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 Tour construction heuristics serve as fundamental techniques in 
optimizing the routes of a traveling salesman. These heuristics 
remain significant as foundational methods for generating initial 
solutions to the Traveling Salesman Problem (TSP), facilitating 
subsequent applications of tour improvement heuristics. These 
heuristics effectively comprise the iterative application of city 
node selection and insertion. However, thus far, no attempts 
have been made to enhance the basic structure of tour 
construction heuristics to bring a better initial solution for the 
advanced heuristics. This study aims to enhance tour 
construction heuristics without compromising their theoretical 
complexity. Specifically, an iterative step of partial tour 
deconstruction has been introduced to the existing heuristics. 
This additional step has been implemented and evaluated with 
three highly performing tour construction heuristics: the farthest 
insertion heuristic, the max difference insertion heuristic, and the 
fast max difference insertion heuristic. The results demonstrate 
that augmenting these heuristics with the partial tour 
deconstruction step improves the best, worst, and average 
solutions while preserving their theoretical complexity. 
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INTRODUCTION  

The travelling salesman problem (TSP) consists of finding the shortest possible tour of 𝑛 
city-nodes. The exponential time algorithms for the solution of this problem have been 
proposed [1-3]. However, polynomial time algorithm for this problem is yet to be devised and 
caries a prize money of one million dollars from Clay Mathematical Institute being one of the 
seven millennium prize problems [4]. The earliest reference to this problem can be found in 
the German handbook of travelling salesman [5]. Its first formal definition came from Karl 
Menger in 1932 [6], where he also observed the computational difficulty of the problem. The 
problem has remained a subject of curiosity not only inside but also outside of scientific realm. 
The problem has attracted so much attention that a feature film titled “Travelling Salesman” 
was also released in 2012. The story of the film revolved around four mathematicians who 
solved this problem but were weary of its disclosure due to their concerns about its ethical 
consequences. The TSP serves as a default benchmark testing ground for any combinatorial 
optimisation method or even now compilers [7]. It is sometimes referred to as mother of all 
combinatorial optimisation problems. This is because many complex combinatorial problems 
have shown to be reduced to TSP. Therefore, it is understood that if TSP is solved all the 
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combinatorial optimisation problems will be solved. TSP finds applications in wide variety of 
practical areas such as printed circuit boards [8], gas turbine engines [9], X-Ray 
crystallography [10], Computer wiring [11], warehouses [12], healthcare services [13], micro-
aggregation [14], Trajectory Planning [15], helicopter patrolling [16], solar panels diagnostic 
reconnaissance [17], cutting path optimization [18], storage/retrieval system [19], logistics [20], 
autonomous underwater vehicles [21], air logistics [22], tourist route paths [23], chemical 
shipping [24], and transport route optimisation [25], etc. The slight variants of TSP have further 
applications such as police patrolling [26]. 

Owing to the difficulty in finding the optimal solution to the problem, researchers have 
resorted to heuristics with downgraded objective of finding a good solution rather than the best 
solution. The general structure of these heuristics consists of two parts i.e., tour construction 
heuristic see e.g. [27] and tour improvement heuristic see e.g. [28]. The tour construction 
heuristic starts the tour from scratch, i.e., it establishes a subtour of one city-node and then 
expands the subtour by adding another city-node iteratively, until the accomplishment of the 
complete tour. The tour improvement heuristic improves the tour obtained from tour 
construction heuristic by iteratively applying one operation at a time. These operations 
sometimes become so complex that they involve partial tour deconstruction and then its 
construction again. The most popular work in this direction is the Lin-Kernighan heuristic [29].  

The research objective is to enhance tour construction heuristics without compromising 
their theoretical complexity. Specifically, an iterative step of partial tour deconstruction has 
been introduced to the existing heuristics. This paper explores the possibility of carrying out 
the process of partial tour deconstruction during the construction phase itself. This approach 
is hereby referred to as the augmented tour construction heuristic. This paper also contributes 
to the complexity analysis of the proposed approach.  

METHOD 

1. Revisiting Tour Construction Heuristics 
The tour construction heuristics have proved helpful in three different ways. First, they 

provide initial solutions for the tour improvement heuristics. Second, they are the source of 
study of upper bounds on the optimal solutions [30], and lastly, they have also provoked 
exhaustive empirical studies to understand how the structure of optimal solutions differs from 
the solutions arising from the tour construction heuristics [31-32]. Any tour construction 
heuristic can be described in four elementary steps as follows. Then, it can be transformed 
into flowchart as shown in Figure 1.  

a. Subtour establishment rule to obtain a small subtour. 
b. City selection rule to choose new city for its addition in the subtour. 
c. Subtour expansion rule to include selected city in the subtour. 
d. Iterative application of rule b and rule c until complete tour is obtained. 

 

 
Figure 1. Flowchart of tour construction heuristic 
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Since these heuristics develop tours by inserting each city-node iteratively, they are 

sometimes referred to as successive augmentation heuristics, e.g., Johnson and McGeoch 

[33]. Based on subtour expansion rule, the heuristics can be divided into two categories i.e., 

Goutham [34] and addition heuristics. If the subtour expansion rule is based on the cost of the 

subtour, then the heuristic is called the insertion heuristic, but if it is based on the next hop 

distance [35], it is called the addition heuristic. Experimentally performance of insertion 

heuristics has proved better than addition heuristics [36]. Therefore, the work presented herein 

considers the insertion heuristics only. In our earlier work [37], we developed complexity 

curtailing techniques for the tour construction heuristics, which included cheapest see e.g. 

Hassin et al. [38], largest, and max-difference insertion heuristics, effectively curtailing their 

complexity from 𝒪(𝑛3) to 𝒪(𝑛2), with statistically no deterioration in the quality of a solution. 

In doing so, we compared their performance with the farthest insertion heuristic, e.g., Renaud 

et al. [39]. Max Difference Insertion Heuristic and its faster version proved better than Farthest 

Insertion Heuristic, which was considered best then. In this paper, these three insertion 

heuristics are considered for further development. Therefore, these heuristics must be 

described in their current form first. 

1.1 Farthest Insertion Heuristic (FIH) 

In this heuristic, the first rule of subtour establishment consists of the random selection of 

a city-node. The second rule of city-node insertion can be described as follows. Let 𝜏 be the 

set of city-nodes in the subtour and let 𝜏′ be the set of city-nodes not in the subtour. Let city-

node 𝑘 ∈ 𝜏′ and city-node ℎ ∈ 𝜏. Let 𝑑(ℎ, 𝑘) be the distance between city-nodes 𝑘 and ℎ. The 

city-node 𝑘 is selected for insertion (subtour expansion) as presented in Equation (1). 

  𝑑(ℎ, 𝑘) = 𝑚𝑎𝑥∀𝑗∈𝜏′{𝑚𝑖𝑛∀𝑖 ∈ 𝜏(𝑑 (𝑖, 𝑗))} (1) 

The third rule of the city-node insertion is defined as follows. Let 𝑘 ∈ 𝜏′ and (𝑖, 𝑖′) ∈ 𝜏, such that 

𝑖 and 𝑖′ are a pair of consecutive city-nodes in 𝜏. Let 𝑑(𝑖, 𝑘) be the distance between the city-

nodes 𝑖 and 𝑘. The subtour is expanded by inserting the selected city-node 𝑘 in the subtour 𝜏 

as shown in Equation (2). 

  𝑐𝑜𝑠𝑡(𝜏, 𝑘) = min[∀(𝑖, 𝑖′) ∈ 𝜏{𝑑(𝑖, 𝑘) + 𝑑(𝑖′, 𝑘) − 𝑑(𝑖, 𝑖′)}] (2) 

where, 𝑐𝑜𝑠𝑡(𝜏, 𝑘) represents the cost of insertion of city-node 𝑘 in tour  . 
The FIH is characterized as distance-based heuristic because its second step of city-node 

insertion is based on distance metric rather than the cost metric. 

 

1.2 Max Difference Insertion Heuristic (MDIH) 

The first rule of subtour establishment in this heuristic consists of constructing the subtour 

of three city-nodes. The construction of this subtour is itself a tour construction heuristic which 

is commonly known as the largest insertion heuristic. In the largest insertion heuristic, the first 

rule of subtour establishment is a randomly chosen city-node. The second rule of a city-node 

insertion consists of selecting a city-node 𝑘 which makes the largest insertion in the current 

subtour. This can be represented in Equation (3). 

  𝑐𝑜𝑠𝑡(𝜏, 𝑘) = 𝑚𝑎𝑥∀𝑗∈𝜏′{𝑚𝑖𝑛∀(𝑖∈𝜏)(𝑐𝑜𝑠𝑡(𝑖, 𝑗))} (3) 

The description of symbols remains the same as described earlier for Equations (1) – 

Equation (2). The third rule of city-node insertion remains the same as that of Equation (2). 

This largest insertion heuristic is used only up to subtour of three city-nodes, which constitutes 

first rule of subtour establishment for the max-difference insertion heuristic. The initial subtour, 
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in this case, comprises at least three city-nodes because the second rule of city-node selection 

requires minimum of three edges of the subtour for its meaningful implementation. The second 

rule of a city-node insertion is a bit complicated. To understand this, we need to define the 

function 𝑛th minimum, denoted as 𝑚𝑖𝑛𝑛{∀V ∈ U(𝑉)}. The meaning of “𝑛th minimum” is that if 

all the values 𝑉 in set 𝑈 are sorted from minimum to maximum, then this function represents 

the 𝑛th value in that list. The “𝑛th expansion cost” of a subtour by the insertion of a new city-

node is equal to the function 𝑚𝑖𝑛𝑛{∀V ∈ U(𝑉)}, where the set 𝑈 is the set of all possible 

expansion costs of the subtour that could be caused by the insertion of the city-node on each 

of its edges. Let 𝑘 ∈ 𝜏′ and (𝑖, 𝑖′) ∈ τ, such that 𝑖 and 𝑖’ are a pair of consecutive city-nodes in 

𝜏. Let 𝑑(𝑖, 𝑘) be the distance between the city-nodes 𝑖 and 𝑘. Then the 𝑛th expansion cost of 

the tour 𝜏 by the insertion of city-node 𝑘 is given by Equation (4).  

 𝑐𝑜𝑠𝑡𝑛(𝜏, 𝑘) = 𝑚𝑖𝑛𝑛[∀(𝑖, 𝑖′) ∈ 𝜏{𝑑(𝑖, 𝑘) + 𝑑(𝑘, 𝑖′) − 𝑑(𝑖, 𝑖′)}] (4) 

Where, the edge (𝑖, 𝑖′) is called 𝑛th expansion edge. It should be noted that equation 2 is the 

representative equation for first expansion cost i.e., 𝑛 = 1. The Equation (4) represents city-

node insertion rule of MDIH, where the city-node 𝑘 is selected such that the cost difference 

𝐷(𝑘) between its expansion cost and 2nd expansion cost is maximum among all the city-nodes 

not in the tour as presented in Equation (5). 

 𝐷(𝑘) = max[∀k ∈ τ′{𝑐𝑜𝑠𝑡2(𝜏, 𝑘) − 𝑐𝑜𝑠𝑡(𝜏, 𝑘)}]  (5) 

The third rule regarding insertion of a city-node remains the same as that of equation 2. The 

MDIH is characterized as cost-based insertion heuristic as its city-node selection rule depends 

on the insertion cost of the city-node. 

1.3 Fast Max Difference Insertion Heuristic (FMDIH) 

This is a faster version of MDIH. All three rules, i.e., subtour establishment, city-node 

selection and city-node insertion in this heuristic, remain the same as that of the Max-

Difference Insertion Heuristic. The only difference is that this heuristic performs some 

shortcuts in the second rule at the cost of losing some exactness. It can be seen from equation 

5 that the second rule depends on expansion and the second expansion cost for the insertion 

of the new city-node in the subtour. These costs can be computed efficiently by comparing 

them from the previous iteration with the expansion cost on two newly formed edges due to 

the last inserted city-node. However, if the last inserted city-node broke one of the expansions 

and second expansion edges for the city-node under consideration, then this requires 

computing the expansion cost of the city on each edge of the subtour again. It is assumed that 

this makes theoretical complexity of MDIH of the order n3.  

However, in this paper we consider the number of times re-computation of expansion cost 

of the city-node is needed to articulate precise complexity of heuristic. The fast MDIH proposes 

that for each city-node record of first, second and third expansion cost should be kept. This 

record should be updated in each iteration by comparing them with the expansion costs on 

two newly formed edges for each city-node. If any of the three expansion edges is broken due 

to last inserted city-node in the subtour, we just compare rest of the two expansion costs with 

expansion cost on two newly formed edges and take best three out of four as the first second 

and third expansion cost. This ensures skipping the computation of expansion cost on each 

edge of the subtour reducing the complexity of the algorithm to 𝒪(𝑛2). The results show that 

the quality of solutions remains the same as that of MDIH, even though the exactness of the 

procedure is sacrificed. For further details on MDIH and FMDIH, readers are referred to Ursani 

et al. [37]. Like MDIH, FMDIH is also a cost-based insertion heuristic. 

https://doi.org/10.26555/ijish.v3i2.2222
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2. Augmented Tour Construction Heuristic (ATCH) 

ATCH is a proposed tour construction heuristic with an additional step of partial tour 
deconstruction. The elementary stages of the augmented tour construction heuristic are as 
follows. Then, it can be transformed into a flowchart, as shown in Figure 2. 

a. Subtour establishment rule: to obtain a small subtour. 

b. City selection rule: to choose new city for its addition in the subtour. 

c. Subtour expansion rule: to include selected city in the subtour. 

d. City ejection rule: to eject some cities from the subtour (Partial Tour Deconstruction). 

e. Iterative application of rules b-d until complete tour is obtained. 

 
Figure 2. Flowchart of ATCH algorithm 

 

Equation (6) and Equation (7) expose the city-node omission or ejection criteria in the partial 

deconstruction step. Any city-node is ejected for which at least one of the two expressions 

turn out to be true.  

 ∀𝑖∈𝜏,𝑖≠𝑗 𝑑(𝑖 − 1, 𝑖) + 𝑑(𝑖, 𝑖 + 1) + 𝑑(𝑗 − 1, 𝑗) > 𝑑(𝑖 − 1, 𝑖 + 1) + 𝑑(𝑗 − 1, 𝑖) + 𝑑(𝑖, 𝑗) (6) 

  ∀𝑖∈𝜏,𝑖≠𝑗 𝑑(𝑖 − 1, 𝑖) + 𝑑(𝑖, 𝑖 + 1) + 𝑑(𝑗, 𝑗 + 1) > 𝑑(𝑖 − 1, 𝑖 + 1)  + 𝑑(𝑗, 𝑖) + 𝑑(𝑖, 𝑗 + 1) (7) 

where, 
𝑗 = ID of last city-node inserted in the subtour. 

𝑗 − 1 = ID of city-node preceding to city-node 𝑗 in the subtour. 
𝑗 + 1 = ID of city-node succeeding to city-node 𝑗 in the subtour. 

𝑖 = Any city-node in the subtour other than city-node 𝑗. 
The Equation (6) and Equation (7) compare the benefit of omitting a city-node with the cost of 

reinserting it into the one of the newly formed edges. The city-node is omitted if benefit 

overweighs cost. 

3. Complexity Analysis of Tour Construction Heuristics 

The complexity of distance-based tour construction heuristics such as FIH involves two 
components i.e., city-node selection and city-node insertion. The former is trivial as it is just a 
random selection of a city-node, which does not add anything to complexity. The latter involves 
𝑛(𝑛−1)

2
 computations. Therefore, the complexity of FIH is of the order 𝑛2. In FMDIH, cost of 

every city-node not in the subtour is computed on the newly formed two edges. This amounts 

to 𝑛(𝑛 − 2) cost computations. Therefore, complexity of FMDIH is 𝒪(𝑛2). The complexity of 

MDIH is 𝒪(𝑛3), if cheapest and second cheapest expansion cost of each city-node is 
computed on each edge of subtour in each iteration. However, its smart implementation can 
curtail its complexity. If cheapest and second cheapest expansion cost of each city-node is 
stored, then their expansion cost will only be computed on two newly formed edges of the 
subtour in each iteration. However, sometimes computation of expansion cost on all edges of 
the subtour will still be required in case where new edges of the subtour are formed by 

Steps ii & iii: 
City Selection 

& subtour 
Expansion 

 

Step i: 
Initiation of 
an arbitrary 

subtour 

Tour 
Complete? 

End 

Yes 

No 

Step iv: 
Partial Tour 
Deconstruc-

tion 



IJIO Vol 4. No.2 September 2023 p.131-144 

136                                                                                                                             10.12928/ijio.v4i2.7875 

breaking the first or second expansion edge of the city-node. Therefore, it computes 𝑛𝛾 

insertion costs, where 2 < 𝛾 < 3. This curtails the complexity of MDIH to 𝒪(𝑛2 log 𝑛). Since, 
augmented tour construction heuristics have one additional step of partial deconstruction, 
which involves omission of a city-node and requires computation of modification cost of the 
subtour, the complexity of Augmented Farthest Insertion Heuristic involves cost of the 

omission of a city-node, i.e. 𝜌𝑛(𝑛 − 4) in addition to that of insertion of a city-node, i.e. 
𝜌𝑛(𝑛−1)

2
, 

whereas 𝜌 is a parameter whose value depends on the number of omitted city-nodes. 

Therefore, complexity of augmented farthest insertion heuristic is 𝒪(𝜌𝑛2). Similarly, the 

complexity of augmented fast max-difference heuristic is 𝒪(𝜌𝑛2). We will later get rid of 𝜌 in 
our analysis. The complexity of augmented max difference insertion heuristic depends upon 
𝑛𝛾 insertion cost, where 2 < 𝛾 < 3, and 𝜌𝑛(𝑛 − 4) omission costs. Therefore, the complexity 

of augmented max difference insertion heuristic is 𝒪(𝜌𝑛2 log 𝑛). The experimental results 
presented later prove that the parameter 𝜌 remains unaffected by the size of the problem. 

RESULTS AND DISCUSSION  

The experiments were conducted on six heuristics, namely farthest insertion heuristic 

(FIH), max-difference insertion heuristic (MDIH) [37], fast max-difference insertion heuristic 

(FMDIH) [37], augmented farthest insertion heuristic (AFIH), augmented max-difference 

insertion heuristic (AMDIH) and augmented fast max-difference insertion heuristic (AFMDIH). 

All the heuristics were coded in C/C++, in Microsoft Visual Studio compiler. The experiments 

were run on Intel core I5, HP laptop with 12 GB memory and windows 10 (64-bit) operating 

system. The heuristics were tested on 109 datasets of sizes in the range of 14-15112 cities. 

The test datasets were taken from most popular test bed TSPlib [40]. The program was run 

for 30 independent simulations on random seeds on each dataset. The results were recorded 

for best, worst, and average solution of 30 run on each dataset along with standard deviation 

and mean execution time. For augmented heuristics, the mean number of omitted city-nodes 

per run due to city-node omission rule were also recorded to estimate their computational 

complexity. Summary of results are presented for all the above mentioned six heuristics. 

However, the detailed results on each dataset are provided for two heuristics FMDIH and 

AFMDIH. Table 1 contains summary of results on all the six heuristics. Table 1 lists the six 

heuristics and statistics on their performance over 109 datasets. The first column from the left 

shows the mean of the best solutions out of 30 simulations. This value is provided in terms of 

%age difference from the optimal solution. Similarly, the following columns show mean of the 

worst solutions, mean of average solutions, mean of the standard deviation taken as 

percentage of optimal solution, and mean of execution times.  
 

Table 1. Summary of results for six heuristics 

Name 
Mean best 
solution 

percentage 

Mean worst 
solution 

percentage 

Mean 
average 
solution 

percentage 

Mean 
standard 
deviation 

percentage 

Mean 
execution 

time 

FIH 7.34 15.38 10.27 0.92 9.96 
MDIH [37] 4.52 8.66 6.36 0.44 6.79 
FMDIH [37] 4.69 10.41 6.71 0.69 2.34 
AFIH 4.14 8.47 6.04 0.48 24.99 
AMDIH 3.58 7.04 5.13 0.37 24.81 
AFMDIH 3.65 7.11 5.18 0.37 20.51 

 

Looking at Table 1, one finds that augmented versions of heuristics have produced better 

solutions in comparison to traditional versions. In case of FIH, average solutions improve by 

a huge margin from 10.27% to 6.04%. Similarly, in case of MDIH and FMDIH heuristics, the 

https://doi.org/10.26555/ijish.v3i2.2222
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results improve from 6.36% to 5.13% and from 6.71% to 5.18%, respectively. Similar 

improvements are found in the mean of best and the mean of worst solutions. Up to 3% 

improvement is achieved in case of the mean of best solution and up to 7% improvement is 

attained in case of the mean of worst solution. A great improvement of up to 0.4% can also be 

seen in the column of standard deviation. However, these improvements are achieved at the 

cost of computational time which is around four times more in case of augmented heuristics. 

However, computational time does not offer any help in estimating the computational 

complexity of the augmented heuristics. Instead, one can investigate the effects of the problem 

size on parameter 𝜌, discussed in the section 4. 

Figure 3 shows parameter 𝜌 as it varies with the problem size in terms of number of city-

nodes.  The graphs of all the augmented heuristics i.e., AFIH, AMDIH and AFMDIH despite 

having initial fluctuations on the smaller datasets they are almost parallel to x-axis. This shows 

that parameter 𝜌, which is an indicator of the algorithmic complexity, remains constant as the 

problem size grows. Therefore, complexities of AFIH, AFMDIH and AMDIH can be rounded to 

𝒪(𝑛2), 𝒪(𝑛2) and 𝒪(𝑛2 log 𝑛) respectively, as discussed in section 4. Table 2 presents detailed 

comparative results of FMDIH and AFMDIH on each dataset. 

The results in Table 2 mention minimum, maximum, average, and standard deviation of 

30 simulations on 109 datasets. The results also show their percentage differences from the 

optimal solutions. It also shows computational time. The last row shows the mean of results 

on 109 datasets. From the last row it can be seen from the table that augmented heuristic has 

beaten minimum, maximum, and average cost solutions by approximately 1%, 3.3% and 1.5% 

respectively. It has also reduced standard deviation by 0.3%. However, it has increased 

computational time eight times. Though theoretical complexity of both schemes remains the 

same, as concluded in discussion above by examining the graph in Figure 1.  

 

 
Figure 3. Graph of percentage of average number of ejected cities per simulation against problem 

size 
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Table 2. Details of Results on 109 Datasets for FMDIH and AFMDIH 
Dataset Optimal Fast Max Difference Insertion Heuristic [37] Augmented Fast Max Difference Insertion Heuristic 

  Min %Diff Max %Diff Avg. %Diff St. Dev %age Tim
e 

Min %Diff Max %Diff Avg. %Diff St.Dev %Diff Time 

Burma14 3323 3323 0.00 3442 3.58 3330.93 0.24 29.68 0.89 0.00 3323 0.00 3323 0.00 3323 0.00 0.00 0.00 0.00 
Ulysses16 6859 6859 0.00 7082 3.25 6902.93 0.64 51.17 0.75 0.00 6859 0.00 6903 0.64 6889.8 0.45 27.61 0.40 0.00 
Gr17 2085 2085 0.00 2095 0.48 2090 0.24 5.00 0.24 0.00 2085 0.00 2095 0.48 2088.67 0.18 6.40 0.31 0.00 
GR21 2707 2707 0.00 2707 0.00 2707 0.00 0.00 0.00 0.00 2707 0.00 2707 0.00 2707 0.00 0.00 0.00 0.00 
Ulysses22 7013 7013 0.00 7262 3.55 7074.13 0.87 63.86 0.91 0.00 7013 0.00 7262 3.55 7090.3 1.10 74.10 1.06 0.00 
GR24 1272 1272 0.00 1341 5.42 1310.8 3.05 19.75 1.55 0.00 1272 0.00 1323 4.01 1298 2.04 20.63 1.62 0.00 
Fri26 937 937 0.00 965 2.99 944.8 0.83 9.70 1.04 0.00 937 0.00 955 1.92 943.267 0.67 8.87 0.95 0.00 
Bayg29 1610 1624 0.87 1668 3.60 1633.7 1.47 9.45 0.59 0.00 1610 0.00 1624 0.87 1621 0.68 5.70 0.35 0.00 
Bays29 2020 2026 0.30 2094 3.66 2040.53 1.02 13.08 0.65 0.00 2026 0.30 2068 2.38 2033.63 0.67 10.08 0.50 0.00 
Dantzig42 699 705 0.86 744 6.44 715.1 2.30 12.80 1.83 0.00 699 0.00 738 5.58 707.5 1.22 7.40 1.06 0.00 
Swiss42 1273 1273 0.00 1346 5.73 1292.8 1.56 20.27 1.59 0.00 1273 0.00 1334 4.79 1287.13 1.11 16.58 1.30 0.00 
ATT48 10628 10653 0.24 11073 4.19 10935.1 2.89 88.58 0.83 0.00 10653 0.24 10959 3.11 10902.3 2.58 60.11 0.57 0.00 
GR48 5046 5103 1.13 5295 4.93 5191.07 2.87 66.63 1.32 0.00 5103 1.13 5295 4.93 5174.03 2.54 34.96 0.69 0.00 
HK48 11461 11496 0.31 11821 3.14 11590.8 1.13 69.03 0.60 0.00 11461 0.00 11721 2.27 11567.2 0.93 32.76 0.29 0.00 
Eil51 426 435 2.11 443 3.99 439.633 3.20 2.44 0.57 0.00 433 1.64 443 3.99 438.4 2.91 2.27 0.53 0.00 
Berlin52 7542 7604 0.82 8391 11.26 7939.3 5.27 251.51 3.33 0.00 7604 0.82 8256 9.47 7887.63 4.58 183.75 2.44 0.00 
Brazil58 25395 25717 1.27 26551 4.55 26292.7 3.53 228.63 0.90 0.00 25655 1.02 26123 2.87 25943.7 2.16 128.45 0.51 0.00 
ST70 675 693 2.67 719 6.52 701.467 3.92 7.99 1.18 0.00 684 1.33 712 5.48 695.467 3.03 4.91 0.73 0.00 
Eil76 538 556 3.35 577 7.25 567.433 5.47 5.50 1.02 0.00 553 2.79 572 6.32 562.667 4.58 3.61 0.67 0.00 
PR76 108159 109146 0.91 115386 6.68 111767 3.34 2029.03 1.88 0.00 109011 0.79 114553 5.91 111257 2.86 1184.75 1.10 0.00 
GR96 55209 56101 1.62 58698 6.32 57606.5 4.34 680.90 1.23 0.00 55847 1.16 58641 6.22 56979.8 3.21 461.06 0.84 0.00 
Rat99 1211 1253 3.47 1303 7.60 1272.4 5.07 12.85 1.06 0.00 1250 3.22 1287 6.28 1266.87 4.61 5.46 0.45 0.00 
KroA100 21282 21478 0.92 22944 7.81 21694.1 1.94 370.40 1.74 0.00 21417 0.63 22944 7.81 21665.9 1.80 205.38 0.97 0.00 
KroB100 22141 22502 1.63 23390 5.64 22920.2 3.52 206.79 0.93 0.00 22364 1.01 23181 4.70 22701.9 2.53 130.69 0.59 0.00 
KroC100 20749 20819 0.34 21821 5.17 21017.6 1.29 179.30 0.86 0.00 20819 0.34 21471 3.48 20993.1 1.18 80.72 0.39 0.00 
KroD100 21294 21403 0.51 22965 7.85 21955.1 3.10 349.65 1.64 0.00 21403 0.51 22439 5.38 21860.5 2.66 170.10 0.80 0.00 
KroE100 22068 22179 0.50 23236 5.29 22775.9 3.21 308.37 1.40 0.00 22179 0.50 23043 4.42 22631 2.55 137.13 0.62 0.00 
RD100 7910 7993 1.05 8380 5.94 8176.97 3.38 115.58 1.46 0.00 7958 0.61 8331 5.32 8136.17 2.86 59.99 0.76 0.00 
Eil101 629 657 4.45 683 8.59 665.733 5.84 7.03 1.12 0.00 653 3.82 671 6.68 658.767 4.73 2.50 0.40 0.00 
Lin105 14379 14379 0.00 15179 5.56 14697.6 2.22 158.93 1.11 0.00 14379 0.00 14872 3.43 14572.3 1.34 70.68 0.49 0.00 
PR107 44303 44497 0.44 45177 1.97 44906 1.36 177.29 0.40 0.00 44438 0.30 45154 1.92 44842.5 1.22 102.23 0.23 0.00 
GR120 6942 7095 2.20 7507 8.14 7342.33 5.77 105.87 1.53 0.00 7021 1.14 7497 7.99 7253.33 4.48 49.33 0.71 0.00 
PR124 59030 59767 1.25 62202 5.37 60457.1 2.42 623.37 1.06 0.00 59767 1.25 60916 3.19 60202 1.99 180.32 0.31 0.00 
Bier127 118282 121592 2.80 128374 8.53 123776 4.64 1530.06 1.29 0.00 120860 2.18 125732 6.30 122976 3.97 537.75 0.45 0.00 
CH130 6110 6397 4.70 6609 8.17 6485.43 6.14 59.30 0.97 0.00 6254 2.36 6572 7.56 6413.07 4.96 33.87 0.55 0.00 
PR136 96772 99925 3.26 104611 8.10 102881 6.31 1132.21 1.17 0.00 99637 2.96 102810 6.24 101473 4.86 396.07 0.41 0.00 
GR137 69853 71465 2.31 75314 7.82 72654.1 4.01 737.06 1.06 0.00 70725 1.25 74670 6.90 72247.1 3.43 345.58 0.49 0.00 
PR144 58537 58972 0.74 64881 10.84 59903.5 2.33 1270.40 2.17 0.00 58972 0.74 61207 4.56 59689 1.97 318.36 0.54 0.00 
CH150 6528 6683 2.37 7061 8.16 6907.3 5.81 99.39 1.52 0.00 6636 1.65 7019 7.52 6838.23 4.75 46.27 0.71 0.00 
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Dataset Optimal Fast Max Difference Insertion Heuristic [37] Augmented Fast Max Difference Insertion Heuristic 
  Min %Diff Max %Diff Avg. %Diff St. Dev %age Tim

e 
Min %Diff Max %Diff Avg. %Diff St.Dev %Diff Time 

kroA150 26524 26991 1.76 28864 8.82 27708.5 4.47 457.96 1.73 0.00 26953 1.62 28640 7.98 27504.2 3.70 153.05 0.58 0.00 
kroB150 26130 26497 1.40 28412 8.73 26988.3 3.28 469.82 1.80 0.00 26224 0.36 27325 4.57 26719.1 2.25 124.68 0.48 0.00 
PR152 73682 74029 0.47 75558 2.55 74411.7 0.99 418.83 0.57 0.00 74029 0.47 75558 2.55 74315.2 0.86 200.98 0.27 0.00 
U159 42080 43530 3.45 46846 11.33 44430.6 5.59 903.58 2.15 0.00 43271 2.83 46177 9.74 44040.4 4.66 292.69 0.70 0.00 
SI175 21407 21565 0.74 21927 2.43 21725.6 1.49 107.24 0.50 0.00 21459 0.24 21786 1.77 21604.3 0.92 32.32 0.15 0.00 
BRG180 1950 2710 38.97 6470 231.7

9 
3429 75.85 1330.53 68.23 0.00 2290 17.44 2570 31.79 2413.33 23.76 33.17 1.70 0.00 

Rat195 2323 2480 6.76 2598 11.84 2532.37 9.01 30.08 1.30 0.00 2453 5.60 2573 10.76 2501.3 7.68 11.26 0.48 0.00 
d198 15780 16033 1.60 16375 3.77 16166.7 2.45 93.99 0.60 0.00 15961 1.15 16227 2.83 16046.8 1.69 28.57 0.18 0.00 
KroA200 29368 30191 2.80 31632 7.71 30973.3 5.47 375.85 1.28 0.00 29981 2.09 31253 6.42 30596.7 4.18 119.87 0.41 0.00 
KroB200 29437 30450 3.44 31768 7.92 30965.3 5.19 337.61 1.15 0.00 30304 2.95 31218 6.05 30697.8 4.28 120.87 0.41 0.00 
GR202 40160 41280 2.79 43782 9.02 42256.8 5.22 650.87 1.62 0.00 41086 2.31 43111 7.35 41895.2 4.32 238.51 0.59 0.00 
TS225 126643 135518 7.01 138827 9.62 136685 7.93 1084.78 0.86 0.00 134142 5.92 137551 8.61 135960 7.36 360.91 0.28 0.00 
TSP225 3916 4118 5.16 4265 8.91 4194.13 7.10 32.14 0.82 0.00 4076 4.09 4220 7.76 4162.87 6.30 12.89 0.33 0.00 
PR226 80369 81426 1.32 83085 3.38 82460.9 2.60 364.08 0.45 0.00 81344 1.21 82360 2.48 81627.8 1.57 75.32 0.09 0.00 
GR229 134602 139251 3.45 144877 7.63 141730 5.30 1727.52 1.28 0.00 137507 2.16 142602 5.94 140171 4.14 460.57 0.34 0.00 
Gil262 2378 2457 3.32 2556 7.49 2511.67 5.62 27.76 1.17 0.00 2449 2.99 2536 6.64 2490.83 4.74 7.71 0.32 0.00 
PR264 49135 53080 8.03 55170 12.28 54204.4 10.32 542.66 1.10 0.00 52799 7.46 54941 11.82 53824.9 9.54 206.53 0.42 0.00 
A280 2579 2707 4.96 2846 10.35 2785.63 8.01 36.11 1.40 0.00 2668 3.45 2782 7.87 2737.63 6.15 9.42 0.37 0.00 
PR299 48191 48763 1.19 51552 6.97 50260.9 4.30 635.94 1.32 0.00 48572 0.79 51310 6.47 49786.7 3.31 197.94 0.41 0.00 
Lin318 42029 43604 3.75 46054 9.58 44655.2 6.25 551.09 1.31 0.00 43326 3.09 45321 7.83 44074.5 4.87 144.53 0.34 0.00 
Linhp318 41345 43103 4.25 45550 10.17 44513.6 7.66 506.62 1.23 0.00 42953 3.89 44717 8.16 43937.4 6.27 140.95 0.34 0.00 
RD400 15281 15923 4.20 16477 7.83 16185.6 5.92 117.96 0.77 0.00 15825 3.56 16304 6.69 16046.3 5.01 30.36 0.20 0.00 
FL417 11861 11970 0.92 12256 3.33 12162.1 2.54 61.78 0.52 0.00 11947 0.73 12232 3.13 12147.4 2.41 16.59 0.14 0.00 
GR431 171414 177984 3.83 190656 11.23 181194 5.71 2673.55 1.56 0.00 176498 2.97 186166 8.61 179409 4.66 578.02 0.34 0.00 
PR439 107217 110510 3.07 117652 9.73 114438 6.73 1756.56 1.64 0.00 110111 2.70 115646 7.86 112791 5.20 354.96 0.33 0.00 
PCB442 50778 54075 6.49 56938 12.13 55266.8 8.84 695.06 1.37 0.00 53287 4.94 55430 9.16 54338.5 7.01 118.32 0.23 0.00 
D493 35002 36402 4.00 37550 7.28 37039.6 5.82 291.92 0.83 0.00 36251 3.57 37224 6.35 36703.8 4.86 62.88 0.18 0.00 
ATT532 27686 28786 3.97 29594 6.89 29346.8 6.00 194.95 0.70 0.00 28679 3.59 29495 6.53 29082 5.04 46.12 0.17 0.01 
Ali535 202339 207794 2.70 224909 11.15 216249 6.87 3526.80 1.74 0.00 206986 2.30 221538 9.49 214072 5.80 712.72 0.35 0.01 
SI535 48450 48987 1.11 49304 1.76 49152.8 1.45 84.77 0.17 0.00 48869 0.86 49189 1.53 49025.1 1.19 19.50 0.04 0.01 
PA561 2763 3030 9.66 3147 13.90 3099.37 12.17 29.96 1.08 0.00 2984 8.00 3079 11.44 3034.43 9.82 5.62 0.20 0.01 
U574 36905 38724 4.93 40101 8.66 39178.6 6.16 283.95 0.77 0.00 38237 3.61 39427 6.83 38800.7 5.14 60.73 0.16 0.01 
Rat575 6773 7216 6.54 7356 8.61 7298.13 7.75 40.92 0.60 0.00 7155 5.64 7307 7.88 7223.53 6.65 10.31 0.15 0.01 
P654 34643 35379 2.12 36157 4.37 35975.8 3.85 202.18 0.58 0.00 35231 1.70 36282 4.73 35907.5 3.65 44.79 0.13 0.01 
D657 48912 51475 5.24 53400 9.18 52272 6.87 409.12 0.84 0.00 51172 4.62 52678 7.70 51827.3 5.96 74.83 0.15 0.01 
GR666 294358 311171 5.71 325575 10.61 315951 7.34 3065.80 1.04 0.00 306692 4.19 320896 9.02 312390 6.13 637.50 0.22 0.01 
U724 41910 44279 5.65 45417 8.37 44949.8 7.25 262.92 0.63 0.00 43959 4.89 44883 7.09 44477.2 6.13 53.49 0.13 0.01 
Rat783 8806 9406 6.81 9642 9.49 9505.9 7.95 57.24 0.65 0.01 9282 5.41 9498 7.86 9383.97 6.56 10.50 0.12 0.02 
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Dataset Optimal Fast Max Difference Insertion Heuristic [37] Augmented Fast Max Difference Insertion Heuristic 
  Min %Diff Max %Diff Avg. %Diff St. Dev %age Tim

e 
Min %Diff Max %Diff Avg. %Diff St.Dev %Diff Time 

DSJ1000 1865968
8 

19707600 5.62 2016760
0 

8.08 1990960
0 

6.70 109255.
0 

0.59 0.01 1950260
0 

4.52 1995950
0 

6.97 1971410
0 

5.65 19524.7
0 

0.10 0.04 

DSJ1000Ce
il 

1866018
8 

19748800 5.83 2009270
0 

7.68 1992170
0 

6.76 106247.
00 

0.57 0.01 1950000
0 

4.50 1995020
0 

6.91 1971080
0 

5.63 18549.0
0 

0.10 0.03 

Pr1002 259045 272338 5.13 278387 7.47 276065 6.57 1564.93 0.60 0.01 270099 4.27 275389 6.31 273113 5.43 219.75 0.08 0.03 
Si1032 92650 95602 3.19 96325 3.97 96014.7 3.63 164.48 0.18 0.01 94716 2.23 95430 3.00 95121.6 2.67 33.51 0.04 0.03 
U1060 224094 235663 5.16 242235 8.10 238125 6.26 1699.78 0.76 0.01 233007 3.98 239467 6.86 235688 5.17 239.05 0.11 0.04 
Vm1084 239297 252247 5.41 261433 9.25 256233 7.08 2262.96 0.95 0.01 249526 4.27 257148 7.46 253125 5.78 332.04 0.14 0.05 
Pcb1173 56892 61970 8.93 64127 12.72 63089.4 10.89 449.72 0.79 0.01 61368 7.87 62969 10.68 62185.8 9.30 53.60 0.09 0.05 
D1291 50801 57900 13.97 60130 18.36 58752.4 15.65 579.59 1.14 0.01 56315 10.85 58393 14.94 57389 12.97 80.77 0.16 0.05 
RL1304 252948 278739 10.20 293163 15.90 284520 12.48 3029.34 1.20 0.02 274058 8.35 288834 14.19 279808 10.62 422.27 0.17 0.06 
RL1323 270199 296001 9.55 309100 14.40 303208 12.22 2464.82 0.91 0.02 292419 8.22 301960 11.75 296973 9.91 304.65 0.11 0.06 
NRW1379 56638 60349 6.55 61646 8.84 60780.1 7.31 308.76 0.55 0.02 59657 5.33 60635 7.06 60110.8 6.13 33.50 0.06 0.06 
FL1400 20127 20463 1.67 21209 5.38 20845.5 3.57 236.47 1.17 0.02 20333 1.02 20818 3.43 20550.1 2.10 19.20 0.10 0.06 
U1432 152970 165664 8.30 169421 10.75 167179 9.29 888.93 0.58 0.02 163478 6.87 166693 8.97 164834 7.76 121.78 0.08 0.05 
FL1577 22249 24417 9.74 25948 16.63 24878.1 11.82 353.17 1.59 0.02 24109 8.36 25317 13.79 24546.3 10.33 39.78 0.18 0.07 
D1655 62128 67994 9.44 70461 13.41 69060.4 11.16 571.58 0.92 0.02 67052 7.93 69538 11.93 68000.4 9.45 82.42 0.13 0.08 
VM1748 336556 355945 5.76 366383 8.86 360543 7.13 2068.97 0.61 0.03 351881 4.55 362621 7.74 355763 5.71 260.97 0.08 0.10 
U1817 57201 64176 12.19 65964 15.32 64870.7 13.41 421.55 0.74 0.03 62686 9.59 64618 12.97 63539.5 11.08 53.22 0.09 0.10 
RL1889 316536 348670 10.15 359254 13.50 353293 11.61 2324.25 0.73 0.03 343026 8.37 355356 12.26 348193 10.00 323.76 0.10 0.12 
D2103 80450 92946 15.53 95928 19.24 94702.7 17.72 694.52 0.86 0.04 91031 13.15 94100 16.97 92908.3 15.49 94.31 0.12 0.14 
U2152 64253 72237 12.43 74684 16.23 73268.2 14.03 533.71 0.83 0.05 70712 10.05 72853 13.38 71766.7 11.69 49.55 0.08 0.14 
U2319 234256 245879 4.96 249237 6.40 247806 5.78 698.47 0.30 0.05 242170 3.38 244369 4.32 243402 3.90 59.87 0.03 0.16 
Pr2392 378032 406594 7.56 416449 10.16 411182 8.77 2682.23 0.71 0.05 402888 6.58 409357 8.29 406441 7.51 225.30 0.06 0.18 
Pcb3038 137694 151286 9.87 153967 11.82 152492 10.75 608.29 0.44 0.08 149006 8.22 150937 9.62 149917 8.88 42.10 0.03 0.32 
FL3795 28772 31021 7.82 33579 16.71 32410.6 12.65 706.06 2.45 0.12 30506 6.03 33126 15.13 31842.2 10.67 63.28 0.22 0.56 
FNL4461 182566 197003 7.91 198967 8.98 197923 8.41 408.59 0.22 0.16 194648 6.62 196081 7.40 195439 7.05 29.53 0.02 0.82 
RL5915 565530 650532 15.03 661159 16.91 655440 15.90 2780.78 0.49 0.28 634848 12.26 646274 14.28 639135 13.02 198.77 0.04 1.64 
RL5934 556045 635088 14.22 648038 16.54 640614 15.21 3105.01 0.56 0.28 619736 11.45 631437 13.56 625645 12.52 194.59 0.03 1.66 
pla7397 2326072

8 
25193000 8.31 2567500

0 
10.38 2540610

0 
9.22 122079.

0 
0.52 0.42 2480280

0 
6.63 2524290

0 
8.52 2503870

0 
7.64 6537.00 0.03 2.47 

rl11849 923288 1049180 13.64 1060600 14.87 1055600 14.33 3065.17 0.33 1.10 1026850 11.22 1040220 12.66 1033190 11.90 169.50 0.02 10.73 
usa13509 1998285

9 
21562300 7.90 2181050

0 
9.15 2168050

0 
8.50 57951.3

0 
0.29 1.44 2132500

0 
6.72 2148230

0 
7.50 2140010

0 
7.09 1837.15 0.01 12.34 

brd14051 469385 506648 7.94 509902 8.63 508703 8.38 857.35 0.18 1.53 501011 6.74 503692 7.31 502305 7.01 32.55 0.01 12.96 
d15112 1573084 1699920 8.06 1710430 8.73 1704070 8.33 2902.15 0.18 1.82 1678830 6.72 1686260 7.19 1682650 6.97 89.74 0.01 18.86 
Average   4.69  10.41  6.71  0.69 0.07  3.65  7.11  5.18  0.37 0.59 
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Furthermore, we will see that this eight times increase in the execution time is not much as 

compared to betterment in solution quality. In short benefit overweighs loss. To analyze this, we 

need to examine results of each dataset instead of looking at overall average results. On 11 of 

109 datasets maximum cost solution of AFMDIH is even better than minimum cost solution of 

FMDIH, which makes approximately 10% of datasets. Interestingly 10 of these 11 datasets 

comprise more than 2000 city-nodes, since datasets are ordered from smallest to largest. This 

means that on large datasets it is more likely that each of the solutions from 30 simulations of 

AFMDIH turns out to be better than all the solutions of 30 simulations of FMDIH. This would 

mean we need to run AFMDIH only once to get better solution than all the 30 simulations of 

FMDIH on large datasets. Therefore, we can reduce computational time of AFDIH 30 times and 

get better solution than FMDIH in large datasets. This 30 times reduction in computational time 

overweighs the 8 times increase of computational time in large datasets.  

Therefore, it can be concluded that AFMDIH not only provides better quality but also saves 

time if datasets of large size are involved, which is mostly the case in real world scenarios. 

Looking more deeply into the results reveals that average cost solution of AFMDIH is better than 

the minimum cost solution of FMDIH in 24 out of 109 datasets, which makes approximately 20% 

of datasets. Moreover, 16 of these 24 datasets happen to be amongst the largest 17 datasets 

of size more than 1700 cities. This is another evidence of excel in performance of AFMDIH with 

the increase in the problem size. Finally, we can also see maximum cost solution of AFMDIH is 

better than the average cost solution of FMDIH on 32 out of 109 datasets, which makes 

approximately 30% of datasets and most of these wins are concentrated at larger datasets i.e., 

12 out of 14 largest datasets. This does also point towards what have been concluded earlier 

about performance excellence of AFMDIH on larger datasets. 

CONCLUSION  

This paper presents the concept of augmented tour construction heuristic, which is an 
advancement upon a simple tour construction heuristic. The method adds one additional step 
of partial tour deconstruction, which involves omitting a city node, in the standard set of steps of 
the tour construction heuristic. This additional step does not increase the theoretical complexity 
of the scheme; however, it does increase the computational time. The increase in computational 
time benefits solution quality in all average, best, and worst-case scenarios, along with the 
standard deviation. This observation is further supported by the results, indicating that the 
improvement in solution quality becomes more pronounced with larger datasets. In 30 
simulations, the maximum cost solution obtained through the augmented heuristic outperformed 
the minimum cost solution achieved by the standard tour construction heuristic. This benefit 
outweighs the increase in computational cost, as a single run of the augmented heuristic can 
generate a better solution than multiple runs of the standard tour construction heuristic for larger 
datasets. This study represents a significant step toward addressing whether a sequence of city 
nodes exists that can be incrementally expanded into an optimal tour with the assistance of a 
tour construction heuristic. Further research is currently being conducted in this direction, 
exploring additional complementary steps within tour construction heuristics to approach near-
optimal solutions. Given the consistently improved results with different heuristics, adding the 
iterative phase of partial tour deconstruction is the only explanation behind the improved results 
with the augmented heuristics. 
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