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1. Introduction 

In 1991, the United Kingdom's Welding Institute (TWI) introduced friction stir welding (FSW) 

as a solid-state joining method [1-7]. Aluminum and copper, chosen for their suitable mechanical, 

thermal, and electrical properties, are environmentally friendly and recyclable, making them ideal 

for structural applications [8-10]. Combining copper with lightweight materials like aluminum is 

essential to create lightweight, cost-effective components without compromising essential properties 

[11]. However, welding dissimilar materials can result in defects and intermetallic compounds 

(IMCs), affecting weld quality [12]. Solid-state joining processes such as explosive welding, friction 

welding, and roll welding have been used to address this, but FSW stands out by eliminating defects 

like porosities, alloy segregations, and grain boundary cracks [13-15]. 

FSW utilizes a non-consumable, revolving tool with a specially designed pin/probe and 

shoulder. Joint failures in FSW of Al-Cu are often attributed to hard and brittle IMCs in the thermo-

mechanically affected zone (TMAZ), with joints failing through the nugget or TMAZ [16,17]. 
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 Friction Stir Welding (FSW) stands out as a groundbreaking method in 

solid-state joining for aluminum alloys, presenting an innovative way to 

achieve joints of exceptional quality. This research delves into the 

application of FSW for bonding, focusing on plates that are 6mm thick and 

made from aluminum alloys Al6063, Al5083, and AL6061, aiming to 

produce a variety of FSW joints. To evaluate the quality of these joints, the 

study compares mechanical properties such as tensile strength, safe 

bending strength, and bending toughness necessary for achieving a 90° 

bend. The investigation leverages welding data to formulate a neural 

model, starting with using a conventional feedforward neural model 

(CFNM). It tackles the limitations of CFNM, including its intensive 

training requirements and the challenge of dealing with unknown 

configurations, by proposing a new, more adaptable neural network model 

known as FNNM. When comparing the two models, it becomes evident 

that CFNM is constrained by a root mean square error (RMSE) of 7-15%, 

whereas FNNM marks a significant improvement with a minimal RMSE 

of 1-3%. This indicates that FNNM improves accuracy and effectively 

navigates the complexities of modeling with unknown parameters. 

Through this study, insightful contributions are made to understanding 

FSW in joining aluminum alloys and developing an advanced neural model 

capable of predicting the outcomes of welding with greater precision. 
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Various FSW parameters, such as tool geometry, design, tilt angle, base plate position, rotational 

speed, welding speed, and plunge force, influence joint quality [18,19]. However, limited research 

exists on the impact of FSW tool geometry and design for joining Al to Cu. Similarly, while there is 

literature on the effect of different pin profiles on material movement and joint quality during the 

FSW of some materials, there is a lack of similar studies for dissimilar nonferrous materials [20,21]. 

The quality of FSW joints depends upon many parameters besides the material and its 

properties, such as tool-related parameters, i.e., tool speed (rpm), the shape of the tool, the relative 

motion of the job piece, and tool (i.e., feed rate). Hence, it is necessary to optimize these parameters. 

Reynolds et al. [22] studied these parameters' effect on FSW quality. Previous studies [23-40] have 

explored the issue of parameter optimization by employing a variety of methodologies, including 

Analysis of Variance (ANOVA), thermo-mechanical finite element modeling, Grey Relational 

Analysis, Taguchi optimization, Genetic Algorithms (GA), Modified Differential Evolution, 

Artificial Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS), and their 

respective integrations, among others. These approaches have been applied to both similar and 

dissimilar materials. Aluminum plates are crucial in shipbuilding and naval applications, where 

bending loads precede tensile properties. Surprisingly, prior research does not comprehensively 

explore FSW results to determine safe bending strength and bending toughness for achieving a 900 

bend. This paper fills this gap by extensively comparing these properties and investigating welds 

with varied plate combinations and tool geometries. 

The research objective is to enhance the efficiency of the FSW process and to forecast output 

parameters utilizing input variables, including tool rotations per minute (rpm), tool geometry, and 

tool pin profile. To achieve this, neural methodologies, specifically the Conventional Feedforward 

Neural Model (CFNM) and an innovative Flexible Neural Network Model (FNNM), are utilized to 

model and simulate the FSW process. This research contributes valuable insights into enhancing 

FSW processes for specific applications, addressing the critical need to understand bending 

characteristics in aluminum plates for shipbuilding and naval purposes. 

2. Method  

The experimental study involved various combinations of base materials for Variable Axial 

Force Friction Stir Welding (VAFSW) joints. The specific combinations included Al 6063 with Al 

6063, Al 6063 with Al 5083, Al 5083 with Al 5083, Al 6061 with Al 6061, and Al 6061 with Al 

5083. The process was performed at four different tool rpm ranging between 800 rpm to 1400 rpm. 

Three feed rates, viz 30, 40, and 50 mm/min, were used to produce VAFSW welds. As per the 

literature review, careful consideration was given to selecting H13 chromium hot-work tool steel 

with a hardness of 52 HRC for the FSW process using the VAFSW technique. This choice of tool 

steel aligns with the welding requirements and contributes to the overall success of the experimental 

investigations. The composition of base metal plates is given in Table 1. The complete practical 

method is depicted in Fig. 1. 

Table 1. Composition of different alloys 

Material 

Composition 

Mn Fe Mg Si Cu Zn Ti Cr Al 

Al6063 0.05 0.6 0.9 0.7 0.3 0.2 0.1 0.25 Rest 

Al5083 0.65 0.29 4.55 0.12 0.014 0.006  0.03 0.088 Rest 

Al6061 0.15 0.50 0.8 0.4 0.2 0.3 0.15 0.04 Rest 

The specimens are prepared with a standard size of 65 mm wide and 6 mm thick, respectively. 

The design of the portable fixture prioritizes user convenience by incorporating features that simplify 

the clamping process. Specifically, the fixture is engineered to be effortlessly secured in a vice, 
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eliminating the necessity for supplementary clamping on the milling machine bed. This strategic 

design not only streamlines the setup process but also enhances the overall efficiency of operations. 

The user can easily remove and re-attach the fixture as required, providing high flexibility and 

adaptability in various machining tasks. This design choice optimizes workflow by minimizing time 

spent on clamping procedures, making the entire machining process more efficient and user-friendly. 

Specific tool parameters are carefully selected in the Friction Stir Welding (FSW) process to 

ensure optimal performance. The tool configuration includes a shoulder diameter (D) of 16 mm and 

a pin diameter (d) of 5 mm, maintaining a ratio of D/d=3:1 (approximately). The tool pin length is 

also set at 4.8 mm, representing about 75% of the specimen's thickness. Three distinct tool shapes 

are employed in FSW, each contributing to different welding characteristics. These shapes are 

identified as follows: 1. Straight threaded pin (STH), 2. Square pin (SQA), and 3. Pedal pin (PEP). 

The diverse tool shapes cater to varying welding requirements and are crucial factors in determining 

the quality and efficiency of the friction stir welding process, as illustrated in Fig. 1. Then, Fig. 2 

shows the FSW machine and fixture setup for securing the plate during the process. 

 

 

Fig. 1. Tools employed for VAFSW process 

 

Specimens were prepared as per ASTM-E8 standard, and the dimensions of the specimen are 

shown in Fig. 3. Process flow diagram is shown in Fig. 4 where the sequential steps of the research 

can be viewed. Once the specimens are tested their results are examined and compared. Table 4 

shows the results for the Al6063- Al6063 combination. The tool profile change, tool rpm, and tool 

feed rate variation in tensile strength, bending strength, and bending toughness are obtained. 

Conventional CFNM and a new FNNM techniques were used to draw comparison and analyzing the 

best combination of inputs to get desired output.   

https://doi.org/10.26555/ijish.v3i2.2222
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Fig. 2. VAFSW machine and fixture setup 
 

 

Fig. 3. Different dimensions of specimen used in VAFSW 
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Fig. 4. Process flow diagram 

Table 2 shows the results of tensile and bending tests performed on specimen prepared during 

FSW for 6063-6063 combination and Table 3 shows the results for dissimilar 6063-5083 

combination. 

Table 2. Results of Al6063-Al6063 FSW using PEP tool  

Tool speed 

(rpm) 

Feed 

(mm/min) 

Tensile test results 

(MPa) 

Notch bar test results 

Bending 

stress σb 

(MPa) 

Toughness (N-m) 

in 900 bend 

800 30 161 210 221 

800 40 155 195.4 240 

800 50 149 147.6 226 

1000 30 146 218.9 280 

1000 40 130 214 300 

1000 50 126 203 221 

1200 30 128 227 298 

1200 40 120 233.3 252 

1200 50 122 263 344 

1400 30 120 251.2 330 

https://doi.org/10.26555/ijish.v3i2.2222
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Table 3. Results obtained for the dissimilar FSW of Al6063-Al5083  

Tool speed Tool type Feed 
Tensile test 

results 
Notch bar test results 

rpm 

(STH, 

SQA, 

PEP) 

(mm/min) UTS (MPa) 
Bending stress 

σb (MPa) 

Toughness (N-m) in 

900 bend 

800 PEP 30 168 214.3 238 

800 PEP 40 155 196.4 210 

800 PEP 50 142 177.4 198 

1000 PEP 30 153 219.5 280 

1000 PEP 40 144 238.2 312 

1000 PEP 50 139 381 300 

1200 PEP 30 141 252.3 290 

1200 PEP 40 134 202.4 290 

1200 PEP 50 128 350.4 436 

1400 PEP 30 130 172.8 200 

1400 PEP 40 133 198.5 196 

1400 PEP 50 121 186.8 288 

800 SQA 30 138 192.8 208 

800 SQA 40 129 200 190 

800 SQA 50 127 181 156 

1000 SQA 30 122 190.5 202 

1000 SQA 40 121 220.2 264 

1000 SQA 50 117 214.3 290 

1200 SQA 30 137 242.9 310 

1200 SQA 40 141 273.8 333 

1200 SQA 50 120 255.95 330 

1400 SQA 30 118 226.19 266 

1400 SQA 40 135 242.85 282 

1400 SQA 50 124 280.95 356 

800 STH 30 159 217.9 248 

800 STH 40 143 193.3 202 

800 STH 50 138 184.5 135 

1000 STH 30 132 219 274 

1000 STH 40 127 232.1 288 

1000 STH 50 121 235.2 304 

1200 STH 30 136 180.9 212 

1200 STH 40 129 195.7 280 

1200 STH 50 123 232.1 308 

1400 STH 30 120 174.5 188 

1400 STH 40 124 187.6 214 

1400 STH 50 119 200 294 
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2.1. Modeling and Simulation of FSW Processes 

Similar and dissimilar metals are used in FSW processes for welding, and then the joint strength 

is tested for tensility and bending. These results are used for model development using a neural 

approach. The data is arranged in the following format:  

a. Input data: Tensile strength, Bending strength, and Toughness 

b. Output data: RPM, Shape of tool, and Feed rate 

The total data is divided into three parts, namely 

a. Training data (70%),  

b. Validation data (15%), and 

c. Testing data (15%) 

 

2.1.1 Conventional Feedforward Neural Model (CFNM) 

It consists of an input layer and an output layer. In between these layers, some hidden layer(s) is 

(are) there to cope up the non-linear behavior of the problem.  

The number of neurons at input layer equals the number of inputs and the neurons at output layer 

equals the number of outputs. But, unfortunately, neither number of hidden layers known to the 

modeler beforehand nor the number of neurons in hidden layer(s) [28,29]. 

The CFNM neuron, as shown in Fig. 5, has summation as aggregation function, which adds all 

the inputs after multiplying with their corresponding weights. This aggregated output of the first 

portion of the neuron is passed through the threshold function to get the final output of the neuron. 

Threshold functions are sigmoid and linear at hidden and output layers. 

 

Fig. 5 Conventional neuron used in CFNM 

2.1.2 Flexible Neural Network Model (FNNM) 

The FNNM has flexibility at both stages in neurons. The aggregation function is not a single function, 

unlike the CFNM neuron but during training it picks up one or more than one aggregation function(s) 

from the basket of aggregation functions depending on the complexity of the problem. The 

aggregation function basket consists of summation, product, arithmetic mean, geometric mean, 

minimum or maximum of inputs, etc. Similarly, at the next stage of threshold function,it selects one 

or more than one threshold function(s) from the threshold functions basket to cope up the non-linear 

https://doi.org/10.26555/ijish.v3i2.2222
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behavior of the problem. The threshold function basket consists of linear, triangular, sigmoid, and 

Gaussian. Due to this flexibility, FNNM requires only one neuron and one layer as shown in Fig. 6. 

  

Fig. 6. FNNM neuron 

2.1.3 Advantages of FNNM 

FNNM requires fewer weights to be adjusted during training compared to CFNM. By reducing 

the number of weights, training time, memory requirement, and the training data required decreased.  

Calculations of output in FNNM 

Step 1) The output of FNNM is calculated as 

maxmaxminmin ****** WOWOWOWOWOWOOj GMGMAMAMPIPISS +++++=
               (1) 

Where j=1 to m (number of outputs) 

Weight matrix = [Ws WPI  WAM  WGM Wmin Wmax]  

Step 2) The output of the summation part of the FNNM is 

)_*( netssfOs =
                   (2) 

Where osisi XXWnets +=_
 

Xi – inputs i=1 to n (number of inputs) 

Step 3) The output of the product part of the FNNM is 

I1 

 

I2 

 

I3 

… 

 

Ii 

Aggregation 

function 

Summation 

Product 

A. Mean  

G. mean 

Minimum 

Maximum 

…… 

Threshold 

function 

Linear 

Triangular 

Sigmoid 

Gaussian 

 

…… 

W1 

 

W2 

 

 

W3 

…. 

 

O1 

 

O2 

 

O3 

… 

 



 

IJIO Vol 5. No.1 February 2024 p.60-80  

 

68  10.12928/ijio.v5i1.9010 

 

)_*( netpipfPIO =
                   (3)         

where = oPIiPIi XXWnetpi *_
 

Step 4) The output of the arithmetic mean part of the FNNM is 
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Step 5) The output of the Geometric mean part of the FNNM is 
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Step 6) The output of the Min part of the FNNM is 

))*(( XiWMinfO MinMin =                   (6)  

Step 7) The output of the Max part of the FNNM is 

))*(( XiWMaxfO MaxMax =                   (7)  

Step 8) The error calculation is 

)( iOYiEi −=
                    (8) 

Consequently, the total squared error for pattern convergence is: 

= 25.0 EiEp
                                (5) 

a multiplication factor of 0.5 has been used to simplify the calculations. 

Step 9) Reverse pass to modify the connection strength.  

(a) Weight associated with the Threshold function outputs of the Generalized Neuron is: 

SSS WkWkW +−= )1()(
                   (6)   

where 
)1( −+= kWOW SSkS 

 and  −= )( OiYik   

Similarly, other weights like WPI  WAM  WGMWminWmax  can also be calculated. 

(b) Weights associated with the inputs of the summation aggregation function part of the 

Generalized Neuron are:  

iii WkWkW  +−= )1()(
                  (7) 

where
)1( −+=  kWXiW iji 

 and   −= OOWkj *)1(
    

https://doi.org/10.26555/ijish.v3i2.2222


 

 
IJIO Vol. 5. No 1, February 2024 p. 60-80 

 

                                                          Chaturvedi & Suri (Modelling and Simulation...)  69 

 

Similarly, other weights related to aggregate functions such as product, arithmetic mean, 

geometric mean, min, max can also be calculated. Where η is the learning rate and α is the momentum 

component for improved convergence. Experience determines the range of these parameters, which 

range from 0 to 1. Both the above-mentioned neural approaches are trained, validated, and tested for 

the data generated in the FSW processes.  

3. Results and Discussion 

CFNM's training and testing results are shown in Fig. 7. Also, FNNM is trained and tested with 

the same data. The results of CFNM and FNNM are compared with actual results for dissimilar 

Al5083-Al6063 welds and shown in Fig. 8 for predicting bending strength, Bending toughness, and 

UTS. Similarly, Fig. 9-11 gives the comparison of CFNM. FNNM and Actual results for similar 

alloys/metal welds Al5083-Al5083,Al6063-Al6063, and Al6061-Al6061. 

 

(a) Graph for the best validation performance and the minimum mean squared error (MSE) 

 

 

(b) Gradient, momentum, and validation checks (screenshot) 
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(c) Training performance of ANN model for Al6063-Al5083 VAFSW process (screenshot) 

Fig. 7. Training and testing results of CFNM 

 

(a) Comparison of ANN, GNN, and Actual data of bending stress for Al5083-Al6063 
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(b) Comparison of ANN, GNN, and actual data of toughness for Al5083-Al6063 

 

(c) Comparison of ANN, GNN, and actual data of UTS for Al5083-Al6063 

Fig.8. Comparison of ANN. GNN, and actual results for Al5083-Al6063 

 

(a) Comparison of ANN, GNN, and actual data of bending stress for Al5083-Al5083 
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(b) Comparison of ANN, GNN, and actual data of toughness for Al5083-Al5083 

 

(c) Comparison of ANN, GNN and Actual data of toughness for Al5083-Al5083 

Fig. 9. Comparison of ANN. GNN and actual results for Al5083-Al5083 

 

(a) Comparison of ANN, GNN and Actual data of bending stress for Al6063-Al6063 
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(b) Comparison of ANN, GNN and Actual data of toughness for Al6063-Al6063 

 

(c) Comparison of ANN, GNN and Actual data of UTS for Al6063-Al6063 

Fig. 10. Comparison of ANN. GNN and actual results for Al6063-Al6063 

 

(a) Comparison of ANN, GNN and Actual data of bending stress for Al6061-Al6061 
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(b) Comparison of ANN, GNN and Actual data of toughness for Al6061-Al6061 

 

(c) Comparison of ANN, GNN and Actual data of UTS for Al6061-Al6061 

Fig. 11. Comparison of ANN. GNN and actual results for Al6061-Al6061 

Table 4 compares the performance of CFNM and FNNM results during test. It shows that RMS 

error or FNNM is very low in comparison to CFNM. In case of FNNM the results are more than 97% 

accurate.  

Table 4. Comparison of results of ANN/GNN model 

S.No. Alloy Techniques 

Safe Bending 

Stress 

RMSE% 

Toughness 

RMSE % 

UTS RMSE 

% 

1 Al5083-Al5083 
ANN 14.1980 15.0955 9.6795 

GNN 2.1208 2.0392 2.9707 

2 Al5083-Al6063 
ANN 7.4440 9.3069 7.0016 

GNN 1.2896 1.4285 3.3249 

3 
Al6063-Al6063 

 

ANN 8.0531 9.7713 5.9022 

GNN 1.8473 1.3037 3.5667 

4 Al6061-Al6061 
ANN 7.0855 17.0099 9.0103 

GNN 1.3233 1.1553 1.9173 

5 5083-6061 
ANN 12.1740 9.9825 23.4053 

GNN 1.5763 3.1440 2.5748 
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The 3-D meshes are presented in Fig.12 (a-f) below that can represent safe bending stress, 

toughness and UTS with different tools for 5083-5083 combination of FSW joints. This study 

introduced a novel Flexible Neural Network Model (FNNM) for the FSW process, achieving 

significantly higher prediction accuracy for welding outcomes compared to the Conventional 

Feedforward Neural Model (CFNM). The FNNM demonstrated an RMSE improvement, showcasing 

its superior capability in handling the complexities of FSW parameter optimization. 

 

(a) 3-D mesh for Safe Bending stress of VAFSW for PEP tool Al5083-Al5083 

 

 (b) 3-D mesh for Safe Bending stress of VAFSW for SQ tool for Al5083-Al5083 
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(c) 3-D mesh for Toughness of VAFSW for PEPdle tool for Al5083-Al5083 

 

(d) 3-D mesh for Toughness of VAFSW for SQ tool for Al5083-Al5083 

 

 (e) 3-D mesh for UTS of VAFSW for PEPdle tool for Al5083-Al5083 
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 (f) 3-D mesh for UTS of VAFSW for SQ tool for Al5083-Al5083 

Fig.12. 3-D meshes for different combinations of Al5083 – Al5083 for predicting mechanical properties of 

joint. 

Unlike previous approaches that largely focused on traditional analytical or less flexible neural 

network models [31, 33], this study's FNNM offers a novel contribution by dynamically selecting 

aggregation and threshold functions, which is a significant departure from the rigid structure of 

CFNM. This flexibility has shown to enhance model performance significantly. The findings suggest 

that the FNNM's adaptive capabilities could revolutionize the optimization of FSW processes, 

making it possible to achieve desired welding outcomes with greater efficiency and accuracy. This 

has broad implications for improving joint quality in critical applications, such as shipbuilding and 

aerospace, where the precision of welding parameters is paramount. 

4. Conclusion 

Aluminum plates play a pivotal role in shipbuilding and naval applications, prioritizing bending 

loads over tensile properties. Remarkably, previous research lacks a thorough investigation into 

Friction Stir Welding (FSW) results, particularly regarding safe bending strength and bending 

toughness for achieving a 900 bend. This study addresses this gap by extensively comparing these 

properties, examining welds with diverse plate combinations and tool geometries. 

The research involves similar and dissimilar FSW using different aluminum alloys, namely 

Al6063, Al6061, and Al5083. Samples, prepared per the ASTM-E8 standard, undergo testing to 

assess ultimate tensile strength (UTS), safe bending strength, and bending toughness for a 900 bend 

along the weld line. Given the greater significance of bending strength and toughness over tensile 

properties, the study seeks optimal input parameters for superior bending and toughness, even at a 

slight compromise in tensile strength. 

In joining Al6063 with Al5083 plates, the best results are achieved using a paddle pin tool (PEP) 

at 100rpm and a 40mm/min feed rate. This combination yields 144MPa of tensile strength, 238.2 

MPa of bending strength, and 312 N-m of toughness for bending the specimen at 90 degrees. The 

obtained test results are utilized for model development using both Conventional Feedforward Neural 

Model (CFNM) and a new Flexible Neural Network Model (FNNM) for similar and dissimilar metal 

joints. FNNM, a novel approach in FSW optimization, demonstrates superior accuracy during 

training, validation, and testing. 3-D mesh plots are generated to identify required inputs, such as tool 
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shape, rpm, and feed rate, for obtaining desired outputs, including tensile strength, bending strength, 

and toughness. 

Significant disparities in accuracy between the two models are observed, with a maximum Root 

Mean Squared Error (RMSE) of 3.5% for FNNM compared to 17% for CFNM. This conclusively 

highlights the efficacy of FNNM in optimizing the FSW process, predicting results with exceptional 

accuracy, and determining necessary inputs for desired outputs. 
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