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1. Introduction 

The job-shop scheduling problem is extensively applied in the real-world manufacturing 

domain. With the growth of the manufacturing industry, job-shop scheduling is an efficient means 

to improve machining performances including cost, energy consumption, and so on. Therefore, 

resource scheduling and job sequencing are significant manufacturing systems processes.  Several 

evolutionary algorithms have been developed for desired scheduling solution in an acceptable time.  

A greedy randomized adaptive search procedure (GRASP) was developed in [1] for integrated 

scheduling of dynamic flexible job shops. But, the efficiency of dynamic flexible job scheduling was 

a major problem. A multi-objective memetic algorithm (MOMA) was introduced in [2] to minimize 
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 The job shop scheduling problem (JSSP) has drained a lot of consideration 

since it is one of the most important optimization problems in the 

manufacturing domain.  The scheduling method is crucial for optimizing 

the objective of minimizing makespan among thousands of jobs, but 

evaluating machine capacity for achieving this goal remains challenging 

despite the development of various population-based optimization 

algorithms for job shop scheduling problems. To improve the efficiency of 

Job shop scheduling, a novel Multi-objective Elitist Spotted Hyena 

Monotonic Scheduling (MESHS) technique is introduced. The proposed 

MESHS technique includes two major processes: machine selection and 

operation sequences. The number of jobs is considered for solving the 

scheduling problem.  First, the machine selection is performed by applying 

the Multi-objective Elitist Spotted Hyena optimization technique. The 

optimization technique selects the optimal machines parallelly based on 

multiple objective functions such as energy consumption, CPU utilization, 

and job completion time. The fitness of every machine is calculated based 

on these multiple objective functions using Levenberg–Marquardt method. 

Then the Elitist strategy is applied to select the optimal machine based on 

fitness. After the machine selection, the rate-monotonic preemptive 

scheduling is modeled to provide a robust operation sequence by assigning 

high-priority jobs to the optimal machines. As a result, efficient job 

scheduling is achieved with minimum time. Finally, the experimental 

valuation is carried out using a benchmark OR-Library dataset with 

different factors such as job shop scheduling efficiency, job scheduling 

time, makespan, and memory consumption concerning a number of jobs. 
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the makespan and the total energy consumption. However, performing dynamic scheduling with an 

efficient metaheuristic’s technique was difficult.  

A hybrid particle swarm optimization and simulated annealing algorithm (PSOSA) were 

developed by [3] to evaluate the performance of the heuristic solutions for dynamic scheduling with 

larger instances. The Quantum Annealing (QA)-based job shop scheduling technique was introduced 

in [4] to solve flexible job shop scheduling problems with various sizes. But the designed technique 

failed to solve the multi-objective optimization, increasing the job allocation's complexity.  

A Novel Multi-Objective Evolutionary Algorithm was developed in [5] based on 

Decomposition for energy-aware distributed hybrid flow shop scheduling.  But, the designed 

evolutionary algorithm was inefficient in improving the scheduling process's performance. A two-

stage genetic programming hyperheuristics (GPHH) method was developed in [6] to automatically 

improve dynamic flexible job shop scheduling. However, it failed to find more promising ways by 

local search to improve the performance of dynamic flexible job shop scheduling.  

A hybrid algorithm (HGA-TS) which combines genetic algorithm (GA) and tabu search (TS) 

was introduced in [7] for flexible job shop scheduling. However the multi-objective optimization 

was not performed for the job shop scheduling environment. An approach integrating the artificial 

immune system into ordinal optimization was introduced in [8] for near-optimal scheduling with 

minimum time.  However, the scheduling efficiency was not improved by considering the greater 

number of jobs. An improved multi-objective optimization algorithm was designed in [9] for flexible 

job shop scheduling. But it failed to integrate heuristics and self-learning to improve the performance 

of the flexible job shop scheduling algorithm.  

A knowledge-based cuckoo search algorithm (KCSA) was designed in [10] to the scheduling 

for solving an extended flexible job-shop scheduling. However, it was not concerning the strategy 

with various multi-swarm optimizations to enhance the performance of the cuckoo search algorithm. 

An artificial bee colony algorithm was developed in [11] for job shop scheduling.  However, the 

performance of the artificial bee colony algorithm was not improved.  An effective recombinative 

guidance approach was developed in [12] for genetic programming to improve effective scheduling. 

But the performance of makespan was not analyzed. A multi-objective genetic algorithm was 

designed in [13] for job shop scheduling problems by minimizing the total energy consumption. But 

it failed to improve the applicability of the energy-saving scheduling theory. A squared hyper-

heuristic approach was introduced in [14] to solve job shop scheduling problems. But it failed to 

improve the performance of the total makespan. An improved genetic algorithm was designed in [15] 

for effective hybrid multi-objective flexible job shop scheduling. But the efficiency of the algorithm 

was not increased desirably.  

 An alternative mixed integer linear programming model was developed in [16] for job shop 

scheduling to reduce the makespan as well as total energy consumption. But it was not efficient to 

improve the performance of job shop scheduling. A robust fuzzy stochastic programming (RFSP) 

approach was designed in [17] for flexible job-shop scheduling. But it failed to consider the 

performance of the makespan measure.  A new fitness estimation mechanism based on fuzzy relative 

entropy was introduced in [18] for energy-efficient job-shop scheduling aiming to minimize the 

makespan and energy consumption. But it failed to consider the multi-objective optimization 

framework.  

A hybrid distributed evolutionary method was developed in [19] for large-scale job-shop 

scheduling by using the Bayesian grouping method. The designed method failed to apply the 

scheduling in more complex environments involving machine breakdown and urgent job insertion. 

An enhanced genetic algorithm with an elite strategy was developed in [20] for complicated flexible 

job-shop scheduling.  

However, the field of energy-aware job-shop scheduling has not yet been extensively explored 

in the literature, resulting in a major lack of research on comprehending and maximising the energy 

consumption elements in the context of job-shop scheduling. Therefore, to improve the efficiency of 

job shop scheduling, this research objective is to develop a novel Multi-objective Elitist Spotted 

Hyena Monotonic Scheduling (MESHS) technique. The major contribution made in the article for 

the job shop scheduling is summarized as follows: 
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• To improve the multi-objective job shop scheduling efficiency, a novel technique called 

MESHS is introduced by including two contributions namely optimal machine selection and 

operation sequencing.  

• The multi-objective elitist spotted hyena optimization technique is introduced for selecting 

the optimal machines in a parallel manner based on multiple objective functions such as 

Energy consumption, CPU utilization, and minimum job completion time. The fitness of the 

machine is estimated based on Levenberg–Marquardt method with multiple objective 

functions. Then the Elitist strategy is applied to select the optimal machine with minimum 

resource utilization.    

• Next, Rate-monotonic preemptive scheduling technique is applied in MESHS for operation 

sequencing by assigning the priority level for each incoming job.  The higher priority 

operation is first assigned to the optimal machine. This helps to improve the task scheduling 

efficiency and reduce the makespan. 

• Finally, extensive simulation is carried out with various performance metrics to highlight the 

improvement of the proposed MESHS technique over conventional scheduling techniques. 

The rest of this article is organized into five different sections as follows. Section 2 explains the 

proposed job shop scheduling strategy MESHS and provides the simulation settings and dataset 

description. Section 3 provides the proposed algorithm's performance evaluation compared with 

existing scheduling strategies. Finally, the paper will be concluded in Section 4. 

2. Method  

Flexible job shop scheduling is a demanding combinatorial optimization problem due to its 

complex environment. The scheduling objective is to minimize the total completion time and total 

cost of the job in computer science and operational research. The scheduling problem consists of a 

limited number of resources in which each job is processed by numerous machines simultaneously 

at every stage. As the number of incoming job volumes from all fields increases exponentially, the 

resources for processing such jobs also rapidly increase. Therefore, an efficient scheduling algorithm 

is required to process such kinds of jobs with minimum completion time. Based on this motivation, 

the MESHS technique is introduced. Contrary to the existing optimization, the proposed MESHS 

solves the multiple objective functions for efficient dynamic scheduling of numerous jobs. The 

architecture of the MESHS technique is shown in Fig. 1.  

Fig. 1 shows the architecture of the proposed MESHS technique for dynamic flexible job shop 

scheduling into machines with minimum time. In a dynamic job shop scheduling environment, there 

is a set of jobs J={J_1,J_2,…,J_n } arrived and need to be processed by machines 

‘M={M_1,M_2,…,M_m }’. Every job J_i arrived at a time ‘t’ and sequence of operations 

O_k={O_1,O_2,…,O_k }  to be processed.  Each operation O_k processed by the optimal machine 

‘M’ with different processing times. The machine processed more than one operation simultaneously. 

An operation of one job is performed in a particular order. The first operation finishes on the first 

machine, then the second operation on the second machine, and so on until the n-th operation. It 

involves two types of decisions that aim to simultaneously make in dynamic flexible job shop 

scheduling such as optimal machine selection and Operation sequences.  

First, the optimal machine selection process is said to be performed by applying a multi-

objective Elitist spotted hyena optimization. The proposed optimization technique is a population-

based meta-heuristic optimization that worked on the basis of the hunting behavior of the spotted 

hyenas.  The multiple objective functions such as energy consumption, CPU utilization and job 

completion time into consideration, and lesser time are considered for solving the dynamic flexible 

job shop scheduling problem. Then, the Elitist strategy is applied to select the optimal machine for 

processing certain operations of incoming jobs. Finally, the operation sequencing is performed to 

assign the job operations to the selected optimal machine using Rate-Monotonic preemptive 

scheduling. The proposed scheduling is a priority assignment algorithm and the static priorities are 

assigned to the job along with the cycle duration. Therefore, the job with the highest priority gets 

scheduled first than the others. The proposed MESHS technique is described in the following 

subsections.   

https://doi.org/10.26555/ijish.v3i2.2222
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Fig. 1. Architecture of the MESHS technique 

2.1. Multi-objective elitist spotted hyena optimization 

The proposed MESHS performs the optimal machine selection by using Multi-objective Elitist 

spotted hyena optimization, a population-based meta-heuristic technique. The main advantage 

related to the method includes faster convergence time. In the optimization process, spotted hyena 

act as a search agent and starts to determine the location of prey. Here, the spotted hyena is related 

to the machines, and the prey is denoted as multiple objective functions. The Elitist selection strategy 

is used to find the best optimal hyena with the best fitness values. 

For each arriving job with operations 𝑂𝑘 = {𝑂1, 𝑂2, … , 𝑂𝑘}, the population of the ‘m’ number 

of spotted hyenas (i.e. machines) is initialized in the search space, as shown in Eq. (1). 

𝑀𝑖 = 𝑀1,𝑀2,𝑀3, …𝑀m                            (1) 

After the initialization, the proposed optimization algorithm computes the fitness based on 

multiple objective functions, such as CPU utilization, energy consumption, job completion time. 

CPU utilization is processing resources referred to as the amount of time for which a machine 

processes certain operation, as presented in Eq. (2).  

𝑐𝑝𝑢𝑡 = 𝑇 [𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑂𝑘]                            (2) 

where, 𝑐𝑝𝑢𝑡 denotes a CPU time, T denotes a time, 𝑂𝑘 indicates the operations of the particular job.   

Energy is the other major resource of the machine to process the operations of the job. The 

energy consumption factors of machines are different, which represents processing jobs on different 

machines consume different energy. Energy consumption consists of two parts namely processing 

energy and idle energy. The formula can be seen in Eq. (3).  

𝐸𝑐 = 𝐸𝑝𝑟𝑜𝑐 + 𝐸𝑖𝑑𝑙𝑒              (3) 

where, Ec denotes energy consumption, 𝐸𝑝𝑟𝑜𝑐  denotes processing energy, 𝐸𝑖𝑑𝑙𝑒 denotes idle energy.  

Job completion time is defined as the time the machines take to complete certain operations. It 

can be seen in Eq. (4).   
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𝑇𝑗 = 𝑇𝐸 − 𝑇𝑆                 (4) 

where, 𝑇𝑗  denotes a predicted job completion time, 𝑇𝐸  represents an ending time to complete the 

operation of the job and 𝑇𝑆  represents a starting time to process the operation of the job.  

The optimal machine is selected through the fitness function based on the resources. In the 

fitness measure, the optimization technique uses the Levenberg–Marquardt method is applied to find 

the local minimum of a function for selecting the optimal one among the population. It is presented 

in Eq. (5).  

𝑍 = 𝑎𝑟𝑔 𝑚𝑖𝑛 (𝑐𝑝𝑢𝑡, 𝐸𝑐, 𝑇𝑗)                                                     (5) 

where, Z denotes a fitness, arg min indicates an argument minimum function to find the machine 

with minimum resource utilization. 

Then the Elitist selection strategy is applied to determine the current best machine (i.e. spotted 

hyenas) from the whole population based on fitness as shown in Eq. (6).    

𝑅 = {
𝑍 >  𝑍𝑡ℎ ∶ 𝑠𝑒𝑙𝑒𝑐𝑡 𝑏𝑒𝑠𝑡 𝑚𝑎𝑐ℎ𝑖𝑛𝑒
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ;  𝑟𝑒𝑗𝑒𝑐𝑡 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟𝑠

                                        (6) 

where, R indicates selection outcomes, 𝑍𝑡ℎ  denotes a threshold, Z denotes a fitness.  

As a result, the machines with higher fitness are selected as the optimal machine and others are 

removed. This helps to minimize time consumption and improve the performance of the optimal 

machine selection.  Based on the selection outcomes, different behaviors of the spotted hyenas such 

as encircling the prey, hunting, and attacking the prey are described as give below. 

2.2. Encircling the prey 

Encircling the prey is the basic behavior of the optimization technique. The location of prey is 

determined by spotted hyenas, which encircle them. Let us consider that the current best candidate 

solution is the target prey, i.e., objective functions close to the optimum. The mathematical model of 

encircling the prey behavior is presented in Eq. (7) – Eq. (11). 

𝐷 = |ℎ. 𝑃𝑝 − 𝑃 𝑆|                              (7) 

𝑃 𝑆+1 = 𝑃𝑝 − 𝑟.𝐷                                            (8) 

where, 𝐷 indicates the distance between the location of the prey ‘𝑃𝑝’ and spotted hyena ‘𝑃 𝑆’, 𝑃 𝑆+1 

denotes an updated position of the hyena, ℎ,  𝑟  denotes coefficient vectors.  

ℎ = 2. 𝑣1                                                              (9) 

𝑟 = 2 𝐺. 𝑣2 − 𝐺                         (10)         

𝐺 = 5 − (𝐼𝑡 ∗ (
5

𝑚𝑎𝑥𝑖𝑡
))        Where,  𝐼𝑡 = 1,2, . . . 𝑀𝑥𝐼𝑡𝑒𝑟            (11) 

where, 𝑣1, 𝑣2 denotes a random vector in [0, 1], 𝐺 is linearly decreased from 5 to 0 during iterations 

‘𝐼𝑡’, 𝑚𝑎𝑥𝑖𝑡 indicates a maximum iteration. 

2.3. Hunting behavior 

To perform the hunting behavior of spotted hyenas, the best optimal spotted hyenas have an 

awareness of the location of prey. The remaining hyenas form a group and update their position 

according to the best hyenas. The mathematical formulation of hunting behavior is shown in Eq. (12) 

– Eq. (14).  

𝑋 = |ℎ. 𝑃𝑏(𝑆) − 𝑃𝑜 (𝑆)|                               (12) 

𝑃𝑜 (𝑆) = 𝑃𝑏 (𝑆) − 𝑟. 𝐷                               (13) 

𝑃 𝑆+1 = 𝑃𝑝 − 𝑟.𝐷                                        (14) 

where, 𝑃𝑏(𝑆) indicates the position of the first best-spotted hyena, 𝑃𝑜 (𝑆) indicates the position of 

other spotted hyenas. 
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2.4. Attacking prey 

The final behavior of the optimization is attacking the prey.  The spotted Hyenas attack the prey 

when they are closer to the prey. The mathematical formula for attacking the prey is given in Eq. 

(15).  

𝑃 𝑆+1 =
𝐴

𝑛
                                (15)  

where, 𝑃 𝑆+1 denotes the best solution and updates the positions of other hyenas along with the 

position of the best machine, A denotes a group of ‘n’ optimal solutions. Again, the fitness is 

computed for the newly updated position of hyenas. If the fitness of the updated position of the 

hyenas is higher than the old position, then it restores the current best as optimal.  This process is 

repeated until the maximum number of iterations gets reached. 

2.5. Rate-monotonic preemptive scheduling-based operation sequence 

Operation Sequencing is the order of scheduling to be performed in sequence format.  Therefore, 

the proposed technique uses the rate-monotonic scheduling technique for operation sequencing. The 

rate-monotonic scheduling is a priority assignment algorithm where the static priorities are assigned 

along with the duration of the execution time of the operation, therefore a shorter time duration results 

in a higher job priority. Preemptive scheduling is the currently executed operation goes to a waiting 

state when the high-priority operation arrives.   

For each operation ‘O’, the CPU burst time is calculated as the total time taken by the process 

for its execution of the operation as presented in Eq. (16).  

𝐶𝑃𝑈 𝐵𝑢𝑟𝑠𝑡 𝑇𝑖𝑚𝑒 =  𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒  −  𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑇𝑖𝑚𝑒                  (16) 

After measuring the CPU burst time, the priority is assigned to the machine's scheduled operation. 

Then, assigning a higher priority for minimum burst time can be formulated in Eq. (17).  

𝜑
ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑝𝑟𝑖𝑜𝑟𝑡𝑦
→            argmin𝐵𝑇                                                             (17) 

where, 𝜑  denotes a Rate-monotonic preemptive scheduling output, 𝑎rg min denotes a minimum 

burst time ‘𝐵𝑇’. 
Table 1. Rate-monotonic preemptive scheduling process 

Operations CPU burst time (ms)  Priority for scheduling  

𝑂1 5 Second 

𝑂2 7 Third 

𝑂3 9 Four 

𝑂4 4 First 

 

By applying Rate-monotonic preemptive scheduling, the operation  

𝑂4 has the shortest CPU time and it has the highest priority for scheduling, followed by 𝑂1,  

𝑂2 and finally 𝑂3. In this way, the operation sequencing process is performed by scheduling all the 

operations to the optimal machine. The algorithmic process of multi-objective elitist spotted hyena 

monotonic scheduling is given below. 

 

// Algorithm 1:   Multi-objective Elitist Spotted Hyena Monotonic Scheduling  

Input: Machine ‘𝑀 = {𝑀1,𝑀2, … . ,𝑀𝑚}’, Job ‘𝐽 = {𝐽1, 𝐽2, … , 𝐽𝑛}’, Operations ‘𝑂𝑘 =
{𝑂1, 𝑂2, … , 𝑂𝑘}’,  
Output: Find optimal machine and robust operation sequencing      

Begin  

Optimal machine selection  

1.      Initialize the population of machines  𝑀 = {𝑀1,𝑀2, … . ,𝑀𝑚} 
2.      for each  ‘𝑀𝑖’ 
3.      Calculate the fitness ′ 𝑍’ based on multiple objective functions 

4.       Apply elitist selection  
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5.      𝒊𝒇 (𝑍 >  𝑍𝑡ℎ) then  

6.                Select the current best machine 

7.     else 

8.             Remove the others 

9.   end if 

10.   end for 

11.      While (t < max _it) 

12.         for each current best machine 

13.              Perform Encircling the prey using  

14.              Perform hunting behavior  

15.             Update the  position of the current best 

16.   end for 

17.     Evaluate fitness function for the new position  

18.      𝒊𝒇  (𝑍𝑖 < 𝑍𝑖+1)  then  

19.       Replace the old  best into the current best      

20.   end if            

21.         t=t+1 

22.  End while  

23.   Return ( best optimal machine) 

// operation sequencing   

24.  For each operation  

25.     Measure the CPU burst time   

26.      Find the minimum CPU burst time   

27.      Assign high priority to the minimum CPU burst time  operation 

28.   For each high-priority operation  

29.          Perform preemptive Scheduling     

30.  End for 

31. End for 

End  

  

The algorithm of MESHS is described in step-by-step process to perform resource-efficient 

job shop scheduling by using optimal machine selection and operation sequencing. First, the multi-

objective elitist spotted hyena optimization is applied to select the resource optimal machine. The 

populations of machines are initialized randomly. For each machine, the multiple objective functions 

are measured. Based on the estimation of the objective function, the fitness is computed. Then the 

current best machine is selected by applying the elitist selection strategy.  If the fitness of the current 

best machine is higher than the threshold, then the machine is selected. Other machines with lesser 

thresholds are removed. Followed by, the different behaviors are estimated. After that, the current 

best positions of the spotted hyenas (i.e. machines) are updated. After that, the fitness is estimated 

for the newly updated position.  If the fitness of the previous position (𝑍𝑖) is better than the fitness 

of the new position (𝑍𝑖+1), then it replaces the new position as optimal. The entire process is repeated 

until the maximum iteration gets reached. Finally, the optimal machine is selected. After that, the 

preemptive scheduling process is performed by assigning the job operations to the optimal machine. 

For each operation, the CPU burst time is computed and assigned priority. The operations with high 

priority are scheduled first than the others. In this way, efficient job shop scheduling is performed, 

resulting in a reduced makespan.  

2.6. Experimental setup 

In this section, experimental evaluation of proposed MESHS and existing GRASP [1] MOMA 

[2] PSOSA [3] are implemented using MATLAB simulator and run on an Intel Core i7-3520M 2.9 

GHz processor with 8 GB of RAM. The benchmark OR-Library dataset is used for dual resource-

constrained processes such as optimal machine selection and sequencing. The parameter settings are 

listed in Table 2.  
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Table 2. Parameter settings  

S. No Parameter Value 

1 Number of jobs 150 

2 Number of machines 20 

3 Number of operations 300 

4 Maximal iterations 10 

3. Results and Discussion 

In this section, the performance of the proposed MESHS and existing GRASP [1], 

MOMA [2], PSOSA [3] are discussed with different metrics such as Job shop scheduling 

efficiency, makespan, and energy consumption. The performances of the three methods are 

discussed with a table or graphical representation.  

3.1. Impact of job shop scheduling efficiency 

Job shop scheduling efficiency is defined as the number of incoming jobs that are correctly 

scheduled to the resource-optimized machine. The efficiency is calculated as shown in Eq. (18).  

    𝐽𝑆𝑆𝐸 = (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑗𝑜𝑏𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑

𝑛
) ∗ 100                                             (18)  

Where 𝐽𝑆𝑆𝐸 denotes a Job shop scheduling efficiency,  𝑛 represents the number of jobs 

correctly scheduled. The task scheduling efficiency is measured in terms of percentage (%).   

 
Table 3. Comparison of Job shop scheduling efficiency 

Methods Job shop scheduling efficiency (%) 

MESHS 98.75 

GRASP 91.42 

MOMA 94.55 

PSOSA 95.22 

 

 
Fig. 2. Performance results of job shop scheduling efficiency 

Table 3 and Fig. 2 illustrate the various simulation results of job shop scheduling efficiency by 

considering the 150 jobs taken from datasets. The scheduling efficiency is measured using four 

methods namely MESHS and existing GRASP [1], MOMA [2], and PSOSA [3]. Among the three 

methods, the above-reported results noticeably confirm that the job shop scheduling efficiency of the 
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MESHS technique is higher than the GRASP [1], MOMA [2], and PSOSA [3]. This is owing to 

MESHS initially identifying the optimal machine for processing the high-priority operations of the 

given job. The multi-objective elitist spotted hyena optimization is applied to identify the optimal 

resource machine by applying the elitist selection strategy. The machine which has minimum 

resource consumption is selected as optimal to assign the jobs to that virtual machine.   As a result 

of scheduling, high-priority jobs are scheduled first. The efficiency of the MESHS technique is 

compared to the existing technique. The average value of comparative results indicates that the job 

shop scheduling efficiency of MESHS is increased by 8%, 5%, and 4% as compared to  GRASP [1], 

MOMA [2], and PSOSA [3], respectively. 

3.2. Impact of makespan 

The makespan is the time difference between the start and end times of flexible Job shop 

scheduling. It is also defined as the overall time consumed for assigning jobs to the respective 

machines. The formula for calculating the makespan is presented in Eq. (19).   

𝑀𝑆 = ∑ 𝐽𝑖
𝑛
𝑖=1 ∗ [𝑆𝑇 − 𝐹𝑇]           (19) 

where, ‘𝑀𝑆’ denotes a makespan, the number of jobs involved in the simulation process ‘𝐽𝑖’ 𝑆𝑇 

denotes a start time, ‘𝐹𝑇’ denotes a finish time ‘𝐹𝑇’ respectively. It is measured in terms of 

milliseconds (ms). 

 
Table 4. Comparison of makespan 

Number of jobs Makespan (ms) 

MESHS GRASP MOMA  PSOSA 

15 92.6 120 112 107.5 

30 100.25 135.15 128.44 117.9 

45 118 150.25 137.21 128.6 

60 132 195.35 165 155.5 

75 132.45 235.55 188.66 168.66 

90 158.2 250.15 220.45 189.5 

105 176.55 295.35 247.89 218.66 

120 185.5 310.25 286 245.75 

135 204.3 355.15 306.5 284.14 

150 247.65 390.25 344.4 312 

 

 
Fig. 3. Performance results of makespan 

 

Table 4 and Fig. 3 illustrate the performance results of makespan in terms of the number of jobs 

taken in the ranges from 15, 30 … 150.  For each method, ten different results are achieved. The 
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observed results indicate that the makespan is minimized using MESHS than the existing GRASP 

[1], MOMA [2], and PSOSA [3] methods respectively.  This is verified through statistical 

examination. By considering 15 jobs in the first iteration, the makespan of MESHS is 92.6𝑚𝑠. 
Similarly, by applying GRASP [1], MOMA [2], and PSOSA [3], 120𝑚𝑠, 112𝑚𝑠 and 107.5𝑚𝑠 
respectively. Ten results are observed and the results are compared. The average of ten results 

indicates that the makespan of MESHS is considerably minimized by 34% when compared to [1] 

and 26% when compared to [2] and 18% when compared to [3] respectively. This is because of 

applying the Rate-monotonic preemptive scheduling technique. The scheduling process is performed 

by assigning the operations of the jobs to the optimal machine. For each operation, the CPU burst 

time is computed and then find the high-priority jobs. The operations with high priority are scheduled 

first than the others. In this way, efficient job shop scheduling is performed and minimizes the 

makespan. 

3.3. Impact of energy consumption 

The machine's energy consumption during the job shop scheduling is measured based on 

processing energy and idle energy. The total energy consumption of the machine is calculated as 

shown in Eq. (20).  

𝐸𝑐 = ∑ 𝐽𝑖
𝑛
𝑖=1 ∗ (𝐸𝑝𝑟𝑜𝑐 + 𝐸𝑖𝑑𝑙𝑒)                            (20) 

where, 𝐸𝑐  denotes energy consumption, 𝐸𝑝𝑟𝑜𝑐 denotes processing energy, 𝐸𝑖𝑑𝑙𝑒  denotes idle energy. 

𝐽𝑖 denotes the number of jobs. It is measured in terms of a kilowatt hour (kwh) 

 
Table 5. Comparison of energy consumption  

Number of jobs Energy consumption (kwh) 

MESHS GRASP MOMA  PSOSA 

15 615.7 785 756.6 695.5 

30 725.3 896.7 842.5 765 

45 780.69 945 878.7 832.5 

60 840.2 978.3 945.6 895.6 

75 863.5 1042 984.3 941.5 

90 910.1 1086.6 1045 974.6 

105 942.56 1125.1 1087 1009.1 

120 962.4 1148 1108 1015 

135 1011 1167.5 1152 1108 

150 1023.4 1245.35 1210 1145 

 
Fig. 4. Performance results of energy consumption  
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Table 5 and Fig. 4 demonstrate the experimental energy consumption results for dynamic 

scheduling of the jobs to the optimized machine. From the observed experimental results, it is 

inferred that the energy consumption is increased while increasing the number of jobs since each job 

comprises of a number of operations. Among four different methods, the memory consumption of 

the MESHS is minimal than the other three conventional optimization techniques.  Let us consider 

the 15 jobs for calculating the energy consumption in the first iteration. Firstly, the MESHS technique 

consumed 615.7kwh of energy for scheduling the 15 jobs. Next, the energy consumption of [1], [2] 

[3] are observed by 785 kwh,756.6 kwh 695.5 kwh, respectively. As a result, ten results of energy 

consumption were obtained and compared. The comparison results indicate that the performance of 

energy consumption using the MESHS technique is considerably reduced by 17%, 13%, and 8% 

when compared to the GRASP [1], MOMA [2], and PSOSA [3], respectively. 

4. Conclusion 

In this paper, a novel MESHS technique is developed to schedule the job to a machine for 

reducing the makespan. The MESHS techniques consist of two major processes such as machine 

selection and operation sequencing. The multi-objective elitist spotted hyena optimization is applied 

for selecting resource-optimal machines in a parallel manner for assigning the jobs.  After the optimal 

machine selection, the rate-monotonic preemptive scheduling is applied for assigning the high-

priority operations of the jobs with higher efficiency and minimum time consumption. To evaluate 

the performance, a comparative analysis is performed using the proposed MESHS algorithm and 

existing optimization algorithms.  The experimental outcome illustrates that the MESHS technique 

provides better performance for scheduling the number of jobs to an optimal machine with higher 

efficiency and lesser makespan as compared to state-of-the-art works. 
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