
 

93 

 

IJIO 
 

 
Vol 5, No. 2, 93-105 

https://doi.org/10.12928/ijio.v5i2.9014 

A heterogeneous fleet electric vehicle routing model with 

soft time windows 

Yoanda Astri Ayu Kinanti, Toni Bakhtiar *, Farida Hanum 

Department of Mathematics, Faculty of Mathematics and Natural Sciences, IPB University, Indonesia 

* Corresponding Author: tbakhtiar@apps.ipb.ac.id  

 

1. Introduction 

The confluence of technological progress, environmental concerns, supportive government 

policies, infrastructure development, and changing consumer preferences has driven the emergence 

and rapid growth of electric vehicles in recent years [1, 2, 3]. As reported in [4], the emergence of 

electric vehicles (EVs) has also brought new perspectives and considerations to the study of Vehicle 

Routing Problems (VRPs). As the transportation sector shifts towards cleaner and more sustainable 

alternatives, integrating EVs into VRPs has gained significant attention. From a modeling point of 

view, solving electric VRPs (EVRPs) efficiently is a challenging task due to their combinatorial 

nature. Modeling routing problems with EVs involves addressing range limitations, charging 

infrastructure, energy pricing, battery degradation, uncertainties, and the integration of renewable 

energy sources [5, 6, 7]. Developing effective models and algorithms that consider these challenges 

is crucial for optimizing the routes, minimizing energy consumption, and ensuring the efficient 

operation of EV fleets. 
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 The emergence of electric vehicles in distribution and logistics activities 

has brought significant benefits due to their unique characteristics, such 

as energy-efficient and lower carbon emissions. In the perspective of 

vehicle routing problem, electric vehicles pose challenging constraints 

regarding the limited battery capacity, and thus their traveling ranges, and 

the availability of charging stations. In this paper, we propose a model of 

the fleet electric vehicle routing problem (EVRP) with soft time windows, 

where a mixed integer linear programming framework is implemented in 

model formulation. The objective of mathematical programming is to 

minimize the total operational cost, which consists of a fixed cost, a 

traveling cost, a battery charging cost, and probably a penalty cost due to 

time window violation. We implement our model in two simple cases, 

namely homogeneous and heterogeneous fleets EVRPs, characterized by 

loading and battery capacities. Each case consists of one depot, five 

customers, two electric vehicles, and two charging stations. Optimal 

routes are obtained using the well-known branch-and-bound method 

under Lingo 17.0. It is found that the existence of charging stations may 

affect the routes selection and the implementation of soft time windows 

rather than hard time windows has been proven to increase the feasibility 

of routing problem. 
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The state of the art in modeling EVRPs involves considering various factors such as battery state 

of charge [8], time windows, charging infrastructure [9], and energy consumption [10]. Advanced 

models incorporate optimization techniques to minimize costs, optimize routes, and maximize 

charging station utilization. Additionally, recent research explores the integration of renewable energy 

sources and the development of intelligent algorithms to enhance the efficiency and sustainability of 

EVRP solutions [11]. Cataldo-Díaz et al. [12] addresses the EVRP with battery state of charge, where 

it involves delivering to customers with specific demands and time windows. The objective is to 

minimize cost (time) by maximizing charging station visits, avoiding battery degradation. 

Experimental results demonstrate the efficiency of these formulations in various instances, 

considering battery degradation. Zuo et al. [13] proposes a new mixed-integer linear programming 

(MILP) model for EVRP with time windows considering concave nonlinear charging function. 

Experimental study demonstrated that the proposed model provides better logistics schedules for Evs 

with efficient charging time utilizations. From the application point of view, EVRP models have been 

implemented in scheduling of a fleet of electric taxis [14] and a fleet of hybrid buses [15]. 

Vehicle Routing Problems (VRPs) are a class of combinatorial optimization problems that deal 

with efficiently planning routes for a fleet of vehicles to serve a set of customers while minimizing 

overall costs or maximizing efficiency. VRPs find applications in various real-world scenarios, such 

as package delivery, transportation, waste collection, and more. The main objective is to find optimal 

or near-optimal routes that satisfy specific constraints, such as capacity limits, time windows, and 

distance limitations. There are several VRP variants, each with specific characteristics and constraints 

[16, 17]. Some common VRP variants include capacitated VRP (CVRP) where each vehicle has a 

limited capacity, VRP with time windows (VRPTW) which extends CVRP by adding time windows 

in which customers must be serviced, multi-depot VRP (MDVRP) if there are multiple depots and 

each vehicle is assigned to a specific depot, periodic VRP (PVRP) which deals with recurring routing 

problems, where the same set of customers must be serviced in each period, VRP with pickup and 

delivery (VRPPD) which involves picking up goods from one location and delivering them to another, 

often with different time windows and capacity constraints for pickups and deliveries, and split 

delivery VRP (SDVRP) which allows a customer's demand to be split across multiple vehicles, 

enabling more flexible deliveries. 

VRPs belong to the class of NP-hard problems, which means that finding an optimal solution 

within a reasonable amount of time is computationally infeasible for large problem instances. Thus, 

due to their inherent complexity and computational challenges, most VRPs models are solved 

heuristically [18]. Futalef et al. [19] and Zhang et al. [20], respectively, implemented genetic algorithm 

to solve an online and two-echelon EVRP models, Bruglieri et al. [21] and Sadeghi-Velni et al. [22] 

proposed variable neighborhood search algorithms to approach a large-scale routing problem with 

EVs, and Setak & Karimpour [23] exploited a simulated annealing algorithm to efficiently search the 

solution space of EVRP with time windows and queueing at charging stations. Elahi & Darestani [24] 

also utilizes a simulated annealing algorithm to handle a periodic EVRP. A combination of ant colony 

principle and bee colony algorithm were developed in [25] to hierarchically solve a multi-objective 

EVRP. A matheuristic approach, namely Random Kernel Search, was proposed in [26] to tackle the 

large-sized MILP model for time windows EVRP with payload and the vehicle speed consideration. 

Other heuristic approaches include the use of diversity-enhanced memetic algorithm [27], adaptive 

large neighborhood search algorithm [28, 29], and multigraph-based adaptive heuristic [30] 

(Karimpour et al., 2023). For comprehensive accounts on the development of EVRP modeling 

including prospects for the future research trends, there are several systematic literature surveys such 

as [31, 32, 33]. The bare-bones mathematical models of EVRP are given in [34, 35]. The models were 

then extended by incorporating soft time windows [36] under the existence of battery swapping 

stations which require no charging times. Despite advancements in the field, current approaches to 

nonlinear optimization often result in solutions that are only locally optimal. This limitation highlights 

a significant gap in achieving globally optimal solutions, underscoring the need for further research 

in this area. Therefore, this research proposed a model of the fleet EVRP with soft time windows, 

where a mixed integer linear programming framework is implemented in model formulation 
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The contribution of this paper is two-fold. Firstly, we are developing a heterogenous fleet EVRP 

model with soft time windows using mixed integer linear programming (MILP) under the existence 

of battery charging stations where charging times must be considered. Routing problems with soft 

time windows are particularly useful in scenarios where customers' time preferences are not strict or 

where there is a need to balance service quality with operational efficiency, ensuring that the routes 

are planned in a way that satisfies both the customers' expectations and the operational constraints of 

the vehicle fleet [37]. Secondly, we are examining the effect of charging stations availability on routes 

selection of homogeneous and heterogeneous fleets. An exact approach, i.e., the branch-and-bound 

method, is applied to solve the optimization model. 

2. Methods 

2.1. Problem statement 

The heterogeneous fleet electric vehicle routing problem with soft time windows (HFEVRP-

STW) arises in the context of optimizing the delivery routes for a fleet of EVs with varying 

characteristics, namely loading capacity, battery capacity, and battery consumption rate. The primary 

objective is to develop efficient and cost-effective routes that satisfy customer demands while 

considering the inherent constraints of EVs and accommodating soft time windows for timely 

deliveries. Problem components include the followings: 

1. The fleet comprises EVs with diverse specifications, namely varying loading capacity, battery 

capacity, and battery consumption rate. 

2. A set of customer locations with specific demands must be serviced by the fleet. Each customer 

has a soft time window during which deliveries can occur without penalties, but flexibility is 

allowed within predefined limits.  

3. Charging stations are strategically located, and the electric vehicles must plan their routes to 

include necessary charging stops. 

4. The primary objective is to minimize the total cost of the delivery routes. The cost includes fixed 

cost, travel cost, recharging costs, and potential penalties associated with violating soft time 

windows. 

5. Constraints including but not limited to loading and battery capacities constraints for each electric 

vehicles, route continuity constraints, and soft time windows constraints. 

The schematic diagram of the HFEVRP-STW model is illustrated by Fig. 1. 

 

Fig. 1. Schematic diagram the HFEVRP-STW model 
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2.2. Assumptions and notations 

The HFEVRP-STW is formulated as a mixed integer programming problem that considers the 

objective of minimizing the total cost, subject to the constraints outlined above. To facilitate the 

formulation and analysis of the HFEVRP-STW model, we impose the following assumptions: 

1. Fixed charging capacity: each EV has a predetermined charging capacity, which represents the 

maximum amount of energy it can store during a charging session. 

2. Limited autonomy, where EVs have a limited driving range or autonomy, which means they can 

only travel a certain distance before requiring recharging. 

3. Soft time windows: time windows for customer visits are flexible. However, tardiness incurs 

penalties, and the optimization algorithm must balance between minimizing penalties and 

optimizing other cost components. 

4. The battery consumption of EVs is measured based only on distance traveled. 

5. There are some charging stations available. An EV that has just left a charging station is assumed 

to have a battery at full capacity. An EV may visit a charging station more than once for battery 

recharging. 

6. Each customer has a specific demand for goods or services and a time window. 

7. There is a single depot where all EVs start and end their routes. An EV leaves the depot with a 

battery at full capacity. 

Before stated our model, we introduce some sets, indices, parameters, and variables involved in the 

model representation. 

Sets and indices 

𝕍 : set of all customers, 𝕍 = {1,2, … , 𝑛}, 𝑖, 𝑗 ∈ 𝕍 

𝕂 : set of all EVs, 𝕂 = {1,2, … , 𝑚}, 𝑘 ∈ 𝕂 

𝔽 : set of all charging stations, 𝔽 = {1,2, … , 𝑝}, 𝑙 ∈ 𝔽 

𝕌1 : set of all customers and charging stations, 𝕌1 = 𝕍 ∪ 𝔽 

𝕌2 : set of all customers, charging stations, and starting depot, 𝕌2 = 𝕍 ∪ 𝔽 ∪ {0} 

𝕌3 : set of all customers, charging stations, and end depot, 𝕌3 = 𝕍 ∪ 𝔽 ∪ {𝑛 + 1} 

𝕌4 : set of all customers, charging stations, and depots, 𝕌4 = 𝕍 ∪ 𝔽 ∪ {0, 𝑛 + 1} 

Parameters 

𝑑𝑖𝑗 : distance between nodes 𝑖 and 𝑗 (kilometer) 

𝑡𝑖𝑗𝑘 : travel time between nodes 𝑖 and 𝑗 using vehicle 𝑘 (minute) 

𝑣𝑘 : constant velocity of vehicle 𝑘 (kilometer/minute)  

ℎ𝑘 : battery consumption rate by vehicle 𝑘 (kilowatt per kilometer) 

𝑞𝑖 : demand of customer 𝑖 (kilogram) with 𝑞𝑖 = 0 for 𝑖 ∉ 𝕍 

𝑎𝑖 : earliest start of service at customer 𝑖 (minute) 

𝑏𝑖 : latest start of service at customer 𝑖 (minute) 

𝑠𝑖 : service duration at customer 𝑖 (minute) with 𝑠0 = 𝑠𝑛+1 = 𝑠𝑙 = 0 

𝑄𝑘 : loading capacity of vehicle 𝑘 (kilogram) 

�̅�𝑘 : battery capacity of vehicle 𝑘 (kilowatt) 

𝑔𝑘 : battery charging rate of vehicle 𝑘 (kilowatt/minute) 

𝑐𝑓 : fixed cost for operating vehicle (monetary per unit) 

𝑐𝑡 : traveling cost (monetary per kilometer) 

𝑐𝑟 : battery recharging cost (monetary per unit) 

𝑐𝑎 : penalty cost for earliness (monetary per minute) 
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𝑐𝑏 : penalty cost for tardiness (monetary per minute) 

𝜌 : the allowable violation of time windows (minute). 

Decision variables 

𝑥𝑖𝑗𝑘 : binary variable indicating whether vehicle 𝑘 travels from customer 𝑖 to 𝑗, i.e., 𝑥𝑖𝑗𝑘 = 1 if 

there is a route from customer 𝑖 to 𝑗 and 𝑥𝑖𝑗𝑘 = 0 if otherwise. 

𝜏𝑖𝑘 : variable specifying arrival time of vehicle 𝑘 at customer 𝑖 (minute) 

𝑢𝑖𝑘 : variable stating the remaining cargo of vehicle 𝑘 on arrival at customer 𝑖 (kilogram) 

𝑟𝑖𝑘 : variable specifying the remaining battery capacity of vehicle 𝑘 on arrival at customer 𝑖 
(kilowatt). 

In fact, the only decision variable is 𝑥𝑖𝑗𝑘, which involves the assignment of vehicles to routes, 

sequencing of customer visits, and the decision to use charging stations. Other variables are additional 

but must be determined optimally by the model. 

2.3. HFEVRP-STW model  

In this part we present the HFEVRP-STW as an extension of models in [34, 35, 36] by allowing more 

than one electric vehicle (a fleet) to be used and each customer must be visited within a specific soft 

time window. Similar models for conventional vehicles are given in [38, 39]. The objective of 

HFEVRP-STW model, as shown in Eq. (1), is to minimize the total cost, which consist of the total 

fixed cost 𝐶𝑓, the total traveling cost 𝐶𝑡, the total recharging cost 𝐶𝑟, and the total penalty cost 𝐶𝑝 (if 

any). Thus, the total cost function 𝐶 is given by: 

min 𝐶 ≔ 𝐶𝑓 + 𝐶𝑡 + 𝐶𝑟 + 𝐶𝑝, (1) 

where 

𝐶𝑓 = ∑ ∑ 𝑐𝑓𝑥0𝑗𝑘 ,

𝑘∈𝕂𝑗∈𝕌1

 (2) 

𝐶𝑡 = ∑ ∑ 𝑐𝑡𝑡𝑖𝑗𝑘𝑥𝑖𝑗𝑘 ,

𝑘∈𝕂𝑖,𝑗∈𝕌1

 (3) 

𝐶𝑟 = ∑ ∑ ∑ 𝑐𝑟𝑥𝑙𝑗𝑘

𝑘∈𝕂𝑗∈𝕍𝑙∈𝔽

, (4) 

𝐶𝑝 = ∑ ∑(𝑐𝑎 max{0, 𝑎𝑖 − 𝜏𝑖𝑘} + 𝑐𝑏 max{0, 𝜏𝑖𝑘 − 𝑏𝑖}).

𝑘∈𝕂𝑖∈ℕ

 (5) 

The first term of the right-hand side of Eq. (5) accounts for penalty cost due to earliness and the 

second term is for tardiness. Soft time windows offer more advantages than hard ones [39, 40] in 

terms of flexibility, solution quality, adaptability to variability, and the ability to balance conflicting 

objectives. 

The following constraints are imposed due to standard assumptions asserted by VRP and specific 

assumptions enforced using EVs. 

1. Each customer must be visited exactly once: 

∑ ∑ 𝑥𝑖𝑗𝑘 = 1,    ∀𝑖 ∈ 𝕍,

𝑘∈𝕂𝑗∈𝕌3,𝑗≠𝑖

 (6) 
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∑ ∑ 𝑥𝑖𝑗𝑘 = 1,    ∀𝑗 ∈ 𝕍.

𝑘∈𝕂𝑖∈𝕌2,𝑖≠𝑗

 (7) 

Eq. (6) ensures that customer 𝑖 is visited once by any vehicle before travels either to next 

customer, charging station, or depot. Eq. (7) ascertains that customer 𝑗 is visited once by any 

vehicle after travels from previous customer, charging station, or depot. 

2. Each vehicle starts and finishes its route at the depot location: 

∑ 𝑥0𝑗𝑘 = 1,    ∀𝑘 ∈ 𝕂,

𝑗∈𝕌2

 (8) 

∑ 𝑥𝑖,𝑛+1,𝑘 = 1,    ∀𝑘 ∈ 𝕂.

𝑖∈𝕌2

 (9) 

Eq. (8) and Eq. (9) account for the requirement that vehicles start their routes from the depot and 

return to the depot after servicing all customers. 

3. Route continuity: 

∑ ∑ 𝑥𝑖𝑗𝑘

𝑘∈𝕂𝑖∈𝕌2,𝑖≠𝑗

= ∑ ∑ 𝑥𝑗𝑖𝑘

𝑘∈𝕂𝑖∈𝕌3,𝑖≠𝑗

, ∀𝑗 ∈ 𝕌1. (10) 

Eq. (10) means that the routes followed by vehicles form a connected sequence of customers 

without any breaks or disjointed segments. The route continuity constraint is an important 

constraint in VRP models to ensure that vehicles visit customers in a logical and sequential 

manner. This constraint establishes flow conservation by ensuring that for each customer, the 

number of incoming visits is equal to the number of outgoing visits. 

4. Each vehicle must not visit the same customer: 

𝑥𝑖𝑖𝑘 = 0, ∀𝑖 ∈ 𝕍4, ∀𝑘 ∈ 𝕂. (11) 

Eq. (11), however, strengthens the requirement that each customer must be visited exactly once 

as stated by Eq. (6) and Eq. (7). 

5. Consumers’ time feasibility and subtour prevention: 

𝜏𝑖𝑘 + (𝑡𝑖𝑗𝑘 + 𝑠𝑖)𝑥𝑖𝑗𝑘 − 𝑏0(1 − 𝑥𝑖𝑗𝑘) ≤ 𝜏𝑗𝑘 ,      ∀𝑖 ∈ 𝕌2, ∀𝑗 ∈ 𝕌3, 𝑖 ≠ 𝑗, ∀𝑘 ∈ 𝕂, (12) 

where 𝑏0 is the latest start of service at depot which acts like a big positive number (refer to Eq. 

(12)). 

6. Customer’s demand fulfilment: 

0 ≤ 𝑢𝑗𝑘 ≤ 𝑢𝑖𝑘 − 𝑞𝑖𝑥𝑖𝑗𝑘 + 𝑄𝑘(1 − 𝑥𝑖𝑗𝑘),     ∀𝑖 ∈ 𝕌2, ∀𝑗 ∈ 𝕌3, 𝑖 ≠ 𝑗, ∀𝑘 ∈ 𝕂, (13) 

0 ≤ 𝑢0𝑘 ≤ 𝑄𝑘 . (14) 

Eq. (13) and Eq. (14) ensure that all customer demands are met, i.e., the cargo load upon arrival 

at any node, including the depot, is nonnegative and not exceeding the vehicle’s capacity. 

7. According to battery state of charge, an EV may visit the charging station: 

∑ ∑ 𝑥𝑙𝑗𝑘 ≤ 𝑁𝑐 ,    ∀𝑙 ∈ 𝔽,

𝑘∈𝕂𝑗∈𝕌3,𝑗≠𝑖

 (15) 
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∑ ∑ 𝑥𝑖𝑙𝑘 ≤ 𝑁𝑐 ,    ∀𝑙 ∈ 𝔽.

𝑘∈𝕂𝑖∈𝕌2,𝑖≠𝑙

 (16) 

When the battery state of charge falls below a certain threshold, it may be necessary for the EV 

to visit a charging station to recharge its battery. Instead of assigning a predefined threshold or 

the minimum required battery level to complete the remaining route, the model will optimally 

decide the time of visit to a charging station. Eq. (15) and Eq. (16) allow an EV to visit a charging 

station at most 𝑁𝑐 times, if required. 

8. Soft time window means the time window is relaxed, i.e., from [𝑎𝑖 , 𝑏𝑖] to [𝑎𝑖 − 𝜌, 𝑏𝑖 + 𝜌] for 

customer 𝑖, where 𝜌 ≥ 0 is the allowable violation of time windows. Thus, we have the following 

constraint: 

𝑎𝑖 − 𝜌 ≤ 𝜏𝑖𝑘 ≤ 𝑏𝑖 + 𝜌,     ∀𝑖 ∈ 𝕍,  ∀𝑘 ∈ 𝕂. (17) 

An earliness will incur a penalty cost of 𝑐𝑎(𝑎𝑖 − 𝜏𝑖𝑘) and a tardiness will cause a penalty cost of 

𝑐𝑏(𝜏𝑖𝑘 − 𝑏𝑖). The total penalty cost 𝐶𝑝 is given in Eq. (5) and must be minimized. Time windows 

relaxation in Eq. (17) and cost penalization in Eq. (5), however, provide more obvious 

formulation than those in [41]. 

9. Charging station’ time feasibility and subtour prevention: 

𝜏𝑙𝑘 + 𝑡𝑙𝑗𝑘𝑥𝑙𝑗𝑘 + 𝑔𝑘(�̅�𝑘 − 𝑟𝑙𝑘) − (𝑙0 + 𝑔𝑘�̅�𝑘)(1 − 𝑥𝑙𝑗𝑘) ≤ 𝜏𝑗𝑘 , ∀𝑙 ∈ 𝔽, 

∀𝑗 ∈ 𝕌3, 𝑙 ≠ 𝑗, ∀𝑘 ∈ 𝕂. 
(18) 

Eq. (18) admits time feasibility for arcs leaving charging station. 

10. The relationship between travel time 𝑡𝑖𝑗𝑘, distance traveled 𝑑𝑖𝑗, and EV speed 𝑣𝑘 is given by: 

𝑡𝑖𝑗𝑘 =
𝑑𝑖𝑗

𝑣𝑘
,     ∀𝑖 ∈ 𝕌2, ∀𝑗 ∈ 𝕌3, 𝑖 ≠ 𝑗, ∀𝑘 ∈ 𝕂. (19) 

Eq. (19) is assumed that EV moves at a constant speed. 

11. Battery consumption: 

0 ≤ 𝑟𝑗𝑘 ≤ 𝑟𝑖𝑘 − ℎ𝑘𝑑𝑖𝑗𝑥𝑖𝑗𝑘 + �̅�𝑘(1 − 𝑥𝑖𝑗𝑘),     ∀𝑖 ∈ 𝕍, ∀𝑗 ∈ 𝕌3, 𝑖 ≠ 𝑗, ∀𝑘 ∈ 𝕂, (20) 

0 ≤ 𝑟𝑗𝑘 ≤ �̅�𝑘 − ℎ𝑘𝑑𝑙𝑘𝑥𝑙𝑗𝑘 ,     ∀𝑙 ∈ 𝔽, ∀𝑗 ∈ 𝕌3, 𝑙 ≠ 𝑗, ∀𝑘 ∈ 𝕂. (21) 

Eq. (20) and Eq. (21) specify the battery level at each customer is determined by the battery 

consumption and the vehicle's travel.  

12. The battery level at the depot is the same as the battery capacity: 

𝑟0𝑘 = �̅�𝑘,     ∀𝑘 ∈ 𝕂, (22) 

𝑟𝑙𝑘 = �̅�𝑘,     ∀𝑙 ∈ 𝔽,  ∀𝑘 ∈ 𝕂. (23) 

It is assumed that at the charging station the battery level is at full capacity as stated in Eq. (23). 

13. Binary and nonnegativity: 

𝑥𝑖𝑗𝑘 ∈ {0,1},     ∀𝑖 ∈ 𝕌2, ∀𝑗 ∈ 𝕌3, ∀𝑘 ∈ 𝕂. (24) 

In this model, we consider a battery charging station. However, if we allow the operation of a 

battery swapping station which needs no charging time, then we should set the charging rate 𝑔𝑘 = 0 

and Eq. (18) reduces to 
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𝜏𝑖𝑘 + 𝑡𝑖𝑗𝑘𝑥𝑖𝑗𝑘 − 𝑏0(1 − 𝑥𝑖𝑗𝑘) ≤ 𝜏𝑗𝑘 ,     ∀𝑖 ∈ 𝕌2, ∀𝑗 ∈ 𝕌3, 𝑖 ≠ 𝑗, ∀𝑘 ∈ 𝕂. (25) 

The formulation of penalty cost 𝐶𝑝 in Eq. (5) obviously makes the optimization problem 

nonlinear. Thus, to linearize the problem, we reformulate Eq. (5) into the following expression (Eq. 

(26) – Eq. (29)): 

𝐶𝑝 = ∑ ∑(𝑐𝑎𝑣𝑖𝑘 + 𝑐𝑏𝑤𝑖𝑘)

𝑘∈𝕂𝑖∈ℕ

, (26) 

subject to 

𝑎𝑖 − 𝜏𝑖𝑘 ≤ 𝑣𝑖𝑘 ,     ∀𝑖 ∈ 𝕍,  ∀𝑘 ∈ 𝕂, (27) 

𝜏𝑖𝑘 − 𝑏𝑖 ≤ 𝑤𝑖𝑘 ,     ∀𝑖 ∈ 𝕍,  ∀𝑘 ∈ 𝕂, (28) 

𝑣𝑖𝑘 , 𝑤𝑖𝑘 ≥ 0,     ∀𝑖 ∈ 𝕍,  ∀𝑘 ∈ 𝕂. (29) 

3. Results and Discussion 

In this part we demonstrate the applicability of our model by considering simple cases as we 

solve the model using an exact approach. Two cases, namely homogeneous and heterogenous fleets, 

are presented. In both cases we consider distribution problems with soft time windows of 1 depot, 5 

customers (C1, C2, C3, C4, C5), 2 electric vehicles, and 2 battery charging stations (BCS1, BCS2). 

In the first case, we examine a problem with homogeneous fleet, where EVs have the same 

loading capacity and battery capacity, i.e., 𝑄1 = 𝑄2 = 200 and �̅�1 = �̅�2 = 55. While in the second 

case, we discuss a heterogeneous fleet distribution problem, where the loading and battery capacities 

are different: 𝑄1 = 200, 𝑄2 = 150, �̅�1 = 70, and �̅�2 = 55. Without loss of generality, we assume 

the EVs have the same velocity 𝑣1 = 𝑣2 = 1 km/min and impose the same unit costs (all in rupiahs): 

fixed cost 𝑐𝑓 = 221,448 per EV, traveling cost 𝑐𝑡 = 2,214 per minute, battery recharging cost 𝑐𝑟 =

66,434 per unit, penalty costs 𝑐𝑎 = 𝑐𝑏 = 2,214 per minute. We also set the rates of battery 

consumption ℎ1 = ℎ2 = 1 kw/km and the rates of battery recharging 𝑔1 = 𝑔2 = 1 kw/min. All 

distributions should be completed at 08.00 – 13.00, which then converted to 0 – 300 minutes. 

The location of customers, their demand 𝑞𝑖, time windows [𝑎𝑖, 𝑏𝑖], and service time 𝑠𝑖 are 

provided in Table 1. From coordinate of locations, we can calculate the Euclidean distance between 

two nodes 𝑑𝑖𝑗. For soft time windows, we assume that all customers can accept an earliness or 

tardiness no more than five minutes, i.e., 𝜌 = 5. 

Table 1. Parameters of model 

Index Nodes Coordinate Demand Time Windows 
Service 

Duration 

0 Depot (5,5) 0 08.00 − 13.00 = [0,300] 0 

1 ∈ 𝕍 C1 (35,5) 50 08.10 − 09.50 = [10,110] 34 

2 ∈ 𝕍 C2 (17,31) 60 08.15 − 09.44 = [15,164] 47 

3 ∈ 𝕍 C3 (37,20) 53 08.28 − 11.50 = [28,230] 54 

4 ∈ 𝕍 C4 (35,35) 72 08.34 − 10.34 = [34,154] 28 

5 ∈ 𝕍 C5 (4,18) 65 08.18 − 11.00 = [18,180] 30 

1 ∈ 𝔽 BCS1 (26,15) 0 08.00 − 13.00 = [0,300] − 

2 ∈ 𝔽 BCS2 (10,34) 0 08.00 − 13.00 = [0,300] − 

The optimal routes obtained from the model using Lingo 17.0 are presented in Fig. 2 and Fig. 3, 

respectively for the first and second cases. In the figures, a weight assigned to an edge denotes the 
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distance between two customers 𝑑𝑖𝑗 (rounded to nearest integer for simplicity). In the first case where 

the loading and baterry capacities of EVs are homogeneous, from Fig. 2 we can see that the optimal 

route for EV1 is Depot−C1−BCS1−C3−C4−BCS2−Depot and that of EV2 is Depot−C5−C2−Depot. 

Since we assume that one unit of distance traveled requires one unit of battery, the battery 

charging status can be verified as follows. EV1 leaves depot for C1 with a full capacity of battery 

�̅�1 = 55. Arriving at C1, which is 30 km away from the depot, the battery power reduces to 55 −

30 = 25. Arriving at the BCS1 the battery power reduces to 25 − 13 = 12. After recharging, the 

battery status returns to 55. Visiting C3 and C4, the battery power consecutively reduces to 55 −

12 = 43 and 43 − 15 = 28. The remaining power, i.e., 42, is not sufficient to bring the vehicle back 

to the depot. Therefore, the vehicle first makes a stop at BCS2 to get a full battery capacity. The 

journey of EV2 requires no visit to the battery charging station. The total battery consumption, which 

is equivalent to the total distance traveled, is 13 + 15 + 23 = 51, lower than the maximum capacity 

of battery. The total load of EV1 is 𝑞1 + 𝑞3 + 𝑞4 = 50 + 53 + 72 = 175, and that of EV2 is 𝑑5 +

𝑑2 = 65 + 60 = 125. Both are below the vehicle loading capacities. The left part of Table 2 presents 

the (hard) time windows and the service times in each visited node. It can be observed that there is a 

four-minute delivery lateness at C4. The maximum acceptable violation of time windows is five 

minutes. This tardiness, however, is causing a penalty cost of 4𝑐𝑏 = 4(2,214) = 8,856. We also 

incur fixed costs 2𝑐𝑓 = 2(221,448) = 442,896, traveling costs (124 + 51)𝑐𝑡 = 175(2,214) =

387,450, and battery recharging cost 2𝑐𝑟 = 2(66,434) = 132,868. All together we obtain the 

minimum total cost is 972,070. The computation time using standard machine is about 14 seconds. 

 

Fig. 2. Optimal routes with homogeneous fleet 

 

Fig. 3.  Optimal routes with heterogeneous fleet 
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Table 2. Time windows and service time 

Homogeneous Fleet Heterogeneous Fleet 

Vehicle Route 
Time 

Windows 

Service 

Start Time 
Vehicle Route 

Time 

Windows 

Service 

Start Time 

EV1 Depot [0,300] 0 EV1 Depot [0,300] 0 

 C1 [20,110] 30  C1 [20,110] 30 

 BCS1 [0,300] 77  BCS1 [0,300] 77 

 C3 [28,230] 89  C3 [28,230] 95 

 C4 [34,154] 158  C4 [34,154] 154 

 BCS2 [0,300] 211  Depot [0,300] 214 

 Depot [0,300] 242 EV2 Depot [0,300] 0 

EV2 Depot [0,300] 0  C5 [18,180] 23 

 C5 [18,180] 18  C2 [15,164] 85 

 C2 [15,164] 63  Depot [0,300] 128 

 Depot [0,300] 133     

The case of a heterogeneous fleet is a bit challenging as EVs have different loading and battery 

capacities. The optimal route for EV1 is Depot−C1−BCS1−C3−C4−Depot as illustrated by black 

arrowed lines in Fig. 3. The battery capacity of EV1 is 70 kw and the battery power consumption is 

as follows: 70−40−70−29−58−43−1, where the vehicle makes a stop at battery charging station 

BCS1. The total load of EV1 is 𝑞1 + 𝑞3 + 𝑞4 = 50 + 53 + 72 = 175, where the loading capacity 

of EV1 is 𝑄1 = 200. The optimal route for EV2 is described by blue arrowed lines in Fig. 3, namely 

Depot−C5−C2−Depot, where the battery power consumption is given by 55−42−27−4 and the total 

load is 𝑞5 + 𝑞2 = 65 + 60 = 125, which is less than the maximum loading capacity of EV2 𝑄2 =

150. The optimal route of heterogeneous case shares many similarities with that of homogeneous 

case. The only difference is that EV1 in the heterogeneous case ends the route from C4 directly to 

the Depot covering 42 km. This can happen because in this case EV1 has now a larger battery 

capacity, namely 70 kw. The total operational cost is 870,212, cheaper than that om homogeneous 

case. 

Table 2 presents the fulfilment of time windows for homogeneous and heterogeneous cases. For 

heterogeneous fleet, all deliveries are conducted within the designated (hard) time windows. Thus, 

no penalty cost is incurred. However, in the homogeneous fleet case, we found a violation of time 

window of customer C4 by EV1. Even though this violation incurs a penalty cost, soft time windows 

can be a preferred choice than hard time windows [40, 41], particularly in scenarios where a more 

practical and robust solution is desired. 

4. Conclusion 

We have proposed a mixed integer linear programming model for a fleet electric vehicle routing 

problem with soft time windows. Two simple problems, namely heterogeneous and homogeneous 

cases, involving one depot, five customers, two electric vehicles, and two battery charging stations 

are considered and solved using a branch-and-bound method. The mathematical modeling of EVRPs 

presents several challenging issues. Firstly, EVRPs need to consider not only traditional vehicle 

routing aspects like minimizing distance or time but also factors specific to EVs, such as battery 

constraints and charging station availability. Secondly, incorporating realistic and dynamic data on 

traffic conditions, weather, and energy consumption is complex and can significantly impact route 

optimization. Thirdly, EVRPs may involve a mixed-integer nonlinear programming (MINLP) 

formulation, which is computationally intensive and can lead to increased solving times for larger 

problem instances. Fourthly, the uncertainty surrounding charging station availability and charging 

times adds an additional layer of complexity and requires robust optimization techniques. Lastly, 
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real-world EVRPs must account for practical constraints like pickup-and-delivery and multiple trips, 

further complicating the modeling process. 
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