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 A generalization of the 0-1 knapsack problem that is hard-to-solve 
both theoretically (NP-hard) and in practice is the multi-demand 
multidimensional knapsack problem (MDMKP). Solving an 
MDMKP can be difficult because of its conflicting knapsack and 
demand constraints. Approximate solution approaches provide no 
guarantees on solution quality. Recently, with the use of 
classification trees, MDMKPs were partitioned into three general 
categories based on their expected performance using the integer 
programming option of the CPLEX® software package on a 
standard PC: Category A—relatively easy to solve, Category B—
somewhat difficult to solve, and Category C—difficult to solve. 
However, no solution methods were associated with these 
categories. The primary contribution of this article is that it 
demonstrates, customized to each category, how general-purpose 
integer programming software (CPLEX in this case) can be 
iteratively used to efficiently generate bounded solutions for 
MDMKPs. Specifically, the simple sequential increasing tolerance 
(SSIT) methodology will iteratively use CPLEX with loosening 
tolerances to efficiently generate these bounded solutions. The 
real strength of this approach is that the SSIT methodology is 
customized based on the particular category (A, B, or C) of the 
MDMKP instance being solved. This methodology is easy for 
practitioners to use because it requires no time-consuming effort 
of coding problem specific-algorithms. Statistical analyses will 
compare the SSIT results to a single-pass execution of CPLEX in 
terms of execution time and solution quality. 
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INTRODUCTION  

The 0-1 multi-demand multidimensional knapsack problem (MDMKP) involves filling a 
knapsack such that the value of the items inserted in the knapsack is maximized while a number 
of knapsack constraints (≤) and demand constraints (≥) are not violated. Since the MDMKP is a 
generalization of the classic 0-1 knapsack problem, it is easy to show that it is NP-hard, and 
thus large instances are typically solved using approximate solution approaches such as 
heuristics or metaheuristics. Because MDMKPs have both demand and knapsack constraints 
that directly conflict with each other, they can be very challenging to solve. Furthermore, there 
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are a number of practical applications [1] like obnoxious and semi-obnoxious facility location [2], 
and capital budgeting and portfolio selection [3] that typically require the solution of large 
MDMKPs.  Hence, motivated by the need to solve these applications, approximate solution 
approaches are usually discussed in the literature.    

Recently, Song et al. [4] used classification tree analyses combined with 1620 MDMKPs 
discussed in the literature to categorize MDMKPs into one of three categories: Category A—
relatively easy to solve, Category B—somewhat difficult to solve, and Category C—difficult to 
solve based on their performance using the integer programming option of the CPLEX® software 
package on a standard PC. These 1620 problems were chosen because they are discussed in 
the literature and readily available to researchers for empirical test purposes. For these 
analyses, the CPLEX tolerance was loosened (from 0.0001 (default) to 0.001) for all executions 
of CPLEX with the maximum running time of an hour. Although execution times will generally 
vary with PC, if an MDMKP was classified in Category A, then the expected execution time 
would be several minutes on average. If an MDMKP was classified in Category B, the expected 
execution time would be an average hour. However, if an MDMKP was classified in Category 
C, then CPLEX would not be expected to find either feasible solutions or solutions within the 
0.001 tolerance within an execution time of one hour.   

   This article aims to apply the simple sequential increasing tolerance (SSIT) methodology 
[5] to generate bounded solutions for these 1620 test MDMKP instances in shorter execution 
times than executing CPLEX using the default tolerance 0.0001 for up to one hour on a standard 
PC. It is important to note that SSIT will be customized based on whether the MDMKP is in 
Category A, B, or C.  Hence, category information is critical to the specific solution strategy used.   
These 1620 MDMKPs are composed of 810 MDMKPs defined in Lu and Vasko [6] and 810 
MDMKPs defined by Cappanera and Trubian [1]. These two sets of 810 MDMKPs are identical 
except that the demand constraint right-hand-sides (RHS) defined in [6] are only 10% of the 
values of the demand constraints defined in [1]. Thus, the demand constraints of [6] are looser 
than the original demand constraints in [1].   

Approximate solution approaches for the MDMKP include a nested-tabu-search heuristic 
[1], an adaptive search method [7], a scatter search scheme [8], an alternating control tree (ACT) 
search framework [9], a dominance principle-based heuristic [10], a two-stage solution-based 
tabu search approach [11], and a core-based methodology [12]. It is important to note that when 
using typical heuristic or metaheuristic methods to solve MDMKPs, these approaches provide 
no a priori (up front) guarantee on the quality of the solution. Classically in the literature, these 
approximate solution methods measure how good their solutions are after the fact by comparing 
their empirical results to optimum or best-known results. The optimum or best-known results 
were generated typically consuming considerable computer time using an integer programming 
optimizer such as CPLEX. 

The next section will provide the mathematical formulation of a multi-demand 
multidimensional knapsack problem. Then the nature of the 1620 test problems will be defined. 
Next, the classification tree used in Song et al. [4] will be reviewed and modified so that MDMKPs 
are partitioned into four categories; easy (Category A), somewhat difficult (Category B), difficult 
(Category C), and very difficult to solve (Category D). Then the motivation for SSIT will be 
outlined. This will be followed by the solution of these 1620 MDMKPs using SSIT tailored to the 
problem category. Statistical analyses will compare the SSIT results to a single-pass execution 
of CPLEX in terms of execution time and solution quality. Finally, several conclusions are drawn, 
and implications for operations research practitioners are discussed. 

METHOD  

1. Mathematical Formulation of a Multi-Demand Multidimensional Knapsack Problem 

The MDMKP is an extension of the 0-1 knapsack problem with multiple knapsack and 
demand constraints. The knapsack constraints represent “capacity” type constraints, and the 
demand constraints represent minimum “fill” requirements for the knapsack. Although there are 
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typically several knapsack and demand constraints, there is only one knapsack that is being 
“filled” with items for this formulation. Also, in the MDMKP, the objective function coefficients 
{𝑝𝑖}1≤𝑖≤𝑛 are not constrained in sign.  
Mathematical Formulation of the MDMKP 
 

Max      ∑ 𝑝𝑖𝑥𝑖    
𝑛
𝑖=1  (1) 

s.t.        ∑ 𝑤𝑖𝑘𝑥𝑖 ≤ 𝑐𝑘
𝑛
𝑖=1 ,          𝑘 ∈ {1, … , 𝑃} (2) 

         ∑ 𝑤𝑖𝑙𝑥𝑖 ≤ 𝑑𝑙
𝑛
𝑖=1 ,          𝑙 ∈ {𝑃 + 1, … , 𝑃 + 𝑄} (3) 

                                                 𝑥𝑖 ∈  {0,1},                      𝑖 ∈ {1, … , 𝑛} (4) 

 
where 𝑐𝑘 > 0 for 𝑘 ∈ {1, … , 𝑃}, 𝑑𝑙 > 0 for 𝑙 ∈ {𝑃 + 1, … , 𝑃 + 𝑄}, 𝑤𝑖𝑘 ≥ 0 and 𝑤𝑖𝑙 ≥ 0 for 𝑖 ∈
{1, … , 𝑛}, 𝑘 ∈ {1, … , 𝑃} and 𝑙 ∈ {𝑃 + 1, … , 𝑃 + 𝑄}.   

Constraint set (2) is the classic knapsack constraints (there are P of them) which can be 
viewed as capacity constraints on the knapsack. Constraint set (3) is the demand constraints 
(there are Q of them), representing minimum fill requirements for the knapsack. Constraint set 
(4) ensures that the variables take only zero or one values. If the variable 𝑥𝑖 is one, then the 

item is inserted into the knapsack. If the variable 𝑥𝑖 is zero, then the item is not inserted into the 
knapsack. If only constraint sets (2) and (4) are included, then the problem is referred to as the 
Multidimensional Knapsack Problem (MKP). Additionally, the objective function coefficients in 
an MKP are all positive, whereas the objective coefficients {𝑝𝑖}1≤𝑖≤𝑛 in an MDMKP can be either 
positive or mixed (both positive and negative).   

 
2. MDMKP Test Instances 

The 1620 MDMKPs are categorized in [4] as either easy, moderate, or difficult to solve in 
this article using the SSIT methodology tailored to the particular problem category. In [1], the 
authors use 270 MKP instances developed by Chu and Beasley [13] as a base to define 810 
MDMKP instances (also available on Beasley’s OR-Library [14]).   

How Cappanera and Trubian [1] defined their 810 MDMKP instances will now be given. The 
number of ≤ constraints m was set to 5, 10 or 30 as in [13], while the number of ≥ constraints q 
was dependent on m. For a fixed value of m, possible values for q were 1, truncate(m/2), and 
m, respectively. The number of variables n was set to 100, 250, or 500 as in [13]. Objective 
function coefficients were either all positive or had mixed (both positive and negative) values. 
Nine datasets were defined based on the number of variables and constraints in the problem. 
There are 90 problem instances in each of the nine datasets for a total of 810 MDMKP instances. 
Within each dataset six ‘cases’ are defined based on the value of q and whether objective 
function coefficients were strictly positive or mixed. Defined for knapsack constraints, the 
tightness ratio is the relationship between the constraint coefficients' sum and the constraint's 
right-hand-side value. For example, a knapsack constraint with a 0.25 tightness ratio implies 
that the right-hand side value of the constraint is 0.25 times the sum of the constraint coefficients. 
Each case has 15 problem instances, five at each of the three tightness ratios: 0.25, 0.50, and 
0.75 for knapsack constraints. 

For reporting results in this article, the following cases are defined: 
Case 1 has q = 1 and positive objective function coefficients,   
Case 2 has q = truncate(m/2) and positive objective function coefficients,          
Case 3 has q = m and positive objective function coefficients,  
Case 4 has q = 1 and mixed objective function coefficients,  
Case 5 has q = truncate(m /2) and mixed objective function coefficients,    
Case 6 has q = m and mixed objective function coefficients. 

In this article, the modified versions of these 810 MDMKPs discussed in Lu and Vasko [6] 
are also solved with SSIT. In Lu and Vasko [6], the right-hand-sides of all demand constraints 
were set to 10% of their original values as defined by Cappanera and Trubian [1]. The right-
hand-sides for the demand constraints were reduced to 10% of their original values because Lu 
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and Vasko [6] were using these problems as a basis to solve MDMKPs with added choice 
constraints. It was necessary to reduce the right-hand-sides of the demand constraints to 10% 
of their original values to obtain feasible solutions for these problems (see [6] for more details). 
In this article, the 810 MDMKPs from [6] are considered to have loose demand constraints for 
obvious reasons. The original 810 MDMKPs from [1] are considered to have tight demand 
constraints.  

3. Classification Trees 

In [4], a classification tree was constructed using the built-in function fitctree in MATLAB 
from the Statistical and Machine Learning Toolbox [15]. The following four numerical variables 
were input: Var for the number of variables in the MDMKP, Dim for the number of knapsack 
constraints in the MDMKP, Dem for the number of demand constraints in the MDMKP, and 
Dim_T for the tightness of the knapsack constraints (0.25, 0.50, 0.75) in the MDMKP. There 
were also two categorical variables: Obj for if the objective function coefficients were positive 
(P) or mixed (M) in the MDMKP, and DEM_T for if the demand constraints were tight (T) or loose 
(L) in the MDMKP. The classification tree used in [4] is given in Figure 1. For more details, see 
[4].   

The goal is to use the decision tree in Figure 1 to predict if an MDMKP falls into one of three 
categories:  
Category A—CPLEX can obtain a solution for an MDMKP that is guaranteed within 0.1% of 
optimum and requires less than 300 seconds on a standard PC (times will vary by PC). 
Category B---CPLEX can obtain a solution for a MDMKP that is guaranteed within 0.1% of 
optimum but may require up to an hour on a standard PC (times will vary by PC). 
Category C---CPLEX will be unsuccessful at finding either feasible solutions or solutions 
guaranteed within 0.1% of optimum in a reasonable amount of time, about an hour (times will 
vary by PC). 

Using the decision tree from Figure 1, the 1620 MDMKPs discussed in this article are 
classified as follows: 1050 MDMKPs (65%) are classified in Category A, 330 MDMKPs (20%) 
are classified in Category B, and 240 (15%) are classified in Category C. 

 
Figure 1. The decision tree [4] to categorize MDMKPs in categories A, B, or C 

https://doi.org/10.26555/ijish.v3i2.2222
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The tree predicts long computing times (Category C) based on two distinct paths, one path 
simpler than the other. The simple path predicts that an MDMKP will be in Category C if it 
contains tight demand constraints (Dem_T = T) with at least 15 demand constraints (DEM > 
12.5). Hence, tight constraints make it difficult for CPLEX to obtain a bounded solution in a 
reasonable amount of time once there are at least 15 demand constraints. Note that for these 
MDMKPs, any problem having 15 demand constraints will have 30 knapsack constraints.   

It has been observed by several researchers [1], [6] that it is difficult even to obtain feasible 
solutions for the problems in Cappanera and Trubian’s [1] dataset 7, cases 3 and 6. The authors 
of this article conjecture that the difficulty with solving these MDMKPs is because there is a large 
number of both demand (30) and knapsack (30) constraints, but the number of variables is 
“small” (only 100). This conjecture is supported by the fact that there is no problem obtaining 
feasible solutions for cases 3 and 6 in datasets 8 and 9, which also have 30 demand and 30 
knapsack constraints but have 250 and 500 variables, respectively.      

These 30 MDMKPs are classified as Category C, but because they are so difficult to solve, 
Category C will be partitioned into two subsets. Category D will consist of the 30 very difficult 
MDMKPs in dataset 7, cases 3 and 6 [1]. All the other MDMKPs in Category C will remain in 
Category C.  Figure 2 shows the “manually” adjusted decision tree. The reason for defining 
Category D is that the solution strategy that will be recommended to solve Category D problems 
will be specifically tailored for operations research practitioners faced with the need to solve 
such MDMKP for real-world applications. Before discussing SSIT strategies specific to each 
category of MDMKPs (A, B, C, and D), an overview of the SSIT solution strategy will be provided. 

 

 
Figure 2. Modified decision tree to categorize MDMKPs in categories A, B, C, or D 

 

4. Overview of the Simple Sequential Increasing tolerance Matheuristics 

The motivation [5] behind the simple sequential increasing tolerance (SSIT) methodology 
is to try to have the best of two worlds. Namely, to use state-of-the-art optimization software 
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such as CPLEX (or Gurobi) combined with loosening tolerances to obtain solutions that are 
guaranteed within known and relatively tight tolerances of the optimum, but in a timely manner. 
By using commercially available, state-of-the-art optimization software instead of highly complex 
specialized codes for the particular binary integer program (BIP) being solved, SSIT can be used 
straightforwardly by both OR practitioners and researchers.  

Successful applications of SSIT to solve several BIPs have been documented in the 
literature. McNally et al. [16] was able to solve 135 set K-covering problems (SKCP) from the 
literature on a standard PC in an average of 67 seconds obtained an average guaranteed bound 
of 0.13% from the optimums using the Gurobi software package. Statistical analyses 
demonstrated that these SSIT results were as good as the best published results from 
algorithms specifically designed to solve SKCPs. Also, using Gurobi, Lu et al. [17] employed the 
SSIT methodology to quickly (average of 88 seconds on a standard PC) generate solutions 
guaranteed to be, on average, within 0.09% of the optimum on 270 multidimensional knapsack 
problems (MKP) instances commonly used in the literature. These results are far better than 
other published metaheuristic results for the MKP. Dellinger et al. [18] employed SSIT to quickly 
(average of 63 seconds on a standard PC) generate solutions guaranteed to be within 0.08% of 
the optimum on 51 generalized assignment problem (GAP) instances commonly used in the 
literature. These results are very competitive with the best published solution methods for the 
GAP. Additionally, in [18], both Gurobi and CPLEX were used to solve the GAP instances, and 
there was no statistically significant difference in solution quality or execution times between 
Gurobi and CPLEX. 

The SSIT methodology is very flexible and robust because the user can specify how many 
tolerances and their specific values based on the needs of the particular application being 
solved. The maximum execution times are also specified based on the particular application.   
SSIT can be considered a multi-pass methodology in which the program terminates if the goal 
(tolerance) is met within the time allowed. If it is not completed, the tolerance is “loosened”. The 
current best solution is used as input for this next step in the solution process. The worst-case 
scenario for SSIT is that it does not terminate until the sum of the maximum execution times for 
each tolerance is reached. In this case only, instead of the solution generated being within a 
user pre-defined tolerance of the optimum, the software gap at termination will indicate how 
close the best SSIT solution is to the optimum. Specifically, for a minimization BIP, the 
optimization software provides the gap between the best lower bound and the best solution. 
Although SSIT is very intuitive, this is the first article to discuss and quantify the benefits of using 
SSIT specifically to solve MDMKPs.  

The pseudo-code and flowchart [16] below summarize the SSIT methodology for a generic 
BIP.   

SSIT Methodology [16]  
1. Input the number of phases N 
2. Input tolerance T_i and maximum execution time t_i for phases i=1, ..., N 
3. Input BIP details    
4. Run integer programming software program to solve BIP 
5. For 1<=i<=N-1, 
6. IF integer programming software running time in phase i is less than t_i, FINISH 
7. ELSE,  
8. take best solution obtained from Phase i and save it as SOL_i. 
9. Run integer programming software program with SOL_i as the warm start and 

tolerance T_{i+1} and maximum execution time t_{i+1}.  
10. i=i+1 
11. LOOP through step 7-11 until FINISH. 

The benefit of SSIT using general-purpose integer programming software such as CPLEX 
or Gurobi is significant, especially to an OR practitioner. For the SSIT problems discussed in 
this article, all the CPLEX default settings were kept, except the time and tolerance per the SSIT 
procedure were modified. In particular, the OR practitioner or researcher does not need to 
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develop and code a problem-specific algorithm. Furthermore, practitioners will find a wealth of 
examples that come with most optimization software (definitely CPLEX and Gurobi). These 
models are ready to run out of the box. These templates often only require a few changes before 
they are ready to run domain-specific binary optimization programs. Practitioners can also 
quickly find answers to many software specific questions in the online forums and extensive 
manuals. 

 

Figure 3. SSIT flowchart [16] 
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The ability to quickly find templates and models for various problems and the ease of getting 
a problem running with pre-defined defaults that work well with many problems saves the 
practitioner time writing extensive code and testing different parameter settings. Additionally, for 
industrial systems that use SSIT, the performance of these systems is “automatically” improved 
when new versions of the optimization software are installed.   

A few scenarios will now be given to illustrate the nature of SSIT when applied to solve 
MDMKPs. More details are provided in [5]. It is important to remember that there is no need to 
“optimize” either the number of tolerances used or their values and the execution times for each 
tolerance. These values are both user and problem specific and can be easily adjusted to meet 
the users’ needs! This point will now be illustrated with a few examples.   

Suppose that the OR practitioner is trying to solve MDMKPs in Category A, i.e., that should 
be relatively easy to solve with CPLEX. Then a tolerance-execution time sequence of 0.0001 
for 60 seconds, 0.001 for 180 seconds, 0.003 for 180 seconds, 0.007 for 180 seconds, and 0.01 
for 180 seconds might be appropriate.   

In a worst-case scenario, SSIT would terminate in 780 seconds, and the CPLEX gap 
between the best solution found and the tightest upper bound would be reported. However, as 
shown in the next section, most (84%) of the 1050 MDMKPs in Category A terminated when the 
second tolerance (0.001) was initiated. 

Now suppose that the OR practitioner is trying to solve MDMKPs in Category C, i.e., that 
should be rather difficult to solve. Then a tolerance-execution time sequence of 0.005 for 180 
seconds, 0.01 for 600 seconds, 0.02 for 600 seconds, and 0.05 for 600 seconds might be 
appropriate. Now, in a worst-case scenario, SSIT would terminate in 1980 seconds and the 
CPLEX gap between the best solution found and the tightest upper bound would be reported.   

As the difficulty of the MDMKPs increase (based on category), the OR practitioner should 
expect that the execution times will increase and that bounds on the solutions generated will get 
looser. However, there are three major benefits for the OR practitioner who uses SSIT 
customized for each category to solve MDMKPs. First, there is absolutely no need for the time-
consuming task of developing and coding an algorithm specifically designed to solve MDMKPs.  
Second, SSIT will provide bounds that guarantee how close the solution is to the optimum. 
Lastly, if the OR practitioner is not satisfied with the SSIT solution, the OR practitioner can adjust 
the tolerance-execution time sequence to either reduce total execution time or to improve the 
bound on the solution. 

RESULTS AND DISCUSSION  

In this section, the 1620 MDMKP test instances will be used to evaluate the performance of 
different SSIT strategies designed specifically for MDMKPs in each of the four categories: A, B, 
C, and D.  These results will be compared with a simple strategy commonly used by OR 
practitioners; specifically, inputting the problem to CPLEX using all default parameter values 
and executing it up to some maximum time (one hour). If the maximum time is reached, the best 
solution obtained is the answer and its quality is measured by the final CPLEX gap between the 
best upper bound and the best solution generated. It’s important to note that compared to just 
using CPLEX at the default tolerance, the increasing tolerances in SSIT allow CPLEX to be 
more aggressive when pruning the branch-and-cut tree, thus decreasing the gap faster. All 
executions of CPLEX were on a compute server with the following specifications: an Intel(R) 
Xeon(R) CPU E5-2640 v3 processor, 32 GiB of RAM and CentOS Linux 7. The threads 
parameter was set to one in all cases.   

1. SSIT Applied to Solve 1050 Category A MDMKPs 

This subsection will report results using SSIT to solve the 1050 Category A MDMKPs. The 
SSIT results will be compared to the results obtained by executing CPLEX for up to one hour 
using the default tolerance of 0.0001. The SSIT strategy suggested in Section 6 for MDMKPs 
predicted to be in Category A will be used. Specifically, the tolerance-execution time sequence 

https://doi.org/10.26555/ijish.v3i2.2222
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of 0.0001 for 60 seconds, 0.001 for 180 seconds, 0.003 for 180 seconds, 0.007 for 180 seconds, 
and 0.01 for 180 seconds will be used.   

In a worst-case scenario, SSIT would terminate in 780 seconds and the CPLEX gap 
between the best solution found and the tightest upper bound would be reported. The results for 
these 1050 MDMKPs are summarized in Tables 1. The results of using the simple strategy for 
the Category A MDMKPs are summarized in Tables 2. These tables contain, by dataset and 
case (see problem definitions in Section Method), the number of problems solved, the average 
execution times, and the average gaps between the best upper bound and the best solutions 
generated.   

For these 1050 Category A MDMKPs, SSIT had an average execution time of 102 seconds 
and an average gap from the optimum of 0.152%. For the simple strategy the average execution 
time was 711 seconds and the average gap from the optimum was 0.034%. The SSIT execution 
times were only 14% of the execution times of the simple strategy and still had an average gap 
less than 0.2%.   
 

  Table 1. Summary of SSIT results for 1050 category A MDMKPs datasets 1 to 9  

 
 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Dataset 1       
# problems 30 30 30 30 30 30 
Aver time 12.5 9.5 19.4 4.6 16.4 78.3 
Aver gap  0.013% 0.010% 0.016% 0.007% 0.012% 0.090% 
Dataset 2       
# problems 30 30 30 15 15 15 
Aver time 81.1 91.3 103.0 0.3 0.5 0.6 
Aver gap  0.076% 0.081% 0.093% 0.009% 0.007% 0.006% 
Dataset 3       
# problems 30 30 30 15 15 15 
Aver time 80.5 84.8 64.5 2.0 12.9 14.2 
Aver gap  0.068% 0.077% 0.069% 0.009% 0.016% 0.013% 
Dataset 4       
# problems 30 30 30 30 30 30 
Aver time 156.0 252.8 271.6 80.4 320.7 146.0 
Aver gap  0.189% 0.422% 0.412% 0.072% 0.698% 0.359% 
Dataset 5       
# problems 15 15 15 15 15 15 
Aver time 118.6 174.5 169.9 2.7 44.2 28.0 
Aver gap  0.085% 0.184% 0.165% 0.010% 0.044% 0.024% 
Dataset 6       
# problems 15 15 15 15 15 15 
Aver time 120.9 128.7 124.9 21.5 70.5 76.1 
Aver gap  0.122% 0.123% 0.127% 0.026% 0.070% 0.072% 
Dataset 7       
# problems 30 15 15 30 15 15 
Aver time 373.1 30.6 32.2 257.9 1.0 0.9 
Aver gap  0.943% 0.022% 0.028% 0.506% 0.005% 0.002% 
Dataset 8       
# problems 5 5 5 15 15 15 
Aver time 48.5 166.0 153.9 56.8 138.8 123.3 
Aver gap  0.046% 0.174% 0.100% 0.041% 0.163% 0.183% 
Dataset 9       
# problems 5 5 5 15 15 15 
Aver time 60.3 142.1 68.6 112.0 145.7 140.4 
Aver gap  0.087% 0.108% 0.097% 0.139% 0.155% 0.162% 

 
To get a better feel for how SSIT performed on these 1050 MDMKPs, Table 3 provides the 

number of MDMKPs that terminate at each of the tolerances. It can be observed from this table 
that 84% of the 1050 MDMKPs terminated by the time the tolerance was loosened to 0.001. 
Also, only 41 (4%) MDMKPs reached the time limit and had a gap greater than 0.01. 
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Table 2. Summary of simple strategy results for 1050 category A MDMKPs 
datasets 1 to 9 

 
 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Dataset 1       
# problems 30 30 30 30 30 30 
Aver time 12.0 9.6 17.1 4.6 13.0 36.6 
Aver gap  0.010% 0.010% 0.010% 0.007% 0.006% 0.005% 
Dataset 2       
# problems 30 30 30 15 15 15 
Aver time 685.9 709.9 873.5 0.3 0.5 0.6 
Aver gap  0.011% 0.013% 0.023% 0.009% 0.007% 0.006% 
Dataset 3       
# problems 30 30 30 15 15 15 
Aver time 1692.5 2033.4 1868.1 2.0 14.9 15.9 
Aver gap  0.023% 0.032% 0.026% 0.009% 0.010% 0.007% 
Dataset 4       
# problems 30 30 30 30 30 30 
Aver time 402.0 503.5 513.7 49.5 665.8 129.1 
Aver gap  0.022% 0.018% 0.016% 0.007% 0.088% 0.005% 
Dataset 5       
# problems 15 15 15 15 15 15 
Aver time 275.1 1665.7 1555.2 2.6 49.7 23.5 
Aver gap  0.010% 0.021% 0.052% 0.010% 0.007% 0.006% 
Dataset 6       
# problems 15 15 15 15 15 15 
Aver time 2556.0 3177.2 3381.5 34.3 643.6 1182.7 
Aver gap  0.053% 0.065% 0.069% 0.010% 0.010% 0.018% 
Dataset 7       
# problems 30 15 15 30 15 15 
Aver time 1784.1 22.9 21,1 470.8 1.0 0.9 
Aver gap  0.471% 0.010% 0.010% 0.042% 0.005% 0.002% 
Dataset 8       
# problems 5 5 5 15 15 15 
Aver time 72.9 1981.9 1058.1 64.9 362.3 623.1 
Aver gap  0.010% 0.017% 0.010% 0.010% 0.007% 0.021% 
Dataset 9       
# problems 5 5 5 15 15 15 
Aver time 2188.6 3600 3600 1549.8 2204.6 1200.4 
Aver gap  0.017% 0.072% 0.049% 0.027% 0.072% 0.100% 

 
Table 3. Terminating tolerances for the 1050 category A MDMKPs 

 
Tolerance 0.0001 0.001 0.003 0.007 0.01 Time limit 

# MDMKPs 637 244 85 31 12 41 

 

2. SSIT Applied to Solve 330 Category B MDMKPs 

This subsection will report results using SSIT to solve the 330 Category B MDMKPs. The SSIT 
results will be compared to the results obtained by executing CPLEX for up to one hour using 
the standard default tolerance of 0.0001. The SSIT strategy employed considers that the 
Category B problems are more complex than the Category A MDMKPs. Specifically, for 
Category B MDMKPs the tolerance-execution time sequence of 0.001 for 180 seconds, 0.003 
for 180 seconds, 0.005 for 180 seconds, 0.008 for 180 seconds, 0.01 for 300 seconds and 0.02 
for 300 seconds will be used. In a worst-case scenario, SSIT would terminate in 1320 seconds 
and the CPLEX gap between the best solution found and the tightest upper bound would be 
reported. For Category B, because of the expected difficulty of the problems, the tolerances 
have been loosened and the maximum execution time increased. 

The results for these 330 MDMKPs are summarized in Table 4. The results from using the 
simple strategy for the Category B MDMKPs are summarized in Table 5. These tables contain, 
by dataset and case (see problem definitions in Section 3), the number of problems solved, the 
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average execution times, and the average gaps between the best upper bound and the best 
solutions generated. It should be noted that blank entries in Tables 4 and 5 indicate no Category 
B MDMKPs in that dataset-case combination. For example, there are no entries for Cases 1, 2, 
and 3 in Dataset 2.   For datasets like 1, 4, and 7 that have no MDMKPs in Category B, these 
datasets do not appear at all in Tables 4 and 5.  

For these 330 Category B MDMKPs, SSIT had an average execution time of 464 seconds and 
an average gap from the optimum of 0.645%. For the simple strategy, the average execution 
time was 3363 seconds, and the average gap from the optimum was 0.439%. Similar to 
Category A results, the SSIT execution times were only 14% of the execution times of the simple 
strategy and had an average gap of less than 0.7%.   

 
Table 4. Summary of SSIT results for 330 category B MDMKPs 

datasets 2, 3, 5, 6, 8, and 9 

 
 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Dataset 2       
# problems 

- - - 
15 15 15 

Aver time 138.1 272.1 517.5 
Aver gap  0.206% 0.371% 0.690% 
Dataset 3       
# problems    15 15 15 
Aver time - - - 128.1 190.6 364.7 
Aver gap     0.164% 0.219% 0.472% 
Dataset 5       
# problems 15 15 15 15 15 15 
Aver time 359.2 559.6 509.6 443.2 816.6 978.9 
Aver gap  0.491% 0.740% 0.716% 0.584% 1.300% 1.361% 
Dataset 6       
# problems 15 15 15 15 15 15 
Aver time 239.6 269.4 231.7 263.2 574.0 712.9 
Aver gap  0.239% 0.334% 0.300% 0.338% 0.692% 1.019% 
Dataset 8       
# problems 15   15   
Aver time 748.3 - - 733.8 - - 
Aver gap  1.180%   1.172%   
Dataset 9       
# problems 15   15   
Aver time 558.2 - - 589.9 - - 
Aver gap  0.622%   0.703%   

 
Table 5: Summary of simple strategy results for 330 category B MDMKPs 

datasets 2, 3, 5, 6, 8, and 9 
 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Dataset 2       
# problems    15 15 15 
Aver time - - - 697.6 2800.0 2728.8 
Aver gap     0.010% 0.095% 0.349% 
Dataset 3       
# problems    15 15 15 
Aver time - - - 3036.4 3600 3600 
Aver gap     0.068% 0.129% 0.297% 
Dataset 5       
# problems 15 15 15 15 15 15 
Aver time 3600 3600 3600 3514.6 3600 3600 
Aver gap  0.304% 0.511% 0.469% 0.332% 0.911% 1.087% 
Dataset 6       
# problems 15 15 15 15 15 15 
Aver time 3600 3600 3600 3600 3600 3600 
Aver gap  0.170% 0.233% 0.220% 0.228% 0.547% 0.864% 
Dataset 8       
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 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 
# problems 15   15   
Aver time 3600 - - 3600 - - 
Aver gap  0.873%   0.825%   
Dataset 9       
# problems 15   15   
Aver time 3600 - - 3600 - - 
Aver gap  0.552%   0.576%   

 
Analogous to the results in Table 3, Table 6 provides the number of MDMKPs that terminate 

at each tolerance. It can be observed from this table that 59% of the 330 MDMKPs terminated 
by the time the tolerance that was loosened to 0.005. Also, only 4 (1.2%) MDMKPs reached the 
time limit and had a gap greater than 0.02. 

 
Table 6: Terminating tolerances for the 330 category B MDMKPs 

 
Tolerance 0.001 0.003 0.005 0.008 0.01 0.02 Time 

limit 

# MDMKPs 16 98 82 60 28 42 4 

 

3. SSIT Applied to Solve 210 Category C MDMKPs 

This subsection will report results using SSIT to solve the 210 Category C MDMKPs.  Keep 
in mind that Song et al. [4] found it very difficult to obtain solutions for Category C problems even 
after one hour of execution time at a tolerance of 0.001. As done previously, the SSIT results 
will be compared to the results obtained by executing CPLEX for up to one hour using the 
standard default tolerance of 0.0001. The SSIT strategy used was mentioned in the previous 
section and takes into account that the Category C problems are even more complex than the 
Category B MDMKPs. Specifically, for Category C MDMKPs the tolerance-execution time 
sequence of 0.005 for 180 seconds, 0.01 for 600 seconds, 0.02 for 600 seconds, and 0.05 for 
600 seconds will be used. In a worst-case scenario, SSIT would terminate in 1980 seconds, and 
the CPLEX gap between the best solution found and the tightest upper bound would be reported. 
For Category C, because of the expected difficulty of the problems, the tolerances have been 
loosened, and the maximum execution time increased.  

The results for these 210 MDMKPs are summarized in Table 7. The results from using the 
simple strategy for the Category C MDMKPs are summarized in Table 8. These tables contain, 
by dataset and case (see problem definitions in Section 3), the number of problems solved, the 
average execution times, and the average gaps between the best upper bound and the best 
solutions generated. The blank entries in Tables 7 and 8 indicate no Category C MDMKPs in 
that dataset-case combination. None of the MDMKPs from datasets 1, 2, 3, 4, 5, and 6 are in 
Category C. 

For these 210 Category C MDMKPs, SSIT had an average execution time of 1048 seconds 
and an average gap from the optimum of 4.016%. The average execution time was 3546 
seconds for the simple strategy, and the average gap from the optimum was 3.193%. The SSIT 
execution times were only 30% of the execution times of the simple strategy and had an average 
gap of about 4%. Although being guaranteed to be within 4% of the optimums might not seem 
like a tightly bound and the CPLEX execution time of 1048 seconds (over 17 minutes) might 
seem substantial, one must keep in mind that the Category C problems were identified in [4] as 
problems that could not be solved in 3600 seconds with CPLEX at a fixed tolerance of 0.001.   

   Analogous to the results in Tables 3 and 6, Table 9 provides the number of MDMKPs that 
terminate at each tolerance. It can be observed from this table that 45% 0f the 210 MDMKPs 
terminated by the time the tolerance was loosened to 0.02. Also, only 48 (23%) MDMKPs 
reached the time limit and had a gap greater than 0.05. 
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Table 7: Summary of SSIT results for 210 category C MDMKPs 
datasets 7, 8, and 9 

 
 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Dataset 7       
# problems  15   15  
Aver time - 1603.5 - - 1980.0 - 
Aver gap   5.942%   14.547%  
Dataset 8       
# problems 10 25 25  15 15 
Aver time 76.3 684.2 874.8 - 1717.2 1940.1 
Aver gap  0.632% 1.916% 2.518%  5.887% 9.847% 
Dataset 9       
# problems 10 25 26  15 15 
Aver time 14.7 524.6 658.8 - 1224.2 1578.6 
Aver gap  0.420% 1.125% 1.550%  3.129% 4.317% 

 
Table 8: Summary of simple strategy results for 210 category C MDMKPs 

datasets 7, 8, and 9 

 
 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Dataset 7       
# problems  15   15  
Aver time - 3600 - - 3600 - 
Aver gap   4.200%   12.172%  
Dataset 8       
# problems 10 25 25  15 15 
Aver time 2467.2 3600 3600 - 3600 3600 
Aver gap  0.125% 1.340% 2.036%  4.967% 7.987% 
Dataset 9       
# problems 10 25 26  15 15 
Aver time 3600 3600 3600 - 3600 3600 
Aver gap  0.231% 0.852% 1.183%  2.658% 3.455% 

 
Table 9: Terminating tolerances for the 210 Category C MDMKPs 

 
Tolerance 0.005 0.01 0.02 0.05 Time limit 

# MDMKPs 44 21 30 67 48 

 

4. SSIT Applied to Solve 30 Category D MDMKPs 

It is important to note that the goal of this article is to demonstrate how a commercial 
software package like CPLEX (or Gurobi or others) can be used in an iterative manner to 
efficiently generate guaranteed bounded solutions for MDMKPs. A methodology has been 
presented that requires no algorithm development and coding by the OR practitioner. This 
solution approach called the simple sequential increasing tolerance (SSIT) methodology in 
conjunction with the software package CPLEX has been tailored to solve MDMKPs based on 
the difficulty classification of the MDMKP. For 1620 MDMKP test instances, SSIT has 
successfully solved 1590 (98%) of these MDMKPs in a manner that can easily be used by OR 
practitioners and anyone needing to solve MDMKPs. 

Now what strategy can be easily used by OR practitioners to solve the 30 most difficult 
problems? Other researchers such as Arntzen et al [7] and Lai et al. [11] have successfully 
developed highly complex MDMKP-specific algorithms, but these are nontrivial to computer 
code and typically require parameter fine-tuning. The question remains: how do OR practitioners 
solve MDMKPs that are classified in Category D? 

For OR practitioners that need to solve such problems and implement their solutions, 
reporting to management that the integer programming software did not find a feasible solution 
after four hours of execution time is not acceptable (the authors of this article executed several 
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Category D problems using both a SSIT strategy and the simple strategy discussed in this article 
for four hours without obtaining a feasible solution). One could try to execute either a SSIT 
strategy or simply execute CPLEX for a longer time, like 12 or 24 hours. However, there is no 
guarantee of finding a feasible solution for a given real-world problem even with the long 
execution time. The authors suggest an approach that is common among OR practitioners in 
this situation and is documented in Vasko et al [19]. The OR practitioner would go back to the 
client and discuss if any of the constraints could be loosened. As illustrated in [19], this process 
is iterative requiring several discussions with the client before the final parameters for the model 
are determined. 

To simulate this situation for the 30 Category D MDMKPs, all right-hand sides of the 
demand constraints were reduced by 10% and executed using the SSIT strategy for Category 
C.  All 30 problems now obtained feasible bounded solutions. Next, the original demand right-
hand sides were only reduced by 5% and again all 30 problems now obtained feasible bounded 
solutions. This illustrates a practical way to successfully handle real-world applications modeled 
as MDMKPs and classified in Category D. 

In the next subsection, statistical analyses will compare the SSIT results to the simple 
single-pass execution of CPLEX in terms of execution time and solution quality for MDMKPs in 
categories A, B, and C—98% of the test instances.  

 

5. Statistical Analysis 

To compare SSIT with the simple strategy in terms of execution time (the elapsed time) and 
solution quality (the lowest gap), statistical analyses are conducted for the 1590 MDMKPs in 
Categories A, B, and C.  To properly compare SSIT and the simple strategy, the one-way 
repeated measures multivariate analysis of variance (MANOVA) is adopted because the two 
response variables (the elapsed time and the lowest gap) are correlated of each other (if they 
are not correlated, the analysis of variance (ANOVA) could have been used), and all instances 
are used two times for both SSIT and the simple strategy [20]. Three separate analyses by 
category are conducted at the common significant level of 0.05.  

Tables 10, 11, and 12 (for Categories A, B, and C, respectively) illustrate that the lowest 
gap obtained by using SSIT is significantly greater than that of the simple strategy, but the 
elapsed time of SSIT is significantly smaller than that of the simple strategy in all categories. 
(The corresponding p-values are almost 0). In short, there is a trade-off between the elapsed 
time and the smallest gap as we expected. 
 

Table 10: Comparison between SSIT and the simple strategy in Category A 
 

  Tests of Within-Subjects Contrasts 

Source Measure method Type III Sum of 
Squares 

df Mean Square F Sig. 

method gap Linear .001 1 .001 123.460 .000 
time Linear 194746100.946 1 194746100.946 262.541 .000 

Error 
(method) 

gap Linear .006 1049 5.907E-006   
time Linear 778119575.525 1049 741772.713   

 
Table 11: Comparison between SSIT and the simple strategy in Category B 

 
  Tests of Within-Subjects Contrasts 

Source Measure method Type III Sum of 
Squares 

df Mean Square F Sig. 

method gap Linear .001 1 .001 430.087 .000 
time Linear 1386774685.305 1 1386774685.305 4853.659 .000 

Error 
(method) 

gap Linear .001 329 1.631E-006   
time Linear 94001006.891 329 285717.346   
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Table 12: Comparison between SSIT and the simple strategy in Category C 
 

                                          Tests of Within-Subjects Contrasts ` 

Source Measure method Type III Sum of 
Squares 

df Mean Square F Sig. 

method gap Linear .007 1 .007 96.530 .000 
time Linear 655129998.402 1 655129998.402 2283.641 .000 

Error 
(method) 

gap Linear .015 209 7.366E-005   
time Linear 59957832.290 209 286879.580   

 

CONCLUSION  

In Song et al. [4] multi-demand multidimensional knapsack problems (MDMKPs) were 
classified into three general categories based on their predicted difficulty to solve using CPLEX. 
Category A consists of problems that are expected to be easy to solve, Category B consists of 
problems that are somewhat difficult to solve, and Category C consists of problems that are 
difficult to solve on a standard PC. However, no specific strategies for efficiently generating 
solutions guaranteed to be close to the optimums were given. 

In this article, Category C problems were further partitioned into either difficult to solve 
(Category C) problems or problems that are very difficult to solve or even get feasible solutions 
(Category D). Next, solution strategies customized to each of the four problem categories were 
developed. These strategies are based on a procedure that iteratively uses commercial integer 
programming software (CPLEX in this article) with no algorithm-specific code required. This 
multi-pass methodology is used in conjunction with any integer programming software package 
and employs a sequence of increasing tolerances that is used with the integer programming 
software. If a goal bound on the solution is not achieved in a user-defined time interval, the best 
solution found at one tolerance is then input as a starting solution for the next looser tolerance. 

This procedure called the simple sequential increasing tolerance (SSIT) methodology has 
been empirically shown, regardless of which category an MDMKP was classified, to generate 
bounded solutions much quicker than just using CPLEX in a single-pass execution mode. 
Although SSIT is very intuitive, this is the first article to discuss and quantify the benefits of using 
SSIT specifically to solve MDMKPs.   Specifically, for the 1050 MDMKPs (65%) in Category A, 
SSIT was able to, on average, generate solutions bounded within 0.152% of the optimums in 
102 seconds. This SSIT result is an 86% reduction in CPLEX execution time over a single-pass 
CPLEX run (maximum time of 3600 seconds) which required, on average, 711 seconds and 
obtained solutions guaranteed within 0.034% of the optimums. For the 330 MDMKPs (20%) in 
Category B, SSIT was able to, on average, generate solutions bounded within 0.645% of the 
optimums in 464 seconds. This SSIT result is an 86% reduction in CPLEX execution time over 
a single-pass CPLEX run (maximum time of 3600 seconds) which required, on average, 3363 
seconds and obtained solutions guaranteed within 0.439% of the optimums. Finally, for the 210 
MDMKPs (13%) in Category C, SSIT was able to, on average, generate solutions bounded 
within 4.016% of the optimums in 1048 seconds. This SSIT result is a 70% reduction in CPLEX 
execution time over a single-pass CPLEX run (maximum time of 3600 seconds) which required, 
on average, 3546 seconds and obtained solutions guaranteed within 3.193% of the optimums. 

The implications of the strategies discussed in this article are significant for OR 
practitioners. Suppose that an OR practitioner is charged with developing and implementing a 
solution for a real-world application requiring MDMKPs. Instead of trying to code, test, and 
implement a state-of-the-art algorithm from the literature, the OR practitioner would first 
determine the category classification of the MDMKP using the decision tree diagram in Figure 2 
in this article. Next, if the MDMKP was classified in either Category A, B, or C, then the OR 
practitioner would use the SSIT strategy specific to that category in conjunction with the best 
integer programming software available to solve the MDMKP. If the MDMKP was classified in 
Category D, then the OR practitioner could try the SSIT strategy for Category C, but if 
unsuccessful in getting a feasible solution in an acceptable amount of time (situation 
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dependent), then the OR practitioner should suggest to the client that modifications are needed 
to the problem formulation. After modifications acceptable to the client are made, the modified 
MDMKP can be solved using the SSIT strategy for Category C. It has been experienced that 
modifications of the model formulation will be an iterative process. Finally, an additional benefit 
of using SSIT is that the application's performance will continue to “automatically” improve as 
new versions of the commercial software are implemented. 
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