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1. Introduction  

The weighted set covering problem (WSCP) is a well-known NP-hard [1-2] binary integer 

programming problem that has many and diverse industrial and business applications [3-15].  In the 

steel industry alone, the WSCP has been used to model the optimal design of ingot sizes (an ingot is 

a block of steel) [3], optimal selection of metallurgical grades (steel recipes for meeting customer 

requirements) [4], and product consolidation to reduce inventory costs [5-6].  Additional WSCP 

applications include: wireless networks [7], vehicle routing [8], unmanned aerial vehicles [9], gas 

detectors in chemical process plants [10], ambulance location routing [11], facility location models 

[12], traffic counting location [13], multi-depot train driver scheduling [14], and railway crew 

scheduling [15].   

We will now provide the usual mathematical formulation of the WSCP.  The WSCP is the 

problem of covering the rows of an m-row, n-column, zero-one matrix (𝑎𝑖𝑗) by a subset of the 
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Since 1990, the quality of approximate solution methods for solving weighted 

set covering problems (WSCPs) has been measured based on how well they 

solve 65 WSCPs available in Beasley’s OR-Library.  In a 2024 paper, it has 

been shown that guaranteed optimal solutions can easily be obtained for 55 

weighted set covering problems (WSCPs) in Beasley’s OR-Library using 

general-purpose integer programming software.  These 55 WSCPs have 500 

rows and 5,000 columns or less and were solved in a few seconds on a 

standard PC.  However, the remaining 10 WSCPs have 1000 rows and 10,000 

columns and either required considerably more than 1000 seconds to obtain 

guaranteed optimums (data set NRG) or no optimums were obtained (NRH).  

The purpose of this short paper is to try to quantify the solution times needed 

to solve WSCPs using general-purpose integer programming software that are 

larger than 500 rows and 5,000 columns, but less than 1,000 rows and 10,000 

columns.  This is important because the size and solution time gap is so large 

that solution times go from a few seconds for the 55 “smaller” WSCPs to very 

large solution times for the two largest data sets.  To fill this gap, 40 new 

WSCP instances are defined and their solution times are analyzed to 

determine when to expect that WSCPs, based on size and density, can be 

solved to optimality in a timely manner using general-purpose integer 

programming software like Gurobi or CPLEX. 

 

Keywords 

metaheuristics; 

operations research; 

weighted set covering problems;  

integer programming software; 

Beasley’s OR-Library. 
 

This is an open-access article under the CC–BY-SA license. 

 

mailto:vasko@kutztown.edu
http://creativecommons.org/licenses/by-sa/4.0/


IJIO Vol 6. No.1 February 2025 p. 17-27  

 

Vasko et al. (Filling the Gap …)                                     18 

 

columns at minimum cost.  A mathematical formulation for the WSCP is represented in Eq. (1) – Eq. 

(3). 

Minimize                     c xj j
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 1,  i = 1,...,m, (2) 

             xj {0,1},  j = 1,...,n.             (3) 

where 𝑥𝑗 is one if column 𝑗 is in the solution and zero otherwise.  Eq. (2) ensures that each row is 

covered by at least one column and Eq. (3) ensures that the 𝑥𝑗’s take on only the values zero or one. 

Given that the WSCP is NP-hard, combined with the state of computer hardware and 

software in 1990, operations research (OR) practitioners could not expect at that time to be able to 

solve industrial applications of the WSCP to proven optimality.  Hence for the many industrial 

applications mentioned previously, OR practitioners relied on approximate solution methods 

(heuristic and metaheuristic) to solve applications that were formulated as WSCPs.  The 65 WSCP 

instances in Beasley’s OR-Library [16] were made available to the OR community so that they could 

be used to measure the performance of approximate solution methods.  At that time, exact methods 

that would guarantee optimal solutions for WSCPs usually required excessive computer resources 

(time and memory) for large (industrial-size) WSCPs.   

The 65 WSCPs in Beasley’s OR-Library [16] have been used extensively for more than three 

decades to test WSCP solution methods.  The quality of approximate solution methods for solving 

WSCPs has been measured based on how well they solve these 65 WSCPs.  In a 2024 article [17], 

these instances are used to test the performance of a local branching solution approach.  In a 2022 

article [18], these instances were used to test the performance of the following eight nature-inspired 

metaheuristics: binary fruit fly swarm algorithms (BFFSA), Binary cuckoo search (BCS), Binary 

black hole (BBH), Binary cat swarm optimization (BCSO), Binary firefly optimization (BFO), 

Binary shuffled frog leap algorithm (BSFLAS), Binary electromagnetism-like algorithm (BELA), 

and the Binary artificial bee colony (BABC).  Also, since 2020, these instances were used to test the 

performance of the following metaheuristics: the intelligent water drop (IWD) [19], the greedy 

randomized adaptive search procedure (GRASP) [20], the improved binary monkey search algorithm 

(IBMSA) [21], a new direct coefficient-based heuristic [22], a greedy heuristic that incorporates the 

computation of a “surprisal” measure when selecting the solution columns [23], and an effective 

local search algorithm denoted NuSc [24].  Hence, we are aware of 15 solution methods that have 

appeared in the literature since 2020 and have used all of these 65 WSCPs to test their performance 

(numerous other articles have used only a subset of these 65 WSCPs for algorithm test purposes [25-

28]).  Additionally, two articles that address the set covering problem with conflicts [29], reference  

[30] derive test instances based on the 65 WSCPs from Beasley’s OR-Library.  The details of these 

65 WSCP instances are given in Table 1. 

As can easily be seen from Table 1, there is a huge gap in instance size between data sets 

NRE and NRF which have problems with 500 rows by 5,000 columns and the two largest data sets 

which have 1,000 rows by 10,000 columns.  This paper is the first to acknowledge the gap in the test 

instance size in the literature.  Even the 15 approximate solution methods [17-24] discussed in the 

literature since 2020 simply use these 65 WSCPs to test the performance of their solution methods 

and there is no recognition that there is a significant gap in instance size between the NRE and NRF 

data sets which have 500 rows by 5,000 columns and data sets NRG and NRH that have 1,000 rows 

by 10,000 columns. 

Essentially all the solution methods tested on these 65 WSCPs are approximate in nature—

ones since 2020 are largely based on nature-inspired metaheuristics.  In other words, they do not 

guarantee that their solutions are the optimums.  Additionally, solution techniques that are based on 

mathematical programming are essentially heuristic in nature and do not generate proven optimal 

solutions.  The paper by Yelbay et al. [31] provides extensive background on so called primal-dual 
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methods that make use of dual information.  Even the two best performing solution methods tested 

on these 65 WSCPs do not guarantee optimal solutions.  Specifically, the Lagrangian heuristic by 

Caprara et al. [32] and the randomized priority search heuristic by Lan et al. [33].  In fact, it was 

reported in [18] that the optimums were still unknown for data sets NRE, NRF, NRG, and NRH. 

Table 1. 65 Weighted set covering problem instances from Beasley’s OR-library 

Set 
No. of 

instances 

No. of 

rows 

No. of 

Columns 

Range of 

cost 
Density 

Optimal 

solution 

4 10 200 1000 1-100 2% Known 

5 10 200 2000 1-100 2% Known 

6 5 200 1000 1-100 5% Known 

A 5 300 3000 1-100 2% Known 

B 5 300 3000 1-100 5% Known 

C 5 400 4000 1-100 2% Known 

D 5 400 4000 1-100 5% Known 

NRE 5 500 5000 1-100 10% Known 

NRF 5 500 5000 1-100 20% Known 

NRG 5 1000 10000 1-100 2% Known 

NRH 5 1000 10000 1-100 5% Unknown 

   

 However, it is the authors’ opinion that if the required computer resources are not excessive, 

then it is always preferred to use solution methods (especially for industrial applications) that either 

guarantee that the optimum has been found or that the solution generated is guaranteed to be very 

close to the optimum.  When such solutions are obtained, the OR practitioner can confidently present 

results to management.  No matter how well approximate solution methods performed on Beasley’s 

65 WSCPs, solutions based on such methods do not typically provide any guarantees on the solution 

quality for industrial applications and should only be used if solutions that are guaranteed to be 

optimum or near-optimum cannot be generated in a timely manner.       

 Recent advances in integer programming software [34-40] has made it possible to obtain 

optimal solutions for large integer programming problems such as the WSCP.  In fact, Koch et al. 

[40] state that from 2001 to 2020 there has been a 1000-fold speed-up in the solution of mixed integer 

linear programming problems.  In 2024 [17] it was shown that all but five (data set NRH) of Beasley’s 

65 WSCPs can be solved optimally using CPLEX (version 12.10).  In fact, 15 WSCPs (NRE, NRF, 

and NRG) that were reported to have unknown optimums in as recent as a 2022 article [18], were 

solved to optimality.  In this article, we first summarize our experience using both Gurobi (10.0) and 

CPLEX (22.1.1) to solve Beasley’s 65 WSCPs (both fail to obtain optimums for data set NRH—

same as in [17]).  Our results using both Gurobi and CPLEX to solve these 65 WSCPs are in total 

agreement with the CPLEX results presented in [17].  However, it is important to note that CPLEX 

was used in [17] to try to solve the 65 WSCPs strictly to demonstrate that the approximate solution 

approach based on local branching discussed in [17] was generating high quality solutions even 

though these solutions were not guaranteed to be optimal solutions.  In [17] there is absolutely no 

mention of the size gap in these 65 WSCP instances.    

 However, a significant research contribution of this paper is in “filling the gap” that has existed 

since 1990 between Beasley’s data sets NRE and NRF (500 rows by 5,000 columns) and NRG and 

NRH (1,000 rows by 10,000 columns) with 40 new WSCP instances.  It is important to realize that 

the existence of this gap has never been previously discussed or even acknowledged in the literature.  

This paper is the first to acknowledge this gap and to fill it with appropriately sized WSCP instances.  

Furthermore, we will demonstrate how efficiently these new WSCP instances can be solved to proven 

optimality.  As will be discussed shortly, determining how well these 40 new WSCPs can be solved 

is important because all of Beasley’s problems that are smaller in size than these 40 new WSCPs can 

be solved to proven optimality in a few seconds, but the 10 Beasley problems that are larger than 

these 40 new WSCPs either required extensive solution times or have unknown optimums.  These 

40 WSCPs are defined in the same manner as Beasley’s 65 WSCP.  Another significant research 

contribution of this article, based on these 40 new WSCP instances and Beasley’s 65 WSCP 
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instances, is to indicate which size WSCP instances can most likely be solved to proven optimality 

using general-purpose integer programming software on a standard PC.  WSCPs that might not be 

solved to proven optimality can still be input to general-purpose integer programming software.  If 

the software does not find the proven optimum in the maximum allotted execution time, a feasible 

solution and lower bound will be returned that can prove very useful to OR practitioners that need 

solutions to real-world problems.    

 In the next section we will provide the methodology that we used.  Next, we will summarize 

our results using both Gurobi and CPLEX to solve Beasley’s 65 WSCPs.   This will be followed by 

an analysis of 40 new WSCPs.  We will conclude with ranges on expected solution times based on 

density and WSCP size.   

 

2. Method 

 To demonstrate the need for filling the gap between data sets with 500 rows and 5000 columns 

(NRE and NRF) and data sets with 1,000 rows and 10,000 columns (NRG and NRH), we propose 

the following methodology: 

1) Use general-purpose integer programming software to solve the 65 WSCPs in Beasley’s OR 

Library 

2) Using the same methodology that was used to generate these 65 WSCP instances, generate 40 

new WSCP instances that have between 500 rows by 5,000 columns and 1,000 rows by 10,000 

columns. 

3) Use general-purpose integer programming software to solve these 40 new WSCP instances. 

4) Analyze the solutions of these 40 WSCP instances based on the time required to obtain optimal 

solutions. 

In the next section we will discuss the results obtained from using this methodology. 

 

   

3. Results and Discussion 

3.1 Solving Beasley’s 65 WSCP instances using Gurobi and CPLEX 

 Unless otherwise stated, all Gurobi (version 10.0) [41] and CPLEX (version 22.1.1) [42] runs 

were executed on a PC with the following specifications: Intel® Core™ i3-1005G1 CPU at 1.20GHz 

with 8 GB of RAM at 2667 Mhz.  Default parameter settings were used for all Gurobi and CPLEX 

runs.  In [17] CPLEX (version 12.10) [43] was used on a PC with 8 GB of RAM, a 512 GBSSD disk 

and an Intel ® Core™ i5-1135G7 2.4 GHz processor.  In Table 2 we summarize the results of using 

these general-purpose integer programming software packages to solve the first 55 of Beasley’s 65 

WSCPs. 

 Although different processors and software are being used the results are very similar.  

Although we do not try to quantify how much faster the PC used in [17] is compared to the one that 

we used, we believe the faster PC used in [17] is why the execution times are somewhat smaller than 

ours.  However, the average times to obtain guaranteed optimal solutions differ very little regardless 

of PC or software used.  In our opinion, the important result is that all 55 of these WSCPs can be 

solved in less than 2 minutes to proven optimality using standard PCs and general-purpose integer 

programming software with all default parameters.  Contrast this result with the results given in the 

2022, Reference [18] for eight nature-inspired metaheuristics when solving the same 55 WSCPs.  For 

these eight metaheuristics, the largest number of optimums found was 44 out of the 55 WSCP 

instances by the binary fruit fly swarm algorithm and the binary electromagnetism-like algorithm 

found none of the 55 optimums.  It is important to note that even when these methods happen to find 

the optimum, it is unknown that the optimum has been found. The next largest data sets are NRG 

and NRH which are much larger than the data sets NRE and NRF.  Table 3 shows the execution 

times for the 5 WSCPs from NRG. 
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Table 2. Obtaining optimal solutions for the first 55 of the 65 weighted set covering problem instances from 

Beasley’s OR-library 

WSCP instances CPLEX (12.10) [6] 
Gurobi (10.0) this 

paper 

CPLEX (22.1.1) this 

paper 

Data sets 4-6 (25 instances) 

Average solution time 

(seconds) 
0.09 0.12 0.10 

Maximum solution time 

(seconds) 
0.30 0.26 0.55 

Data sets A-D (20 instances) 

Average solution time 

(seconds) 
0.65 0.94 0.84 

Maximum solution time 

(seconds) 
1.60 2.73 2.11 

Data sets NRE-NRF (10 instances) 

Average solution time 

(seconds) 
15.64 31.18 25.63 

Maximum solution time 

(seconds) 
41.00 93.18 76.25 

Data sets A-NRF (55 instances) 

Average solution time 

(seconds) 
3.12 6.07 5.01 

Maximum solution time 

(seconds) 
41.0 93.18 76.25 

 

Table 3. Obtaining optimal solutions for the five weighted set covering problem instances from Beasley’s 

OR-library in data set NRG 

Solution times (seconds) for WSCP 

instances in data set NRG 

CPLEX 

(12.10) [6] 

Gurobi (10.0) this 

paper 

CPLEX (22.1.1) this 

paper 

NRG1 2,071 2,841 2,430 

NRG2 335 412 361 

NRG3 9,351 8,920 8,239 

NRG4 4,339 8,201 7,081 

NRG5 16,484 24,343 36,285 

Minimum 335 412 361 

Average 6,516 8,943 10,879 

Maximum 16,484 24,343 36,285 

 

 As can be seen from Tables 2 and 3, there is a tremendous increase in execution time between 

data sets NRE and NRF each with 500 rows and 5,000 columns and data set NRG with 1,000 rows 

and 10,000 columns.  The average execution time averaged over the three solution strategies (CPLEX 

(12.10), Gurobi (10.0), and CPLEX (22.1.1)) for the 10 instances in NRE and NRF is only 24 

seconds.  However, this same average execution time for the five instances in NRG is 8779 seconds.  

In other words, when the WSCP instance size is increased from 500 rows by 5,000 columns to 1,000 

rows by 10,000 columns, the average execution time is increased 364 times!  Put another way, the 

average execution time goes from less than 30 seconds to over 2.4 hours.  The situation is even worse 

for data set NRH which has 1,000 rows by 10,000 columns but the density (percentage of non-zero 

elements in the matrix) is now 5%.  For data set NRH, both CPLEX (12.10) as reported in [17] and 

our experience using CPLEX (22.1.1), had memory issues trying to solve the NRH instances.  We 

executed Gurobi (10.0) on these five NRH instances, but optimal solutions could not be obtained 

after 24 hours of execution time.  After 24 hours of execution, NRH2, NRH4, and NRH5 had 

obtained the best-known solutions as reported in the literature, but had not proven optimality.  Since 

there is a tremendous jump in execution time between WSCPs with 500 rows and 5,000 columns and 

WSCPs with 1,000 rows and 10,000 columns, the vital question we seek to answer is what kind of 
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solution times can be expected for WSCPs with the number of rows between 500 and 1,000 and the 

number of columns between 5,000 and 10,000.   

 In the next section, we will define 40 new WSCP instances (20 at 2% density and 20 at 5% 

density) that have sizes strictly between 500 rows by 5,000 columns and 1,000 rows by 10,000 

columns.  Because our results when using Gurobi (10.0) and CPLEX (22.1.1) were similar when 

solving WSCPs from Beasley’s OR-Library, all 40 new instances will be solved using Gurobi (10.0) 

only.     

3.2 Empirical Results: 40 Weighted Set Covering Problems Introduced in this Article 

 As noted previously, there is a large gap in WSCP instance sizes between data set NRF (500 

rows by 5,000 columns) and data set NRG (1,000 rows by 10,000 columns).  If solution times to 

obtain optimal solutions for NRF instances and NRG instances did not differ much, then “filling the 

gap” with WSCP instances would not be a major concern.  However, the fact that, for WSCPs with 

up to 500 rows by 5,000 columns, Gurobi solved these problems in under two minutes but, for 

WSCPs with 1,000 rows by 10,000 columns (the next size in Beasley’s WSCP collection), these 

large problems now either took hours to solve to optimality or optimums were still not obtained after 

24 hours of Gurobi execution time is the motivation for defining, solving and analyzing 40 WSCPs 

with sizes between 500 rows by 5,000 columns and 1,000 rows and 10,000 columns.   

The 40 new WSCPs are summarized in Table 4.  There are 8 data sets with five WSCPs in 

each.  Four data sets have problems at 2% density and four have problems at 5% density.  The 

notation NFG signifies that these data sets are between data sets NRF and NRG in instance sizes.  

All 40 WSCPs were randomly generated in the same manner as Beasley’s 65 WSCPs [16].  

Specifically, column costs are integers randomly generated from [1,100]; every column covers at 

least one row; and every row is covered by at least two columns.  Access to these data sets will be 

provided at https://github.com/dnr0915/WSCP/.  The problems are located in the folder, "NFG" 

Table 4. Weighted set covering problem instances introduced in this article 

Set 
No. of 

instances 

No. of 

rows 

No. of 

columns 

Range of 

cost 
Density 

Optimal 

solution 

NFG1 5 600 6000 1-100 2% Known 

NFG2 5 600 6000 1-100 5% Known 

NFG3 5 700 7000 1-100 2% Known 

NFG4 5 700 7000 1-100 5% Known 

NFG5 5 800 8000 1-100 2% Known 

NFG6 5 800 8000 1-100 5% Known 

NFG7 5 900 9000 1-100 2% Known 

NFG8 5 900 9000 1-100 5% Known 

  

 Gurobi solution information for these eight data sets is given in Table 5.  Gurobi solved all 40 

WSCPs to optimality.  For data sets with less than 9000 columns (NFG1, …, NFG6), the maximum 

solution time was 1,325 seconds (NFG64) and the average Gurobi execution time was 274 seconds.  

For data sets with 9,000 columns (NFG7 and NFG8), the maximum solution time was 69,590 seconds 

(NFG82) and the average Gurobi execution time was 12,497 seconds.  Although the average 

execution time over all WSCPs with 9,000 columns was 12,497 seconds (3.47 hours), Gurobi was 

able to solve all of the largest 900 rows by 9,000 columns by 5% density WSCPs (NFG8).  However, 

the largest execution time of 69,590 seconds (19.3 hours) was a 5% density WSCP with 900 rows 

and 9,000 columns.  The next largest execution time was 11,643 seconds (3.2 hours) for WSCP 

NFG74 which has 2% density and 900 rows by 9,000 columns. 

 Table 6 provides minimum, mean, and maximum solution time information for each of the 8 

data sets.  It illustrates the impact of both instance size and density on solution time.  Of the 40 WSCP 

instances defined in this article with sizes and densities from 600 rows by 6000 columns and 2% 

density up to 900 rows by 9000 columns and 5% density, only 10 instances can be considered to 

https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Fdnr0915%2FWSCP%2F&data=05%7C02%7Cvasko%40kutztown.edu%7C05608f5ae92d41b9cfaa08dc8bba193d%7C03c754af89a74b0abd4bdb68146c5fa4%7C1%7C0%7C638538878661313432%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=kvl%2BQxDnaq47c7JLpYikvqdWiAnzhtOUUhb5ZKQjA2k%3D&reserved=0
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require excessive solution times: the 900 rows by 9000 columns for both 2% and 5% densities. The 

average execution time for these 10 WSCPs is about 208 minutes.  Looking more closely at Table 6, 

one notices execution times for NFG1 (600 rows by 6,000 columns at 2% density), NFG2 (600 rows 

by 6,000 columns at 5% density), and NFG3 (700 rows by 7,000 columns at 2% density), are very 

similar to the execution times for Beasley’s 500 rows by 5,000 columns instances at both 2% and 5% 

density (NRE and NRF)—less than 2 minutes.  However, for data sets NFG4 (700 rows by 7,000 

columns at 5% density) and NFG5 (800 rows by 8,000 columns at 2% density) the execution time 

starts to increase into the 3-to-6-minute range.  Finally, for data set NFG6 (NFG7 and NFG8 were 

discussed earlier) with 800 rows by 8,000 columns at 5% density, the execution time is now in the 

15-to-22-minute range.   

Table 5. Gurobi optimal solutions for data sets FG1, FG2, FG3, FG4, FG5, FG6, FG7, and FG8 introduced 

in this article 

Problem 

instances 

Objective 

function 

Gurobi 

execution 

time (seconds) 

Problem 

instances 

Objective 

function 

Gurobi 

execution 

time (seconds) 

SCPNFG11 217 25.52 SCPNFG51 181 226.46 

SCPNFG12 190 12.35 SCPNFG52 182 293.01 

SCPNFG13 184 6.51 SCPNFG53 188 75.69 

SCPNFG14 203 16.74 SCPNFG54 186 409.77 

SCPNFG15 212 11.02 SCPNFG55 183 438.78 

SCPNFG21 66 87.38 SCPNFG61 62 830.27 

SCPNFG22 61 14.82 SCPNFG62 62 897.34 

SCPNFG23 59 31.88 SCPNFG63 57 1184.41 

SCPNFG24 62 58.96 SCPNFG64 59 1324.88 

SCPNFG25 64 21.15 SCPNFG65 59 1072.89 

SCPNFG31 195 13.04 SCPNFG71 182 3561.52 

SCPNFG32 182 39.98 SCPNFG72 165 913.40 

SCPNFG33 188 44.02 SCPNFG73 174 418.08 

SCPNFG34 187 13.94 SCPNFG74 184 11642.64 

SCPNFG35 182 10.16 SCPNFG75 178 562.40 

SCPNFG41 60 71.01 SCPNFG81 61 11189.09 

SCPNFG42 58 158.54 SCPNFG82 61 69590.00 

SCPNFG43 61 91.66 SCPNFG83 60 4540.93 

SCPNFG44 61 217.33 SCPNFG84 59 10936.47 

SCPNFG45 65 531.33 SCPNFG85 57 11620.29 

    
Table 6. Minimum, mean, and maximum execution times by density for the 40 weighted set covering 

problem instances introduced in this article 

Sets-density 
No. of 

instances 

No. of 

rows 

No. of 

columns 

2% density 

min/mean/max 

execution time(sec) 

5% density 

min/mean/max 

execution time (sec) 

NFG1-2% 

NFG2-5% 

5 

5 
600 6000 

7 

14 

26 

21 

43 

87 

NFG3-2% 

NFG4-5% 

5 

5 
700 7000 

13 

24 

44 

71 

214 

531 

NFG5-2% 

NFG6-5% 

5 

5 
800 8000 

76 

289 

439 

830 

1,062 

1,325 

NFG7-2% 

NFG8-5% 

5 

5 
900 9000 

418 

3420 

11,643 

4,541 

21,575 

69590 
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3.3. Implications for OR Practitioners 

 The solution times required to solve 105 randomly generated WSCPs using general-purpose 

integer programming software with default parameters on a standard PC can be used to guide OR 

practitioners on what solution times to expect as well as if optimums can likely be obtained when 

solving industrial applications that are formulated as WSCPs.  The 105 WSCP instances discussed 

in this paper consist of 65 WSCPs from Beasley’s OR-Library and 40 new instances defined in this 

paper to fill the gap in Beasley’s instances between problems with 500 rows by 5,000 columns (data 

sets NRE and NRF) and problems with 1,000 rows and 10,000 columns (data sets NRG and NRH).  

Filling this gap (which has existed since 1990) was important both academically and practically 

because the solution times jump dramatically when going from data sets NRE and NRF to data sets 

NRG and NRH.  However, because these 105 instances are randomly generated, the authors as 

practitioners feel that these execution times are probably upper bounds for the given instance size 

and density.  The reason for this conjecture is that WSCPs that model real-world applications many 

times have structures of which the software algorithms can take advantage.  The solution times 

discussed in this paper can be used as guidelines for OR practitioners in terms of expected solution 

times.  However, even if the software terminates because the maximum execution time is reached, 

the best answer found and the best lower bound can be very useful in providing an answer to a real-

world problem.    

 

4. Conclusions 

 Since the year 2000, there has been a tremendous speed-up in integer programming software 

with most of this speed-up due to algorithm improvements.  Hence many problems that had 

previously only been solved with approximate solution methods can now be solved exactly using 

general-purpose integer programming software such as Gurobi and CPLEX.  Since 1990, 65 

weighted set covering problems (WSCPs) accessible by researchers from Beasley’s OR-Library have 

been used to test the performance of approximate solution methods for the WSCP.  In this article, we 

first confirm, using both Gurobi (10.0) and CPLEX (22.1.1), the CPLEX (12.10) results from [17] 

that demonstrated that all but five of these 65 WSCPs could be solved using general-purpose integer 

programming software with default parameter settings on a standard PC.  In this article, fifty-five of 

these WSCPs were solved in less than two minutes with an average solution time of only 6 seconds.  

However, the significant and novel contribution of this paper is that, because there was a large gap 

in both instance sizes and solution times for Beasley’s 65 WSCPs between data set NRF with 500 

rows by 5,000 columns and data set NRG with 1,000 rows by 10,000 columns, we defined 40 new 

WSCPs (8 data sets with five WSCPs each) to fill this size gap.  All 40 of these new WSCPs were 

solved to optimality on a standard PC with 22 of them requiring less than 5 minutes of execution 

time each.  For these 40 new WSCPs, a detailed analysis was provided demonstrating how the 

execution time was impacted by instance size and density.   

 Based on Gurobi’s performance on these 105 WSCPs ranging in size from 200 rows by 1,000 

columns up to 1,000 rows by 10,000 columns, OR practitioners that need to solve WSCPs that model 

real-world problems have some idea of what to expect in terms of execution times.  Even when 

execution times are expected to be excessive, executing the software for an acceptable amount of 

time and using the best solution obtained (even if not proven to be optimum) may very well be an 

acceptable strategy for industrial problems.  Given that the OR practitioner’s corporation has already 

invested in the general-purpose integer programming software, this strategy may be preferred to 

using some WSCP-specific approximate solution method that will need to be coded, tested, and 

provides no guarantees on solution quality. 

 For the WSCP instances that required excessive execution time, since all default parameter 

settings were used when solving these instances, exploring fine-tuning of these parameters might 

reduce execution times.  In particular, Gurobi has a parameter tuning tool that can be used to 

efficiently tune parameters.  
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