

1.46131027e+03 1.96017143e+04 

1.14447108e+03 1.55087500e+04 

1.39881896e+03 1.49590580e+04 

1 

1.47882351e+04 

3 

1.04242876e+05 

2.43722686e+04 4.28986622e+03 

5.08881561e+03 1.06752045e+05 

1.85738646e+03 1.19004136e+05 

1.13793661e+05 9.66083338e+04 

3.22413096e+03 1.10654642e+05 
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Table 2. Classification of Test Results 

Table 2 classifies the test results, clearly indicating the category to which each data group belongs. 

Find the minimum distance within each group, determine which cluster center is closest to, and 

classify it as the fault type of that cluster center. Determine whether the test results are consistent 

with the fault types in the input order of the test set data. Table 3 lists the distances in each group and 

determines whether the test results are accurate. The detailed classification and accuracy of fault 

diagnosis are shown in Table 3. 

Table 3. Corresponding Data Types and Prediction Results Judgment for the Test Set 

Test data 

grouping 

Category corresponding to 

the distance from the first 

cluster center 

Corresponding 

category to the 

distance from the 

second cluster center 

Corresponding 

category to the 

distance from the 

center of the 

third cluster 

Corresponding category to 

the distance from the 

fourth cluster center 

Group 1 

Class 0 Category 1 Category 2 Category 3 

256.84401433353383 593.2207620580102 34.8703400672 707.0416072674984 

707.0416072674984 585.9583140382364 45.1505754825 703.886717911236 

247.79876880654888 589.5147232569228 45.1245111209 703.886717911236 

271.3013413001717 623.1703530383302 45.2240959434 738.0795475396242 

 

Group 2 

 

83.16181487203531 480.1930149170725 242.545845700 598.5394730292014 

34.821588668899686 423.9265644294941 294.779860962 541.8836901921817 

44.82310623786196 428.1462948462038 302.062088098 545.8595449957462 

81.82110988028359 473.79386992957 223.313442478 592.1536732289335 

Group 3 

481.62621771584656 95.90813720868654 716.882430940 58.569705922531845 

315.32024686591217 84.45951878627689 540.020127406 202.12675933864065 

423.76119197260306 35.98294892875612 643.587091302 97.10439311876145 

233.24716812305775 182.8457307250532 499.214995058 296.00786882683957 

Group 4 

530.7057782937255 136.1755315412154 757.017955024 29.63860651745118 

553.5068144870303 157.0774474526017 775.044359120 39.99208972710404 

539.8534258115835 146.8872004888637 768.389369471 42.412009785838706 

552.3478620806983 155.8567615514379 773.704709597 38.64815342242061 

Fault Type 
Calculated shortest 

distance 

Category to which the test 

belongs 

Determine whether 

it is accurate 

Normal state 

34.87034006725845 

2 Yes 
45.15057548255891 

45.12451112096673 

45.22409594349289 

https://doi.org/10.26555/ijish.v3i2.2222
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The findings presented in Table 3 demonstrate that the K-Means clustering algorithm can 

precisely identify the specific type of fault defect in rolling bearings. With an error rate of 6.25%, 

these diagnostic outcomes further substantiate the efficacy of machine learning algorithms in 

diagnosing rolling bearing faults. Despite the simplicity of the K-Means algorithm's underlying 

principles, it has limitations. A critical limitation, as highlighted in this study, is the substantial 

influence of randomly initialized clustering centers on the diagnostic outcomes. Indeed, varying 

initial clustering centers can result in markedly different clustering outcomes. While executing the 

algorithm, it was observed that the final clustering centers occasionally exhibited a "nan" value in 

the results across several training sessions. An account of one such training session is provided, with 

the initial clustering center, post-execution, depicted in Fig. 4. 

 

Fig. 4 Initializing the cluster center 

The subsequent phase involves clustering the samples by calculating the distance from each 

sample to the initial cluster center and assigning the samples to the nearest cluster center accordingly. 

Fault Type 
Calculated shortest 

distance 

Category to which the test 

belongs 

Determine whether 

it is accurate 

Outer ring defect 

83.16181487203531 

0 
 

Yes 

34.82158866889968 

44.82310623786196 

81.82110988028359 

Inner ring defect 

58.56970592253184 3 No 

84.45951878627689 

1 Yes 35.98294892875612 

182.8457307250532 

Rolling element defect 

29.63860651745118 

3 Yes 
39.99208972710404 

42.41200978583870 

38.64815342242061 
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Throughout the intermediary stages of the clustering process, it was observed that none of the data 

in the training set were associated with the third label, while the other three categories were clustered 

as expected. Illustrations of some of these clustering processes are presented in Fig. 5. 

 

Fig. 5 Clustering process 

In the program, 'centroids [j, z]=sum_all [0, z]/r', where r represents the number of clusters. Since 

no data is divided under the third label, the r value is zero, as shown in Fig. 6. 

 

Fig. 6. Zero clusters 

The result of this final cycle is the appearance of nan in the cluster center under the third label, as 

shown in Fig. 7. 

https://doi.org/10.26555/ijish.v3i2.2222
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Fig. 7 Cluster centers after the first update 

Through the above process, it can be concluded that the problem of having "nan" in the cluster 

center is caused by dividing by zero when recalculating the cluster center, resulting in the value of 

the cluster center being "nan". Due to the random initialization of the cluster center in this program, 

when the initialization cluster center is far from the data, the randomly initialized cluster center may 

not have any data in the same class as a certain cluster center during the first partition. When the 

cluster center is updated next, the program will divide by the number of data under the cluster. Since 

the number of data under the cluster center is zero, the cluster center will become infinite, The 

occurrence of 'nan' ultimately resulted in unsatisfactory classification results and failure to achieve 

the expected classification effect. 

In academic circles, deep learning serves as a prevalent tool for diagnosing bearing faults. The 

methodology employed in this study involves utilizing identical bearing fault feature parameters to 

train both the RBE neural network and GRNN neural network. The outcomes of these training 

processes are visually presented in Fig. 8 and Fig. 9, which shedding light on the effectiveness of 

employing these neural networks for bearing fault diagnosis. 

 

 

Fig. 8 The relative error of the precision radial basis (RBE) neural network 
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Fig. 9 The relative error of the generalized regression (GRNN) neural network 

The outcomes of the bearing fault diagnosis indicate that the K-Means algorithm exhibits 

superior recognition accuracy for bearing fault diagnosis compared to the RBE neural network and 

GRNN neural network. Furthermore, unlike neural networks that necessitate extensive data for 

model training before fault prediction, the K-Means algorithm demonstrates greater efficiency in 

diagnosing bearing faults [38]. This efficiency is not compromised by factors such as the precision 

of the training set data or the comprehensiveness of fault condition coverage [39-40]. 

4. Conclusion 

The main task of this paper is to apply clustering algorithms in machine learning to process fault 

data of rolling bearings, and ultimately achieve bearing fault diagnosis based on machine learning. 

Divide 80 sets of rolling bearing fault data into training and testing sets, with the training set 

accounting for 80% of the total data and the testing set accounting for 20% of the total data. 

Corresponding training and testing programs were designed, and samples were placed in their 

respective programs to run. The training set data was trained in the training program using the K-

Means algorithm to train the clustering center and saved in a txt file. The testing program reads the 

saved cluster center and test set data, calls the method of calculating Euclidean distance, and 

calculates the distance between the cluster center and the test set. Print the distance from each test 

data to the cluster center obtained by the training program, and then analyze the printed results to 

obtain the category to which each test data belongs. Finally, compare the diagnostic category with 

the original category of the test set to determine the accuracy of the prediction. After many 

experiments, it is concluded that the failure prediction accuracy of the K-Means algorithm proposed 

in this paper for rolling bearings is 94%, which provides a new idea for the research on bearing fault 

diagnosis that is different from the traditional neural network processing method. 

The machine learning model established this time has many shortcomings. For example, during 

the process of running the algorithm program, it was found that a "nan" value appeared in the results 

of a training session, and this situation led to the "nan" value appearing in the prediction results of 

the test set. This is due to the random initialization of the clustering center. Therefore, it can be 

attempted to select the first K samples of the dataset as the initial center points, Alternatively, select 

random K sample points as the initial clustering center to see if clustering can be completed normally. 

Secondly, overfitting will occur when the dimension of training samples is high. Therefore, before 

applying the K-Means algorithm, you can try to preprocess the data to reduce the dimension, and 

reduce the seven-dimensional data to two-dimensional data, which can greatly avoid the occurrence 

of overfitting. However, the importance of each parameter in fault identification varies when 

performing dimensionality reduction processing on data, which still requires further research. Setting 

a weight value for each parameter can ensure the original sensitivity of the data sample to fault 

perception while achieving dimensionality reduction. 

https://doi.org/10.26555/ijish.v3i2.2222
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