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1. Introduction 

Conjugate Gradient (CG) method was initially proposed for solving linear systems and unconstrained 

minimization. The method is an excellent choice for solving optimization problems by scientists, 

engineers, and mathematicians. The method has the following form  

𝑚𝑖𝑛⁡𝑓(𝑥),⁡⁡⁡⁡⁡ 

(1) 

𝑥 ∈ ℝ𝑛 

where 𝑓:ℝ𝑛 → ⁡ℝ⁡ is a smooth nonlinear function.  

The iterative scheme of the method is computed by 

𝑥0⁡ ∈ ⁡ℝ
𝑛 

(2) 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘⁡,⁡⁡ 
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 Some problems have no analytical solution or too difficult to solve 
by scientists, engineers, and mathematicians, so the 
development of numerical methods to obtain approximate 
solutions became necessary. Gradient methods are more 
efficient when the function to be minimized continuously in its first 
derivative. Therefore, this article presents a new hybrid 
Conjugate Gradient (CG) method to solve unconstrained 
optimization problems. The method requires the first-order 
derivatives but overcomes the steepest descent method’s 
shortcoming of slow convergence and needs not to save or 
compute the second-order derivatives needed by the Newton 
method. The CG update parameter is suggested from the Dai-
Liao conjugacy condition as a convex combination of Hestenes-
Stiefel and Fletcher-Revees algorithms by employing an optimal 
modulating choice parameter⁡𝑡⁡to avoid matrix storage. 
Numerical computation adopts an inexact line search to obtain 
the step-size that generates a decent property, showing that the 
algorithm is robust and efficient. The scheme converges globally 
under Wolfe line search, and it’s like is suitable in compressive 
sensing problems and M-tensor systems. 
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in which⁡𝛼𝑘 > 0⁡is a step length obtained by a suitable exact or inexact line search. However, 𝛼𝑘 ⁡is 

usually generated by an inexact line search, such as the standard Wolfe line search  

 

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≤ 𝑓(𝑥𝑘) + ⁡𝛿𝛼𝑘𝑔𝑘
𝑇𝑑𝑘,      (3) 

 

g(𝑥𝑘 + 𝛼𝑘𝑑𝑘)
𝑇𝑑𝑘 ≥ 𝜎⁡𝑔𝑘

𝑇𝑑𝑘.      (4) 

 

Or using strong Wolfe condition, which consists of (3) and  

 

|g(𝑥𝑘 + 𝛼𝑘𝑑𝑘)
𝑇𝑑𝑘| ⁡≤ ⁡−𝜎⁡𝑔𝑘

𝑇𝑑𝑘     (5) 

 

where 0 < 𝛿 < 𝜎 < 1 and 𝑑𝑘 is the search direction given by   

 
⁡⁡⁡⁡𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘𝑑𝑘⁡,             (6) 

 

where  𝛽𝑘 is a scalar called CG (update) parameter (Babaie -Kafaki, 2011). 

Liu & Du (2019) proposed a CG method by transforming 𝑀 - tensor system to general unconstrained 

minimization problem and solving a kind of nonsmooth optimization problems with ⁡𝑙1⁡- norm, the given 

numerical experiments show the efficiency of the suggested method due to simplicity, low storage and 

nice convergence properties of the CG methods. Esmaeili, Rostami & Kimiaei (2018) employed a new 

CG method to solve compressive sensing problems that play an important role in medical and 

astronomical imaging, file restoration, image, video coding, etc applications. The method is 

characterized by ⁡𝑙0⁡- minimization that is NP-hard in general. Hence, replaced the ⁡𝑙0 - norm by the 

closest convex norm, which is the ⁡𝑙1- norm leads to the minimization problem. Similarly, Guo & Wan 

(2019) developed a CG algorithm to solve an engineering problem originated from compressed sensing 

of sparse signals. Numerical tests and preliminary application in recovering sparse signals indicate that 

the established algorithm outperforms similar algorithms in the literature, especially for solving large-

scale problems and singular ones. It was shown that the compressed sensing of sparse signals does 

not involve computing the Jacobian matrix or its approximation, both information storage and 

computational cost of the algorithm are lower. Recently, Liu, Du & Chen (2020) suggested a kind of 

important tensor optimization problem with higher-order nonlinear equations, widely used in engineering 

and economics. The algorithm is concerned with solving 𝑀-tensor equations by transforming the 

equations to nonlinear unconstrained optimization problems. The effectiveness of the proposed 

nonlinear conjugate gradient method was compared with the three-term conjugate gradient method and 

Newton method. Numerical results show that the proposed nonlinear conjugate gradient method is 

potentially efficient. 

Different values of the scalar parameters 𝛽𝑘 correspond to several CG schemes. Some excellent CG 

algorithms employed in practice to obtain new formulas include; Hestenes & Stiefel (HS) (1952), Polak, 

Ribie‘re & Polyak (PRP) (1967), Liu & Storey (LS) (1991), Fletcher & Revees (FR) (1964), Fletcher 

(Conjugate Descent (CD)) (1987), and Dai & Yuan (1991) schemes. Let ‖. ‖ denotes Euclidean norm 

and define 𝑠𝑘 = 𝑥𝑘+1 − 𝑥𝑘 and 𝑦𝑘 = 𝑔𝑘+1 − 𝑔𝑘 (Dai & Yuan, 2001). Numerical experiments show that 

the FR, DY and CD conjugate schemes are characterized by strong global convergence properties and 

have poor practical performances due to jamming. On the contrast, LS, HS and PRP have better 
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practical performances, but may not always be convergent (Babaie-Kafaki & Ghanbari, 2014c). To 

improve these schemes' behavior and avoid numerical uncertainty, researchers were interested in 

combining CG schemes of the two groups (Babaie-Kafaki & Mahdavi-Amiri, 2013).  

There are some strengths and weaknesses in the theory of CG schemes. The first global convergent 

property of FR method with exalt line was proved by Zoutendijk (1970); where Al-Baali (1985) extended 

this result to an inexact line search and show that the method generates sufficient descent direction 

under the strong Wolfe conditions using the constraint⁡⁡𝜎 <
1

2
.  However, the HS and PRP schemes 

possess an automatic approximate restart feature that addresses a jamming problem that makes them 

numerically efficient (Babaie-Kafaki, 2013). Here this research considers a new convex combination of 

HS and FR conjugate gradient methods. The corresponding conjugate gradient parameters are 

 

𝛽𝑘
𝐻𝑆 =

𝑔𝑘+1
𝑇 𝑦𝑘

𝑑𝑘
𝑇𝑦𝑘

,⁡        (7) 

and 

𝛽𝑘
𝐹𝑅 =

‖𝑔𝑘+1‖
2

‖𝑔𝑘‖
2          (8) 

 

The structures of CG update parameters were obtained from conjugacy condition and secant 

equation which depends on the exact line search. These procedures require computation and storage 

of the Hessian matrix, respectively. However, the practical numerical analysis adopts inexact line 

searches instead of exact line searches to obtain the step-size. To address these drawbacks, this 

article, therefore, presents a hybrid method from Dai-Liao conjugacy condition so that, if the modulating 

parameter t = 1, then it reduces to a method that uses pure conjugacy condition. The numerical 

performance of the Dai-Liao CG method depends on the parameter t. The best choice of t remains 

subject of consideration (Babaie-Kafaki & Ghanbari, 2017). 

The article aims to modify the CG methods using classical HS and FR method by employing optimal 

choice of the parameter t for solving large scale unconstrained optimization problems. This paper is 

organized as follows: Section 2 presents the proposed method. Convergence results are presented in 

Section 3. Some numerical results are reported in Section 4. Finally, conclusions are made in Section 

5. 

2. Literature Review 

A large number of hybrid conjugate gradient techniques were proposed. The idea is to combine different 

conjugate algorithms to use the projection to form a new hybrid convex-combination algorithm to avoid 

jamming and improve the convergence analysis (Mohammed, et al., 2020). Djordjevic (2016; 2017; 

2018) proposed hybrid conjugate gradient algorithms. The conjugate gradient parameters⁡𝛽𝑘⁡⁡are 

computed as a convex combination of the hybrid parameter 𝜃𝑘, where they are computed in such a way 

that the conjugacy condition(s) are satisfied using strong Wolfe line search conditions, which has the 

following formulas for 𝛽𝑘⁡⁡respectively 

 

𝛽𝑘
ℎ𝑦𝑏

= (1 − 𝜃𝑘)⁡𝛽𝑘
𝑃𝑅𝑃 + 𝜃𝑘 ⁡𝛽𝑘

𝐹𝑅 .           (9) 
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⁡𝛽𝑘
ℎ𝑦𝑏

= (1 − 𝜃𝑘)⁡𝛽𝑘
𝐿𝑆 + 𝜃𝑘⁡𝛽𝑘

𝐶𝐷.     (10) 

 

⁡𝛽𝑘
ℎ𝑦𝑏

= (1 − 𝜃𝑘)⁡𝛽𝑘
𝐻𝑆 + 𝜃𝑘 ⁡𝛽𝑘

𝐹𝑅 .     (11) 

 

On the other hand; Djordjevic (2019), Al-Namat & Al-Naemi (2020) and Salihu et al. (2020) recently 

derived new hybrid schemes for solving large scale unconstrained optimization algorithms. The hybrid 

schemes satisfy the sufficient descent condition in such a way that Newton directions are employed, 

global convergence analysis were proved under the same conditions above, and the algorithms are 

characterized by following⁡⁡𝛽𝑘⁡. 

 

⁡𝛽𝑘
ℎ𝑦𝑏

= (1 − 𝜃𝑘)⁡𝛽𝑘
𝐿𝑆 + 𝜃𝑘⁡𝛽𝑘

𝐹𝑅 .     (12) 

 

⁡𝛽𝑘
𝐶𝐿𝐶𝑆 = (1 − 𝜃𝑘)⁡𝛽𝑘

𝐿𝑆 + 𝜃𝑘⁡𝛽𝑘
𝐶𝐷.     (13) 

 

⁡𝛽𝑘
𝐹𝐺 = (1 − 𝜃𝑘)⁡𝛽𝑘

𝑀𝑀𝑊𝑈 + 𝜃𝑘⁡𝛽𝑘
𝑅𝑀𝐴𝑅 .     (14) 

 

Numerical comparisons show that these algorithms behave better than some known methods. 

Based on the modified BFGS method proposed by Li & Fukushima (2001), Lotfi & Hosseini (2019) 

presented a new value of the parameter 𝑡⁡in Dai-Liao CG scheme. The proposed method's global 

convergence property was established, and numerical results illustrated the computational efficiency of 

the new method. Considerable efforts have recently been made to extend CG methods to solve 

monotone nonlinear equations, Abubakar et-al. (2019) presented a modification of the FR CG method 

for constrained monotone nonlinear equations. The method possesses sufficient descent property, and 

its global convergence was proved. Numerical experiments show efficiency of the proposed method 

using some benchmark test problems while applying the method in signal and image recovery problems 

arising from compressive sensing. Also, Xue et-al. (2018) suggested DY CG method for solving large-

scale unconstrained optimization problems, which possesses a spectral CG parameter in which the 

search direction generated at each iteration is independent of any line search. Global convergence of 

the method is also established using strong Wolfe conditions. Finally, comparison experiments on 

impulse noise removal are reported and demonstrated the effectiveness of the method. 

These new methods are based on secant equations or conjugacy condition, for nonlinear conjugate 

gradient methods, the conjugacy condition is given by 

 

𝑑𝑘+1
𝑇 𝑦𝑘 = 0.        (15) 

 

Perry (1978) extended the result in (15) by exploiting the following secant condition of quasi-Newton 

scheme 𝐵𝑘+1⁡𝑠𝑘 = 𝑦𝑘 and quasi-Newton search direction given by⁡⁡𝐵𝑘+1𝑑𝑘+1⁡⁡ = −𝑔𝑘+1, where 𝐵𝑘+1⁡⁡is a 

square matrix of the Hessian approximation; as 

 

𝑑`𝑘+1
𝑇 𝑦𝑘 = −𝑔𝑘+1

𝑇 𝑠𝑘,       (16) 
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which implies that (16) holds for exact line search, where −𝑔𝑘+1
𝑇 𝑠𝑘 = 0, but practical numerical 

computations normally adopt inexact line search; that is, −𝑔𝑘+1
𝑇 𝑠𝑘 ⁡≠ 0. For this reason, Dai and Liao 

(2001) replaces (16) with a condition called extended conjugacy condition: 

 

𝑑𝑘+1
𝑇 𝑦𝑘 = −𝑡𝑔𝑘+1

𝑇 𝑠𝑘 , 𝑤ℎ𝑒𝑟𝑒⁡𝑡 ≥ 0.     (17) 

 

Due to the simpler structure and low memory requirements of Dai-Liao conjugate gradient methods, 

Yao et-al. (2019) combined Dai-Liao conjugacy condition with a modified symmetric Perry matrix to 

propose a class of three-term Dai-Liao conjugate gradient algorithms. The method possesses both Dai-

Liao conjugacy conditions and sufficient descent conditions. Meanwhile, the global convergence is 

established under Wolfe line search for general objective functions. Numerical experiments show that 

the proposed method is promising. The best choice of t remains subject of consideration, with several 

optimal choices for the parameter proposed in (Babaie-Kafaki, 2015; Babaie-Kafaki & Ghanbari, 2014a; 

Babaie-Kafaki & Ghanbari, 2014b; Babaie-Kafaki & Ghanbari, 2015; Babaie-Kafaki & Ghanbari, 2017; 

Waziri, Ahmed & Sabi’u, 2019). Motivated by the above, this research proposes a hybrid parameter by 

employing the choice of the parameter t in Andrei (2017) using (17) to access and combine the CG 

update parameters' strength.  

3. Research Methodology 

In this section, this research combines the CG update parameters proposed by Hestenes & Stiefel 

(1952) with Fletcher & Reeves (1964) conjugate descent based on Dai-Liao conjugacy condition as a 

convex combination as follows: 

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝛽𝑘
𝐷𝐻𝐹 = (1 − 𝜃𝑘)⁡𝛽𝑘

𝐻𝑆 + 𝜃𝑘⁡𝛽𝑘
𝐹𝑅 .     (18) 

 

From relations (7) and (8), it obtains 

 

⁡𝛽𝑘
𝐷𝐻𝐹 = (1 − 𝜃𝑘) (

𝑔𝑘+1
𝑇 𝑦𝑘

𝑑𝑘
𝑇𝑦𝑘

) + 𝜃𝑘 (
‖𝑔𝑘+1‖

2

‖𝑔𝑘‖
2 ),    (19) 

 

where 𝜃𝑘 ⁡is the hybridization scalar parameter satisfying 𝜃𝑘 ∈ [0,1]. It is obvious that if 𝜃𝑘 ≤ 0, set  𝜃𝑘 =

0, then ⁡𝛽𝑘
𝐷𝐻𝐹 = ⁡𝛽𝑘

𝐻𝑆 and if 𝜃𝑘 ≥ 0, set  𝜃𝑘 = 1, then ⁡𝛽𝑘
𝐷𝐻𝐹 = ⁡𝛽𝑘

𝐹𝑅. On the other hand, if⁡⁡0 < 𝜃𝑘 < 1, then 

⁡𝛽𝑘
𝐷𝐻𝐹 ⁡⁡is a proper convex combination of ⁡𝛽𝑘

𝐻𝑆⁡and⁡𝛽𝑘
𝐹𝑅. Therefore, from relation (6) and by taking the 

inner product with the vector⁡⁡𝑦𝑘
𝑇⁡⁡it obtains 

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑑𝑘+1 = −𝑔𝑘+1 + ((1 − 𝜃𝑘) (
𝑔𝑘+1
𝑇 𝑦𝑘

𝑑𝑘
𝑇𝑦𝑘

) + 𝜃𝑘 (
‖𝑔𝑘+1‖

2

‖𝑔𝑘‖
2 )) 𝑠𝑘, (20) 

𝑑𝑘+1
𝑇 𝑦𝑘 = −𝑔𝑘+1

𝑇 𝑦𝑘 + ((1 − 𝜃𝑘) (
𝑔𝑘+1
𝑇 𝑦𝑘

𝑑𝑘
𝑇𝑦𝑘

) + 𝜃𝑘 (
‖𝑔𝑘+1‖

2

‖𝑔𝑘‖
2 )) 𝑠𝑘

𝑇𝑦𝑘.  (21) 

 

Applying 𝑦𝑘
𝑇 on⁡𝑑𝑘+1 = −∇2𝑓(𝑥𝑘+1)

−1𝑔𝑘+1 and equating with (21), lead to the following hybridization 

parameter of Djordjevic (2018), which imply that ⁡⁡𝑑𝑘+1 satisfies Newton direction: 
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𝜃𝑘 =
(−𝑠𝑘

𝑇𝑔𝑘+1⁡)‖𝑔𝑘‖
2

(𝑦𝑘
𝑇𝑠𝑘)⁡‖𝑔𝑘+1‖

2−⁡⁡(𝑔𝑘+1
𝑇 ⁡𝑦𝑘)‖𝑔𝑘‖

2     (22) 

 

Here, this research uses Dai-Liao conjugacy condition (17) on (21), and after some algebra, this 

research proposes another hybridization parameter as follows: 

 

𝜃𝑘 =
(−𝑡⁡𝑠𝑘

𝑇𝑔𝑘+1⁡)‖𝑔𝑘‖
2

(𝑦𝑘
𝑇𝑠𝑘)⁡‖𝑔𝑘+1‖

2−(𝑔𝑘+1
𝑇 ⁡𝑦𝑘)‖𝑔𝑘‖

2     (23) 

 

However, for large-scale problems, the update parameter choices that do not require evaluation of the 

Hessian matrix are often required. Therefore, to have an algorithm for solving large-scale problems, this 

research computes the modulating parameter t from optimal choice obtain in Babaie-Kafaki and 

Ghanbari (2015) and Andrei (2017). 

⁡⁡⁡𝑡∗ =⁡⁡
𝑠𝑘
𝑇𝑦𝑘

𝑠𝑘
𝑇𝑠𝑘

⁡⁡.        (24) 

 

3.1 Dai-Liao Hybrid Hestenes-Stiefel and Fletcher-Revees (DHF) Algorithm 

Step 1. Initialization. Select 𝑥0 ∈ ℝ𝑛,⁡𝜀 > 0⁡⁡and parameter  0 < 𝛿 < 𝜎⁡ < 1. Compute⁡⁡𝑓(𝑥0)⁡and⁡𝑔0 

 

Step 2. Test for Continuation of Iterations. If⁡‖𝑔𝑘‖ ≤ 𝜀, then stop. 

 

Step 3. Line Search. Compute⁡𝛼𝑘 > 0⁡satisfying Wolfe conditions (3) and (5). 

 

Step 4. Computation of⁡⁡⁡𝜃𝑘. If⁡(𝑦𝑘
𝑇𝑠𝑘)⁡‖𝑔𝑘+1‖

2 − (𝑔𝑘+1
𝑇 ⁡𝑦𝑘)‖𝑔𝑘‖

2 = 0, then set 𝜃𝑘 = 0; otherwise,  

Compute⁡⁡⁡𝜃𝑘⁡⁡by (23) and (24). 

 

Step 5. Computation of ⁡𝛽𝑘
𝐷𝐻𝐹. If⁡0 < 𝜃𝑘 < 1, then compute⁡⁡𝛽𝑘

𝐷𝐻𝐹  by (19).  

 

Step 6. Computation of Search Direction. Compute ⁡𝑑 = −𝑔𝑘+1 + 𝛽𝑘
𝐷𝐻𝐹𝑠𝑘. If restart criterion of Powell 

|𝑔𝑘+1
𝑇 𝑔𝑘| > 𝑐‖𝑔𝑘+1‖

2,       (25) 

 

It is satisfied, then set 𝑑𝑘+1 = −𝑔𝑘+1; otherwise, define 𝑑𝑘+1 = 𝑑. Compute⁡𝛼𝑘, set 

𝑘 = 𝑘 + 1and go to step 2. 

 

3.2 Convergence Analysis 

In this section, the convergence result of the hybrid CG method is analyzed base on strong Wolfe 

condition, an algorithm has to possess both sufficient descent condition and global convergence 

properties to be convergent. 

 

3.2.1. Sufficient Descent Condition 

Definition: Search direction satisfies descent directions (or equivalently, satisfy the decent condition) if 

an only if 
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𝑑𝑘
𝑇𝑔𝑘 < 0,⁡        (26) 

 

and also satisfies sufficient descent condition if and only if 

 

𝑑𝑘
𝑇𝑔𝑘 ≤ −𝑐‖𝑔𝑘‖

2, ∀𝑘 ≥ 0,⁡      (27) 

 

where c is positive constant. 

 

Theorem 3.1.  Consider a CG method with search direction (6) and 𝛽𝑘
𝐷𝐻𝐹 generated by (19), then 

condition (27) holds. 

  

Proof: From DHF algorithm, suppose the restart criterion of Powell (1984) condition (25) holds, then 

𝑑𝑘 = −⁡𝑔𝑘⁡and (27) holds. So, this research assumes that (25) does not hold. Then this research has 

|𝑔𝑘+1
𝑇 𝑔𝑘| ≤ c‖𝑔𝑘+1‖

2, where 𝑐 = 0.2.     (28) 

 

If 𝑘 = 0, it to see that it holds; 𝑑0 = −⁡𝑔0, so 𝑔0
𝑇𝑑0 = −‖𝑔𝑘‖

2, then it can be concluded that (25) holds 

for 𝑘 = 0. Next is to show that it holds for 𝑘 > 0. 

 

By taking the inner product of (6) with vector 𝑔k+1
𝑇  this research has 

 

𝑑k+1
𝑇 𝑔𝑘+1 = −‖𝑔𝑘+1‖

2 +⁡𝛽𝑘𝑑k
𝑇𝑔𝑘+1.      (29) 

 

Firstly, suppose that 𝜃𝑘 ≤ 0,⁡then⁡⁡⁡𝛽𝑘 = 𝛽𝑘
𝐻𝑆, it follows from (7) and (29) with triangular inequality that  

𝑑k+1
𝑇 𝑔𝑘+1 ≤ −‖𝑔𝑘+1‖

2 +⁡|
𝑑k
𝑇𝑔𝑘+1

𝑑𝑘
𝑇𝑦𝑘

| |𝑔𝑘+1
𝑇 𝑦𝑘|. 

 

From (5), this research has 

|⁡𝑑𝑘
𝑇𝑔𝑘+1| ⁡≤ ⁡−𝜎⁡𝑑𝑘

𝑇𝑔𝑘       (30) 

 

⁡𝑑𝑘
𝑇𝑦𝑘 = ⁡𝑑𝑘

𝑇𝑔𝑘+1 − ⁡𝑑𝑘
𝑇𝑔𝑘 ≤⁡−𝜎⁡𝑑𝑘

𝑇𝑔𝑘 − ⁡𝑑𝑘
𝑇𝑔𝑘⁡ 

 

≥ −(1 − 𝜎)⁡𝑑𝑘
𝑇𝑔𝑘 ≥ 0        (31) 

 

Using relations (30) and (31) with the above inequality, it obtains  

 

𝑑k+1
𝑇 𝑔𝑘+1 ≤ −‖𝑔𝑘+1‖

2 +
(−𝜎)⁡𝑑𝑘

𝑇𝑔𝑘

−(1 − 𝜎)⁡𝑑𝑘
𝑇𝑔𝑘

|𝑔𝑘+1
𝑇 𝑦𝑘|⁡, 

 

But from (28) and ⁡⁡𝑦𝑘 = 𝑔𝑘+1−𝑔𝑘 it holds  |𝑔𝑘+1
𝑇 𝑦𝑘| ≤ ‖𝑔𝑘+1‖

2 + |𝑔𝑘+1
𝑇 𝑔𝑘| ≤ 1.2‖𝑔𝑘+1‖

2,  so that we 

have  

 



 
 
 
International Journal of Industrial Optimization 
Vol. 2, No. 1, February 2021, pp. 33-50 

 
 

P-ISSN 2714-6006 
E-ISSN 2723-3022 

               

   

 
Salihu et al. 40 

 

≤ −‖𝑔𝑘+1‖
2 +

1.2⁡𝜎

(1 − 𝜎)
‖𝑔𝑘+1‖

2 

≤ −(1 −
1.2⁡𝜎

1 − 𝜎
) ‖𝑔𝑘+1‖

2 ⁡⁡⁡≤ −(
1 − 2.2⁡𝜎

1 − 𝜎
)‖𝑔𝑘+1‖

2. 

 

Denote 𝑐1 = (
1−2.2⁡𝜎

1−𝜎
), so that this research has  

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑑k+1
𝑇 𝑔𝑘+1 ≤ −𝑐1‖𝑔𝑘+1‖

2.   (32) 

Secondly, suppose that 𝜃𝑘 ≥ 1,⁡then⁡⁡𝛽𝑘 = 𝛽𝑘
𝐹𝑅, it follows from (8) and (29) with triangular inequality that  

 

𝑑k+1
𝑇 𝑔𝑘+1 ≤ −‖𝑔𝑘+1‖

2 +
‖𝑔𝑘+1‖

2

‖𝑔𝑘‖
2 |𝑔𝑘+1

𝑇 𝑑𝑘|⁡. 

 

Let remind the fact that (27) holds for FR method in the presence of (3) and (5) was initially mentioned 

in (Hager & Zhang, 2006) and later in (Djordjevic; 2018; 2019). 

 

So, there exists a constant⁡𝑐2⁡ > 0, such that 

 

𝑑k+1
𝑇 𝑔𝑘+1 ≤ −⁡𝑐2⁡‖𝑔𝑘+1‖

2      (33) 

 

Finally, if 𝜃𝑘 ∈ (0,1) , then⁡⁡0 < 𝑎1 < 𝜃𝑘 < ⁡𝑎2 < 1.⁡Therefore, from (14) and (20) it can write  

⁡⁡⁡𝑑k+1
𝑇 𝑔𝑘+1 = 𝜃𝑘⁡𝑔k+1

𝑇 𝑑k+1
𝐹𝑅 + (1 − 𝜃𝑘)⁡𝑔k+1

𝑇 𝑑k+1
𝐻𝑆 , 

 

which implies that  

𝑔k+1
𝑇 𝑑k+1

𝐷𝐻𝐹 = 𝑎1⁡𝑔k+1
𝑇 𝑑k+1

𝐹𝑅 + (1 − 𝑎1)⁡𝑔k+1
𝑇 𝑑k+1

𝐻𝑆 . 

 

Denote 𝑐 = 𝑎1𝑐2 + (1 − 𝑎2)𝑎1. Then finally, we get  

 

𝑑k+1
𝑇 𝑔𝑘+1 ≤ −𝑐‖𝑔𝑘+1‖

2.      (34) 

 

 

3.3. Convergence Analysis 

In this section, this research applies the following theorems to illustrate the global convergence of DHF 

method. It is necessary to show that 𝜃𝑘  and  𝑡∗ are bounded. Therefore, the following basic assumptions 

are: 

 

Assumption (i). The level set S = {𝑥 ∈ ℝ ∶ 𝑓(𝑥) ≤ 𝑓(𝑥0)}, is bounded from below. That is, there exists a 

positive constant  B such that⁡‖𝑥‖ ≤ B, ∀⁡𝑥 ∈ S. 
 

Assumption (ii). In a neighborhood⁡⁡𝑁⁡𝑜𝑓⁡𝑆, the objective function⁡𝑓 is continuously differentiable and its 

gradient 𝑔(𝑥)⁡is Lipschitz continuous on⁡𝑁 that is, there exist a constant⁡𝐿 > 0⁡such that  
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‖𝑓(𝑥) − 𝑓(𝑦)‖ ⁡≤ 𝐿‖𝑥 − 𝑦‖, for all 𝑥, 𝑦 ∈ 𝑁.    (35) 

 

Under Assumptions (i) and (ii) on 𝑓, there exist a constant⁡𝛤⁡such that 

 

‖𝑔(𝑥)‖ ⁡≤ 𝛤, for all  𝑥 ∈ 𝑆.      (36) 

 

For any conjugate gradient method with a strong Wolfe line search, the convergence holds. But, for 

general function, only a weak form of the Zoutendijk condition is needed (Dai & Liao, 2001). 

 

Lemma 3.1. Let Assumptions (i) and (ii) hold. Consider the methods (2) and (6), where⁡⁡𝑑𝑘⁡⁡ is a descent 

direction and 𝛼𝑘 satisfies (3) and (5). If 

 

∑
1

‖𝑑𝑘‖
2𝑘≥1 = ∞,       (37) 

 

then 

lim
𝑘→∞

𝑖𝑛𝑓 ‖𝑔𝑘‖ = 0.       (38) 

 

A CG method converges globally if 𝑔𝑘 = 0 for some 𝑘⁡or (38) holds. 

 

Theorem 3.2. Consider the iterative method, defined by DHF method. Let 𝑑𝑘+1⁡ be a descent direction, 

then either 𝑔𝑘 = 0, for some 𝑘, or 

 

lim
𝑘→∞

𝑖𝑛𝑓 ‖𝑔𝑘‖ = 0.       (39) 

 

The proof is using contradiction, that theorem (3.1) is not true.  

 

Proof: Let 𝑔𝑘 ≠ 0, for all 𝑘. Then it has to prove (39). Suppose, on the contrary, that (39) does not hold, 

which means the gradient is bounded away from zero. Then there exists a constant 𝑟 > 0, such that 

 

‖𝑔𝑘‖ ≥ 𝑟.        (40) 

 

Let 𝐷⁡be the diameter of the level set 𝑆, then 

 

‖𝑠𝑘‖ ⁡≤ 𝐷.        (41) 

 

Because the descent condition holds for DHF method. Since it has 𝑑𝑘+1 ≠ 0, it is sufficient to prove 

that 𝑑𝑘+1⁡⁡is bounded above, so from relation (20), it has 

 

‖𝑑𝑘+1‖ = ‖𝑔𝑘+1 + |1 − 𝜃𝑘|. |⁡𝛽𝑘
𝐻𝑆| + |𝜃𝑘|. |⁡𝛽𝑘

𝐹𝑅|. 𝑑𝑘‖.   (42) 
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But it holds from (27), (28), (31), (36), (40), and (41) that 

 

|⁡𝛽𝑘
𝐻𝑆| = |

𝑔𝑘+1
𝑇 𝑦𝑘

𝑑𝑘
𝑇𝑦𝑘

| ⁡≤
‖𝑔𝑘+1‖‖𝑦𝑘‖

|𝑑𝑘
𝑇𝑦𝑘|

⁡≤ ⁡⁡
Γ𝐿‖𝑠𝑘‖

𝑐(1−𝜎)‖𝑔𝑘‖
2 ≤⁡

Γ𝐿𝐷

𝑐(1−𝜎)𝑟2
.  (43) 

 

|⁡𝛽𝑘
𝐹𝑅| = ⁡

‖𝑔𝑘+1⁡‖
2

‖𝑔𝑘⁡‖
2 ≤

Γ2

𝑟2
.        (44) 

 

Applying Lipschitz condition⁡‖𝑦𝑘⁡‖ ≤ 𝐿‖𝑠𝑘⁡‖ and (24) implies that 

 

|𝑡| = ⁡⁡ |
𝑠𝑘
𝑇𝑦𝑘

𝑠𝑘
𝑇𝑠𝑘

| ⁡≤
‖𝑠𝑘⁡‖.‖𝑦𝑘⁡‖

‖𝑠𝑘⁡‖
2 ≤

𝐿‖𝑠𝑘⁡‖
2

‖𝑠𝑘⁡‖
2 ≤ 𝐿.     (45) 

 

It shows that 𝜃𝑘 is bounded using (23), so that  

 

|𝜃𝑘| = |
(−𝑡⁡𝑠𝑘

𝑇𝑔𝑘+1⁡)‖𝑔𝑘‖
2

(𝑦𝑘
𝑇𝑠𝑘)⁡‖𝑔𝑘+1‖

2 − (𝑔𝑘+1
𝑇 ⁡𝑦𝑘)‖𝑔𝑘‖

2
| 

 

Since |⁡𝑠𝑘
𝑇𝑔𝑘+1⁡| ≤ |𝑔𝑘

𝑇𝑠𝑘⁡| + 𝐿‖𝑠‖2, |⁡𝑠𝑘
𝑇𝑔𝑘⁡| ≤ ⁡ ‖𝑔𝑘⁡‖. ‖𝑠𝑘⁡‖, 𝑦𝑘

𝑇𝑠𝑘 = 𝑦𝑘
𝑇𝑑𝑘 and  

|⁡𝑔𝑘+1
𝑇 𝑦𝑘⁡| ≤ (1 − 0.2)‖𝑔𝑘+1‖

2,⁡ clearly, it gets  

 

|𝜃𝑘| ≤ ⁡
𝑡⁡[‖𝑔𝑘⁡‖. ‖𝑠𝑘⁡‖ + 𝐿‖𝑠‖2]. 𝑟2

[𝑐(1 − 𝜎)‖𝑔𝑘+1⁡‖
2. 𝑟2 + (1 − 0.2). ‖𝑔𝑘+1⁡‖

2. 𝑟2]
 

 

≤⁡
𝑡⁡[𝑟𝐷 + 𝐿𝐷2]. 𝑟2

[𝑐(1 − 𝜎)Γ2 + (1 − 0.2)Γ2]. 𝑟2
⁡⁡, 

 

≤⁡
𝑡⁡[𝑟𝐷 + 𝐿𝐷2]

Γ2[𝑐(1 − 𝜎) + (0.8)]
⁡⁡, 

 

 

using (45) implies  

≤⁡
𝐿𝐷[𝑟 + 𝐿𝐷⁡]

Γ2[𝑐(1 − 𝜎) + (0.8)]
 

 

|𝜃𝑘| ≤ 𝐴.      (46) 

 

Finally, from (42), using (43), (44), and (45), it gets as follows 

‖𝑑𝑘+1‖ ≤ ‖𝑔𝑘+1‖ + [|1 − 𝜃𝑘|. |⁡𝛽𝑘
𝐻𝑆| + |𝜃𝑘|. |⁡𝛽𝑘

𝐻𝑆|]. ‖𝑑𝑘‖ 

  

≤ Γ + [|1 − 𝐴|.
Γ𝐿𝐷

𝑐(1 − 𝜎)𝑟2
+ 𝐴.

Γ2

𝑟2
] . 𝐸 
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≤ Γ + EF 

 

‖𝑑𝑘+1‖ ≤ Γ + EF.     (47) 

 

Therefore, from 

∑
1

‖𝑑𝑘‖
2

𝑘≥1

= ∞. 

 

Applying Lemma 3.1, this research concludes that 

 

lim
𝑘→∞

𝑖𝑛𝑓 ‖𝑔𝑘‖ = 0. 

 

This is a contradiction of (38), so it has been proved (39). 

4. Results and Discussion 

In this section, we present computational performance of DHF method and compare with Hybrid 

Hestenes-Stiefel and Fletcher-Revees (HHSFR) of Djordjevic (2018) method. To implement the 

hybridize CG parameters, the codes were written in Matlab 9.2 (R2018a) and run on a personal 

computer 2.20 GHz CPU processor and 3.0 GB RAM memory. The test problems are the unconstrained 

problems from (Andrei, 2008) and (Gould, Orban & Toint, 2003). Since CG schemes are mainly 

designed to solve large-scale unconstrained optimization, we select 24 unconstrained optimization 

problems and tested them on a gradually increasing number of dimension(s) from 100 to 1000000 as 

shown in Table 1. The stopping criterion is set to⁡‖𝑔𝑘‖∞ ≤ 10−4. Numerical results were compared 

based on the performance profile of Dolan and Mor´e (2002) and shown graphically in figures 1-2. 

Benchmark results are generated by running a solver on a set of problems and recording information 

of interest such as the number of iterations and the computing time. A solver has higher efficiency when 

its value of 𝑃𝑠(𝑡) is higher. The⁡𝑃𝑠(𝑡)⁡from the performance, the profile is the fraction of the problem with 

a high ratio performance⁡𝑡 . In a set of problem 𝑃 and a set of optimization solver⁡𝑆, a performance 

comparison of problem  𝑝 ∈ 𝑃 by a particular algorithm 𝑠 ∈ 𝑆⁡is measured. Let, 𝑡𝑝,𝑠⁡be the number of 

iterations or CPU time required when solving a problem 𝑝 ∈ 𝑃 with solver ∈ 𝑆 . The performance ratio 

is defined by⁡𝑟𝑝,𝑠 =⁡
𝑡𝑝,𝑠

min⁡{𝑡𝑝,𝑠:𝑠∈𝑆}
. From this expression, it is assumed that⁡𝑟𝑝,𝑠 ∈ [1, 𝑟𝑀], where⁡𝑟𝑀 ≥

𝑟𝑝,𝑠⁡⁡and 𝑟𝑝,𝑠 = 𝑟𝑀⁡only when problem 𝑃 is not solved by the solver. Then, graphically, a graph of 𝑃𝑠(𝑡) 

versus⁡⁡𝑡 ∈ [1, 𝑟𝑀] is plotted. In a graph of performance profile, the smallest performance ratio is 1, and 

it will be located at the most left of 𝑡-axis hence, the top curve represents the most efficient method. In 

particular, if the set of problems 𝑃 is suitably large and representative of problems that are likely to occur 

in applications, then solver with large probability 𝑃𝑠(𝑡) are to be preferred. 
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Figure 1. Number of iterations Performance Profile of HHSFR and DFR schemes 

Figures 1 and Figure 2 show the hybrid coefficients' performance based on the number of iteration 

and central processing time per unit. The top left curved indicated fraction or percentage of how fast the 

coefficient converges, while the top right determines the fraction or percentage how many test functions 

can be tested on a given coefficient. Both figures clearly indicate that the DHF hybrid comparable and 

outperformed the HHSFR CG coefficient. 

Digital image processing plays an important role in medical sciences, biological engineering, and 

other science and engineering areas. Ibrahim et al. (2020) combined Solodov and Svaiter method with 

the Liu-Storey and Fletcher-Reeves conjugate gradient algorithm of Djordjevic unconstrained 

minimization problems to propose a hybrid conjugate gradient algorithm and extend the result to solve 

convex constrained nonlinear monotone equations. The global convergence established and applied to 

solve the 𝑙1-norm regularized problems to restore sparse signal and image in compressive sensing. 

Numerical comparisons of the algorithm with some sparse signal reconstruction and image restoration 

in compressive sensing CG algorithms show that the proposed scheme is computationally more efficient 

and robust than the compared schemes.  Ibrahim et al. (2020) utilized HLSFR Algorithm of Djordjevic 

(2019) in the restoration of one-dimensional sparse signal and image restoration using mean squared 

error (MSE). The performance of HLSFR won and proves to be more efficient in decoding sparse signals 

in compressive sensing by a lesser number of iterations, computing time, and lesser MSE by repeated 

experiment on 10 different noise samples. The HLSFR algorithm is similar to the HHSFR of Djordjevic 

(2018) and DHS algorithms here.  

Table 1. List of Test Functions 

NO Function Dimension/s Initial Points 

1  Extended White & Holst 
100,200,600,1000,2000,6000,10000,

20000,60000,100000,200000 
(5,5,…,5) 

2  Extended Rosenbrock 
100,200,600,1000,2000,6000,10000,

20000,60000,100000,200000 
(-1.2,1, -1.2,1,…, 

-1.2,1) 

3  
Extended Freudenstein & 
Roth 

100,200,600,1000,2000,6000,10000,
20000,60000,100000,200000 

(5,5,…,5) 
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4  Extended Beale 
100,200,600,1000,2000,6000,10000,

20000,60000,100000,200000 

(1.8,1.8,…,1.8) 

5  Extended Tridiagonal 1 
100,200,600,1000,2000,6000,10000,

20000,60000,100000,200000 
500000,1000000 

(2,2,…,2) 

6  Extended Himmelblau 
100,200,600,1000,2000,6000,10000,

20000,60000,100000,200000 
500000,1000000 

(1,1,…,1) 

7  Extended Powel 1 
100,200,600,1000,2000,6000,10000,

20000,60000,100000 
(0,0,…,0) 

8  Fletcher Function (Cute) 
100,200,600,1000,2000,6000,10000,

20000 
(0,0,…,0) 

9  Extended Powel 
100,200,600,1000,2000,6000,10000,
20000,60000,100000,200000 
500000,1000000 

(-1,-1,…,-1) 

10  
Nonscomp Function 
(Cute) 

100,200,600,1000,2000,6000,10000,
20000,60000,100000,200000 

500000,1000000 

(3,3,…,3) 

11  
Extended Denschnb 
Function (Cute) 

100,200,600,1000,2000,6000,10000,
20000,60000,100000,200000 

500000,1000000 

(-6,-6,…,-6) 

12  
Extended Quadratic 
Penalty Qp1 

100,200,600,1000,2000,6000,10000,
20000 

(1,1,…,1) 

13  Hager 100 (1,1,…,1) 

14  Extended Maratos 100,200,600,1000,6000 (1,1,…,1) 

15  Shallo 
100,200,600,1000,2000,6000,10000,

20000,60000,100000,200000 
500000,1000000 

 
(-2,-2,…,-2) 

16  Quardratic Qf2 100,200  

17  Generalized Tridiagonal 1 
100,200,600,1000,2000 (0.5,0.5,…,0.5) 

18  Generalized Tridiagonal 2 
100,200,600,1000,2000,6000 (2,2,…,2) 

19  Power 
100,200,600,1000,2000,6000,10000 (1,1,…,1) 

20  Quadratic Qf1 
100,200,600,1000,2000,6000,10000, 

20000,60000,100000,200000 
(1,1,…,1) 

21  
Extended Quadratic 
Penalty 

100,200,600,1000,2000,6000,10000 (1,1,…,1) 

22  Extended Penalty 
100,200,600,1000,2000 (1,1,…,1) 

23  Dixon Price Function  100 (1,2,3,…) 

24  Sum of Squares  
100,200,600,1000,2000,6000,10000,

20000,60000,100000,200000 
(-3,-3,…,-3) 
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Figure 2. CPU time Performance Profile of HHSFR and DFR schemes. 

5. Conclusion 

This paper has presented a new hybrid conjugate hybrid algorithm in which the CG parameter is 

computed as a convex combination of 𝛽𝑘
𝐻𝑆 and 𝛽𝑘

𝐹𝑅 from Dai-Liao conjugacy condition by employing an 

optimal choice of the modulating parameter 𝑡. Numerical computation adopts inexact line search, which 
is compared with HHSFR conjugate gradient coefficient proposed by Djordjevic. The method requires 
the first-order derivatives but overcomes the steepest descent method’s shortcoming of slow 
convergence and needs not to save or compute the second-order derivatives needed by the Newton 
method. Numerical results show that DHR coefficient outperforms the HHSFR scheme and suitable in 
compressed sensing. The algorithm converges globally using strong Wolfe conditions. 

References 

Abubakar, A. B., Kumam, P., Mohammad, H., Awwal., A. M. & Sitthithakerngkiet, K.(2019). A modified 
fletcher–reeves conjugate gradient method for monotone nonlinear equations with some 
applications, MPDI, mathematics, 7, 745 doi:10.3390/math7080745. 

 
Al-Baali, M. (1985). Descent property and global convergence of the Fletcher Reeves method with 

inexact line search. IMA Journal of Numerical Analysis, 5, 121-124. 
 
Al-Namat, F.N. and Al-Naemi, G.M. (2020). Global convergence property with inexact line search for a 

new hybrid conjugate gradient method. Open Access Library Journal, 7: e6048. 
https://doi.org/10.4236/oalib.1106048 

 

https://doi.org/10.4236/oalib.1106048


 
 
 
International Journal of Industrial Optimization 
Vol. 2, No. 1, February 2021, pp. 33-50 

 
 

P-ISSN 2714-6006 
E-ISSN 2723-3022 

               

   

 
Salihu et al. 47 

 

Andrei, N. (2008).  An unconstrained optimization test function. Advanced Modeling and Optimization. 
An Electronic International Journal,10, 172-182. 

 
Andrei, N. (2017).  A Dai-Liao nonlinear conjugate gradient algorithm. Numer. Algor., DOI 

10.1007/s11075-017-0362-5. 
 
Babaie-Kafaki, S. (2011). A modified BFGS algorithm based on a hybrid secant equation. Science 

China Mathematics,58, 315-331. 
 
Babaie-Kafaki, S. (2013).  A hybrid conjugate gradient method based on quadratic relaxation of Dai-

Yuan hybrid conjugate gradient parameter. Journal of Mathematical Programming and Operation 
Research, 62(7), 929-941. 

 
Babaie-Kafaki, S. & Mahdavi-Amiri, N. (2013). Two hybrid conjugate gradient methods based on 

hybrid secant equation.  Mathematical Modeling and Analysis,18(1):32-52. 
 
Babaie-Kafaki, S. & Ghanbari, R. (2014c).  Two hybrid nonlinear conjugate gradient methods based 

on a modified secant equation.  Journal of Mathematical Programming and Operation 
Research,63(7), 1027-1042. 

 
Babaie-Kafaki, S., & Ghanbari, R. (2014a). The Dai-Liao nonlinear conjugate gradient method with 

optimal parameter choices. Eur. J. Oper. Res. 234(3), 625-630. 
 
Babaie-Kafaki, S., & Ghanbari, R. (2014b). A descent family of Dai-Liao conjugate gradient methods. 

Optim. Methods Softw., 29(3): 583-591. 
 
Babaie-Kafaki, S., & Ghanbari, R. (2015). Two optimal Dai-Liao conjugate gradient methods. 

Optimization, 64(1): 2277-2287. 
 
Babaie-Kafaki, S. (2015). On optimality of two adaptive choices for the parameter of Dai-Liao method. 

Optim. Lett., DOI 10.1007/s11590-015-0965-5. 
 
Babaie-Kafaki, S., & Ghanbari, R. (2017). Two adaptive Dai-Liao nonlinear conjugate gradient 

methods. Iran J. Sci. Technol. Trans. Sci., DOI 10.1007/s40995-017- 027 1-4. 
 
Dai, Y.H. & Yuan, Y. (1999). A nonlinear conjugate gradient method with a strong global  convergence 

property. SIAM J. Optim.,10, 177-182.  
 
Dai, Y.H & Liao, L.Z. (2001). New conjugacy conditions and related nonlinear conjugate gradient 

methods, Appl. Math. Optim., 43, 87-101. 
 
Dai, Y.H. & Yuan, Y. (2001).  An efficient hybrid conjugates gradient method for unconstrained 

optimization. Annals of Operations Research, 103, 33-47. 
 
Djordjevic, S.S. (2016). New hybrid conjugate gradient method as a convex combination of FR  and 

PRP methods. Published by faculty of science and mathematics. University of Nis,  Serbia, 
Filomat, 31, 3083-3100. https://doi.org/10.2298/FIL16083D 

https://doi.org/10.2298/FIL1706813D


 
 
 
International Journal of Industrial Optimization 
Vol. 2, No. 1, February 2021, pp. 33-50 

 
 

P-ISSN 2714-6006 
E-ISSN 2723-3022 

               

   

 
Salihu et al. 48 

 

 
Djordjevic, S.S. (2017). New hybrid conjugate gradient methods as a convex combination of LS and 

CD methods. Published by faculty of science and mathematics. University of Nis, Serbia,31(6), 
1813-1825.  

 
Djordjevic, S.S. (2018). New hybrid conjugate gradient method as a convex combination of HS  and 

FR conjugate gradient methods. Journal of Applied Mathematics and Computation,  2, 366-378. 
https://doi.org/10.26855/jamc.2018.09.002 

 
Djordjevic, S.S. (2019). New hybrid conjugate gradient method as a convex combination of LS  and 

FR conjugate gradient methods. Acta Mathematica Scientia, 39, 214-228. 
 
Dolan, E.D. & More´, J.J. (2002). Benchmarking optimization software with performance profiles. 

Journal of Math. Program, 91(2), 201-213. 
 
Esmaeili H., Rostami M., & Kimiaei M. (2018). Extended Dai–Yuan conjugate gradient strategy for 

large-scale unconstrained optimization with applications to compressive sensing. Published by 
faculty of sciences and mathematics, University of Nis, Serbia, Filomat, 32(6), 2173–2191.  
Available at: http://www.pmf.ni.ac.rs/filomat 

 
Fletcher, R., & Reeves, C. (1964). Function minimization by conjugate gradients. Computational 

Journal,7, 149-154. 
 
Fletcher, R. (1987).  Practical methods of optimization, (vol. 1), Unconstrained optimization. New 

York: John Wiley & Sons.  
 
Gould, N.I.M., Orban, D. & Toint, P.L. (2003). CUTEr: a constrained and unconstrained testing 

environment, revisited. ACM Transactions on Mathematical Software,29(4), 373-394. 
 
Guo, J., & Wan, Z. (2019). A modified spectral PRP conjugate gradient projection method for solving 

large-scale monotone equations and its application in compressed sensing. Hindawi Mathematical 
Problems in Engineering. Volume 2019, Article ID 5261830, 17 pages. 
https://doi.org/10.1155/2019/5261830 

 
Hager, W.W. & Zhang, H. (2006). A survey of nonlinear conjugate gradient methods. Pacific J. Optim., 

2, 35-58.  
 
Hestenes, M.R., & Stiefel, E.L. (1952). Methods of conjugate gradients for solving linear systems. 

Journal Res. Nat. Bur. Stand., 49, 409-436  

Ibrahim, A.H., Kumam, P., Abubakar, A. B., Jirakitpuwapat, W., & Abubakar, J. (2020). A hybrid 
conjugate gradient algorithm for constrained monotone equations with application in compressive 
sensing. Heliyon.e03466. https://doi.org/10.1016/j.heliyon.2020.e03466 

 
Li, D.H., & Fukushima, A. M. (2001). modified BFGS method and its global convergence in nonconvex 

minimization, J. Comput. Appl. Math. 129(1) 15-35. 
 

https://doi.org/10.26855/jamc.2018.09.002
http://www.pmf.ni.ac.rs/filomat
https://doi.org/10.1155/2019/5261830
https://doi.org/10.1016/j.heliyon.2020.e03466


 
 
 
International Journal of Industrial Optimization 
Vol. 2, No. 1, February 2021, pp. 33-50 

 
 

P-ISSN 2714-6006 
E-ISSN 2723-3022 

               

   

 
Salihu et al. 49 

 

Liu, K., & Du, S. (2019). Modified three-term conjugate gradient method and its applications. Hindawi 
Mathematical Problems in Engineering. Volume 2019, Article ID 5976595, 9 pages. 
https://doi.org/10.1155/2019/5976595 

 
Liu, J., Du, S., & Chen, Y. (2020). A sufficient descent nonlinear conjugate gradient method for solving 

M-tensor equations. Journal of Computational and Applied Mathematics, 371112709 
 
Liu, Y., & Storey, C. (1991). Efficient generalized conjugate gradient algorithms, part 1: Theory. 

Journal of optimization theory and applications. 69, 129-137.  
 
Lotfi, M., & Hosseini, S.M. (2019). An efficient Dai–Liao type conjugate gradient method by 

reformulating the CG parameter in the search direction equation. Journal of Computational and 
Applied Mathematics, 371. 112708. https://doi.org/10.1016/j.cam.2019.112708 

 
Mohammed, N. S., Mustafa M., Mohd R. & Shazlyn M. S. (2020). A new hybrid coefficient of 

conjugate gradient method. Indonesian Journal of Electrical Engineering and Computer Science, 
Vol. 18, No. 3, June 2020, pp. 1454-1463. 

Perry, A. (1978). A modified conjugate gradient algorithm. Oper. Res. Tech. Notes,26(6): 1073-1078. 
 
Polak, B.T. (1969). The conjugate gradient method in extreme problems. USSR Comput. Math. Math. 

Phys. 4, 94-112. 

Polyak, B.T. (1967).  A general method of solving extremal problems.  Soviet Math. Doklady, 8, 14-29. 
 
Powell, M.J.D. (1984). Nonconvex minimization calculations and the conjugate gradient method, 

Numerical Analysis (Dundee, 1983), D.F. Griffiths, ed., Lecture Notes in Mathematics, Vol. 1066, 
Springer, Berlin. 122-141. 

Salihu, N., Odekunle, M., Waziri, M. & Halilu, A. (2020). A new hybrid conjugate gradient method 
based on secant equation for solving large scale unconstrained optimization problems. Iranian 
Journal of Optimization, 12(1): 33-44. 

 
Waziri, M. Y., Ahmed, K., & Sabi’u, J. (2019). A Dai-Liao conjugate gradient method via modified 

secant equation for system of nonlinear equations. Arab. J. Math. https://doi.org/10.1007/s40065-
019-0264-6. 

 
Xue, W., Ren, J., Zheng, X., Liu, Z., & Liang, Y. (2018). A New DY conjugate gradient method and 

applications to image denoising. IEICE TRANS. INF. & SYST., VOL.E101–D, NO.1 2, December 
2018. DOI: 10.1587/transinf.2018EDP7210 

 
Yao, S., Feng, Q., Li, L., & Xu, J. (2019). A class of globally convergent three-term Dai-Liao conjugate 

gradient methods. Applied Numerical Mathematics, 151 354-366. 
https://doi.org/10.1016/j.apnum.2019.12.026. 

Zoutendijk, G. (1970). Nonlinear programming computational methods, in integer and nonlinear 
programming. J. Abadie ed., North-Holland, Amsterdam 37-86.

https://doi.org/10.1155/2019/5976595
https://doi.org/10.1016/j.cam.2019.112708
https://doi.org/10.1007/s40065-019-0264-6
https://doi.org/10.1007/s40065-019-0264-6
https://doi.org/10.1016/j.apnum.2019.12.026


International Journal of Industrial Optimization 
Vol. 2, No. 1, February 2021, pp. 33-50 

P-ISSN 2714-6006 
E-ISSN 2723-3022 

 

   

 
Salihu et al 

 
50 

 

 

 

 

 

 

 

 

 

 

 

 

 

This page is intentionally left blank. 

 


