

17

IJIO

Vol 6, No. 1, 17-27

https://doi.org/10.12928/ijio.v6i1.10836

Filling the gap in weighted set covering problem test

instances: implications for both researchers and practitioners

 Francis J. Vasko a,*, Yun Lu a, Myung Soon Song a, Dominic Rando b

a Department of Mathematics, Kutztown University, United State of America
b Department of Computer Science, Kutztown University, United State of America

* Corresponding Author: vasko@kutztown.edu

1. Introduction

The weighted set covering problem (WSCP) is a well-known NP-hard [1-2] binary integer

programming problem that has many and diverse industrial and business applications [3-15]. In the

steel industry alone, the WSCP has been used to model the optimal design of ingot sizes (an ingot is

a block of steel) [3], optimal selection of metallurgical grades (steel recipes for meeting customer

requirements) [4], and product consolidation to reduce inventory costs [5-6]. Additional WSCP

applications include: wireless networks [7], vehicle routing [8], unmanned aerial vehicles [9], gas

detectors in chemical process plants [10], ambulance location routing [11], facility location models

[12], traffic counting location [13], multi-depot train driver scheduling [14], and railway crew

scheduling [15].

We will now provide the usual mathematical formulation of the WSCP. The WSCP is the

problem of covering the rows of an m-row, n-column, zero-one matrix (𝑎𝑖𝑗) by a subset of the

ARTICLE INFO ABSTRACT

Article history

Received: June 18, 2024

Revised: October 1, 2024

Accepted: October 23, 2024

Since 1990, the quality of approximate solution methods for solving weighted

set covering problems (WSCPs) has been measured based on how well they

solve 65 WSCPs available in Beasley’s OR-Library. In a 2024 paper, it has

been shown that guaranteed optimal solutions can easily be obtained for 55

weighted set covering problems (WSCPs) in Beasley’s OR-Library using

general-purpose integer programming software. These 55 WSCPs have 500

rows and 5,000 columns or less and were solved in a few seconds on a

standard PC. However, the remaining 10 WSCPs have 1000 rows and 10,000

columns and either required considerably more than 1000 seconds to obtain

guaranteed optimums (data set NRG) or no optimums were obtained (NRH).

The purpose of this short paper is to try to quantify the solution times needed

to solve WSCPs using general-purpose integer programming software that are

larger than 500 rows and 5,000 columns, but less than 1,000 rows and 10,000

columns. This is important because the size and solution time gap is so large

that solution times go from a few seconds for the 55 “smaller” WSCPs to very

large solution times for the two largest data sets. To fill this gap, 40 new

WSCP instances are defined and their solution times are analyzed to

determine when to expect that WSCPs, based on size and density, can be

solved to optimality in a timely manner using general-purpose integer

programming software like Gurobi or CPLEX.

Keywords

metaheuristics;

operations research;

weighted set covering problems;

integer programming software;

Beasley’s OR-Library.

This is an open-access article under the CC–BY-SA license.

mailto:vasko@kutztown.edu
http://creativecommons.org/licenses/by-sa/4.0/

IJIO Vol 6. No.1 February 2025 p. 17-27

Vasko et al. (Filling the Gap …) 18

columns at minimum cost. A mathematical formulation for the WSCP is represented in Eq. (1) – Eq.

(3).

Minimize c xj j

j

n

=

1

 (1)

subject to
=

n

j

jijxa
1

 1, i = 1,...,m, (2)

 xj {0,1}, j = 1,...,n. (3)

where 𝑥𝑗 is one if column 𝑗 is in the solution and zero otherwise. Eq. (2) ensures that each row is

covered by at least one column and Eq. (3) ensures that the 𝑥𝑗’s take on only the values zero or one.

Given that the WSCP is NP-hard, combined with the state of computer hardware and

software in 1990, operations research (OR) practitioners could not expect at that time to be able to

solve industrial applications of the WSCP to proven optimality. Hence for the many industrial

applications mentioned previously, OR practitioners relied on approximate solution methods

(heuristic and metaheuristic) to solve applications that were formulated as WSCPs. The 65 WSCP

instances in Beasley’s OR-Library [16] were made available to the OR community so that they could

be used to measure the performance of approximate solution methods. At that time, exact methods

that would guarantee optimal solutions for WSCPs usually required excessive computer resources

(time and memory) for large (industrial-size) WSCPs.

The 65 WSCPs in Beasley’s OR-Library [16] have been used extensively for more than three

decades to test WSCP solution methods. The quality of approximate solution methods for solving

WSCPs has been measured based on how well they solve these 65 WSCPs. In a 2024 article [17],

these instances are used to test the performance of a local branching solution approach. In a 2022

article [18], these instances were used to test the performance of the following eight nature-inspired

metaheuristics: binary fruit fly swarm algorithms (BFFSA), Binary cuckoo search (BCS), Binary

black hole (BBH), Binary cat swarm optimization (BCSO), Binary firefly optimization (BFO),

Binary shuffled frog leap algorithm (BSFLAS), Binary electromagnetism-like algorithm (BELA),

and the Binary artificial bee colony (BABC). Also, since 2020, these instances were used to test the

performance of the following metaheuristics: the intelligent water drop (IWD) [19], the greedy

randomized adaptive search procedure (GRASP) [20], the improved binary monkey search algorithm

(IBMSA) [21], a new direct coefficient-based heuristic [22], a greedy heuristic that incorporates the

computation of a “surprisal” measure when selecting the solution columns [23], and an effective

local search algorithm denoted NuSc [24]. Hence, we are aware of 15 solution methods that have

appeared in the literature since 2020 and have used all of these 65 WSCPs to test their performance

(numerous other articles have used only a subset of these 65 WSCPs for algorithm test purposes [25-

28]). Additionally, two articles that address the set covering problem with conflicts [29], reference

[30] derive test instances based on the 65 WSCPs from Beasley’s OR-Library. The details of these

65 WSCP instances are given in Table 1.

As can easily be seen from Table 1, there is a huge gap in instance size between data sets

NRE and NRF which have problems with 500 rows by 5,000 columns and the two largest data sets

which have 1,000 rows by 10,000 columns. This paper is the first to acknowledge the gap in the test

instance size in the literature. Even the 15 approximate solution methods [17-24] discussed in the

literature since 2020 simply use these 65 WSCPs to test the performance of their solution methods

and there is no recognition that there is a significant gap in instance size between the NRE and NRF

data sets which have 500 rows by 5,000 columns and data sets NRG and NRH that have 1,000 rows

by 10,000 columns.

Essentially all the solution methods tested on these 65 WSCPs are approximate in nature—

ones since 2020 are largely based on nature-inspired metaheuristics. In other words, they do not

guarantee that their solutions are the optimums. Additionally, solution techniques that are based on

mathematical programming are essentially heuristic in nature and do not generate proven optimal

solutions. The paper by Yelbay et al. [31] provides extensive background on so called primal-dual

IJIO Vol 6. No.1 February 2025 p. 17-27

19 10.12928/ijio.v6i1.10836

methods that make use of dual information. Even the two best performing solution methods tested

on these 65 WSCPs do not guarantee optimal solutions. Specifically, the Lagrangian heuristic by

Caprara et al. [32] and the randomized priority search heuristic by Lan et al. [33]. In fact, it was

reported in [18] that the optimums were still unknown for data sets NRE, NRF, NRG, and NRH.

Table 1. 65 Weighted set covering problem instances from Beasley’s OR-library

Set
No. of

instances

No. of

rows

No. of

Columns

Range of

cost
Density

Optimal

solution

4 10 200 1000 1-100 2% Known

5 10 200 2000 1-100 2% Known

6 5 200 1000 1-100 5% Known

A 5 300 3000 1-100 2% Known

B 5 300 3000 1-100 5% Known

C 5 400 4000 1-100 2% Known

D 5 400 4000 1-100 5% Known

NRE 5 500 5000 1-100 10% Known

NRF 5 500 5000 1-100 20% Known

NRG 5 1000 10000 1-100 2% Known

NRH 5 1000 10000 1-100 5% Unknown

 However, it is the authors’ opinion that if the required computer resources are not excessive,

then it is always preferred to use solution methods (especially for industrial applications) that either

guarantee that the optimum has been found or that the solution generated is guaranteed to be very

close to the optimum. When such solutions are obtained, the OR practitioner can confidently present

results to management. No matter how well approximate solution methods performed on Beasley’s

65 WSCPs, solutions based on such methods do not typically provide any guarantees on the solution

quality for industrial applications and should only be used if solutions that are guaranteed to be

optimum or near-optimum cannot be generated in a timely manner.

 Recent advances in integer programming software [34-40] has made it possible to obtain

optimal solutions for large integer programming problems such as the WSCP. In fact, Koch et al.

[40] state that from 2001 to 2020 there has been a 1000-fold speed-up in the solution of mixed integer

linear programming problems. In 2024 [17] it was shown that all but five (data set NRH) of Beasley’s

65 WSCPs can be solved optimally using CPLEX (version 12.10). In fact, 15 WSCPs (NRE, NRF,

and NRG) that were reported to have unknown optimums in as recent as a 2022 article [18], were

solved to optimality. In this article, we first summarize our experience using both Gurobi (10.0) and

CPLEX (22.1.1) to solve Beasley’s 65 WSCPs (both fail to obtain optimums for data set NRH—

same as in [17]). Our results using both Gurobi and CPLEX to solve these 65 WSCPs are in total

agreement with the CPLEX results presented in [17]. However, it is important to note that CPLEX

was used in [17] to try to solve the 65 WSCPs strictly to demonstrate that the approximate solution

approach based on local branching discussed in [17] was generating high quality solutions even

though these solutions were not guaranteed to be optimal solutions. In [17] there is absolutely no

mention of the size gap in these 65 WSCP instances.

 However, a significant research contribution of this paper is in “filling the gap” that has existed

since 1990 between Beasley’s data sets NRE and NRF (500 rows by 5,000 columns) and NRG and

NRH (1,000 rows by 10,000 columns) with 40 new WSCP instances. It is important to realize that

the existence of this gap has never been previously discussed or even acknowledged in the literature.

This paper is the first to acknowledge this gap and to fill it with appropriately sized WSCP instances.

Furthermore, we will demonstrate how efficiently these new WSCP instances can be solved to proven

optimality. As will be discussed shortly, determining how well these 40 new WSCPs can be solved

is important because all of Beasley’s problems that are smaller in size than these 40 new WSCPs can

be solved to proven optimality in a few seconds, but the 10 Beasley problems that are larger than

these 40 new WSCPs either required extensive solution times or have unknown optimums. These

40 WSCPs are defined in the same manner as Beasley’s 65 WSCP. Another significant research

contribution of this article, based on these 40 new WSCP instances and Beasley’s 65 WSCP

IJIO Vol 6. No.1 February 2025 p. 17-27

Vasko et al. (Filling the Gap …) 20

instances, is to indicate which size WSCP instances can most likely be solved to proven optimality

using general-purpose integer programming software on a standard PC. WSCPs that might not be

solved to proven optimality can still be input to general-purpose integer programming software. If

the software does not find the proven optimum in the maximum allotted execution time, a feasible

solution and lower bound will be returned that can prove very useful to OR practitioners that need

solutions to real-world problems.

 In the next section we will provide the methodology that we used. Next, we will summarize

our results using both Gurobi and CPLEX to solve Beasley’s 65 WSCPs. This will be followed by

an analysis of 40 new WSCPs. We will conclude with ranges on expected solution times based on

density and WSCP size.

2. Method

 To demonstrate the need for filling the gap between data sets with 500 rows and 5000 columns

(NRE and NRF) and data sets with 1,000 rows and 10,000 columns (NRG and NRH), we propose

the following methodology:

1) Use general-purpose integer programming software to solve the 65 WSCPs in Beasley’s OR

Library

2) Using the same methodology that was used to generate these 65 WSCP instances, generate 40

new WSCP instances that have between 500 rows by 5,000 columns and 1,000 rows by 10,000

columns.

3) Use general-purpose integer programming software to solve these 40 new WSCP instances.

4) Analyze the solutions of these 40 WSCP instances based on the time required to obtain optimal

solutions.

In the next section we will discuss the results obtained from using this methodology.

3. Results and Discussion

3.1 Solving Beasley’s 65 WSCP instances using Gurobi and CPLEX

 Unless otherwise stated, all Gurobi (version 10.0) [41] and CPLEX (version 22.1.1) [42] runs

were executed on a PC with the following specifications: Intel® Core™ i3-1005G1 CPU at 1.20GHz

with 8 GB of RAM at 2667 Mhz. Default parameter settings were used for all Gurobi and CPLEX

runs. In [17] CPLEX (version 12.10) [43] was used on a PC with 8 GB of RAM, a 512 GBSSD disk

and an Intel ® Core™ i5-1135G7 2.4 GHz processor. In Table 2 we summarize the results of using

these general-purpose integer programming software packages to solve the first 55 of Beasley’s 65

WSCPs.

 Although different processors and software are being used the results are very similar.

Although we do not try to quantify how much faster the PC used in [17] is compared to the one that

we used, we believe the faster PC used in [17] is why the execution times are somewhat smaller than

ours. However, the average times to obtain guaranteed optimal solutions differ very little regardless

of PC or software used. In our opinion, the important result is that all 55 of these WSCPs can be

solved in less than 2 minutes to proven optimality using standard PCs and general-purpose integer

programming software with all default parameters. Contrast this result with the results given in the

2022, Reference [18] for eight nature-inspired metaheuristics when solving the same 55 WSCPs. For

these eight metaheuristics, the largest number of optimums found was 44 out of the 55 WSCP

instances by the binary fruit fly swarm algorithm and the binary electromagnetism-like algorithm

found none of the 55 optimums. It is important to note that even when these methods happen to find

the optimum, it is unknown that the optimum has been found. The next largest data sets are NRG

and NRH which are much larger than the data sets NRE and NRF. Table 3 shows the execution

times for the 5 WSCPs from NRG.

IJIO Vol 6. No.1 February 2025 p. 17-27

21 10.12928/ijio.v6i1.10836

Table 2. Obtaining optimal solutions for the first 55 of the 65 weighted set covering problem instances from

Beasley’s OR-library

WSCP instances CPLEX (12.10) [6]
Gurobi (10.0) this

paper

CPLEX (22.1.1) this

paper

Data sets 4-6 (25 instances)

Average solution time

(seconds)
0.09 0.12 0.10

Maximum solution time

(seconds)
0.30 0.26 0.55

Data sets A-D (20 instances)

Average solution time

(seconds)
0.65 0.94 0.84

Maximum solution time

(seconds)
1.60 2.73 2.11

Data sets NRE-NRF (10 instances)

Average solution time

(seconds)
15.64 31.18 25.63

Maximum solution time

(seconds)
41.00 93.18 76.25

Data sets A-NRF (55 instances)

Average solution time

(seconds)
3.12 6.07 5.01

Maximum solution time

(seconds)
41.0 93.18 76.25

Table 3. Obtaining optimal solutions for the five weighted set covering problem instances from Beasley’s

OR-library in data set NRG

Solution times (seconds) for WSCP

instances in data set NRG

CPLEX

(12.10) [6]

Gurobi (10.0) this

paper

CPLEX (22.1.1) this

paper

NRG1 2,071 2,841 2,430

NRG2 335 412 361

NRG3 9,351 8,920 8,239

NRG4 4,339 8,201 7,081

NRG5 16,484 24,343 36,285

Minimum 335 412 361

Average 6,516 8,943 10,879

Maximum 16,484 24,343 36,285

 As can be seen from Tables 2 and 3, there is a tremendous increase in execution time between

data sets NRE and NRF each with 500 rows and 5,000 columns and data set NRG with 1,000 rows

and 10,000 columns. The average execution time averaged over the three solution strategies (CPLEX

(12.10), Gurobi (10.0), and CPLEX (22.1.1)) for the 10 instances in NRE and NRF is only 24

seconds. However, this same average execution time for the five instances in NRG is 8779 seconds.

In other words, when the WSCP instance size is increased from 500 rows by 5,000 columns to 1,000

rows by 10,000 columns, the average execution time is increased 364 times! Put another way, the

average execution time goes from less than 30 seconds to over 2.4 hours. The situation is even worse

for data set NRH which has 1,000 rows by 10,000 columns but the density (percentage of non-zero

elements in the matrix) is now 5%. For data set NRH, both CPLEX (12.10) as reported in [17] and

our experience using CPLEX (22.1.1), had memory issues trying to solve the NRH instances. We

executed Gurobi (10.0) on these five NRH instances, but optimal solutions could not be obtained

after 24 hours of execution time. After 24 hours of execution, NRH2, NRH4, and NRH5 had

obtained the best-known solutions as reported in the literature, but had not proven optimality. Since

there is a tremendous jump in execution time between WSCPs with 500 rows and 5,000 columns and

WSCPs with 1,000 rows and 10,000 columns, the vital question we seek to answer is what kind of

IJIO Vol 6. No.1 February 2025 p. 17-27

Vasko et al. (Filling the Gap …) 22

solution times can be expected for WSCPs with the number of rows between 500 and 1,000 and the

number of columns between 5,000 and 10,000.

 In the next section, we will define 40 new WSCP instances (20 at 2% density and 20 at 5%

density) that have sizes strictly between 500 rows by 5,000 columns and 1,000 rows by 10,000

columns. Because our results when using Gurobi (10.0) and CPLEX (22.1.1) were similar when

solving WSCPs from Beasley’s OR-Library, all 40 new instances will be solved using Gurobi (10.0)

only.

3.2 Empirical Results: 40 Weighted Set Covering Problems Introduced in this Article

 As noted previously, there is a large gap in WSCP instance sizes between data set NRF (500

rows by 5,000 columns) and data set NRG (1,000 rows by 10,000 columns). If solution times to

obtain optimal solutions for NRF instances and NRG instances did not differ much, then “filling the

gap” with WSCP instances would not be a major concern. However, the fact that, for WSCPs with

up to 500 rows by 5,000 columns, Gurobi solved these problems in under two minutes but, for

WSCPs with 1,000 rows by 10,000 columns (the next size in Beasley’s WSCP collection), these

large problems now either took hours to solve to optimality or optimums were still not obtained after

24 hours of Gurobi execution time is the motivation for defining, solving and analyzing 40 WSCPs

with sizes between 500 rows by 5,000 columns and 1,000 rows and 10,000 columns.

The 40 new WSCPs are summarized in Table 4. There are 8 data sets with five WSCPs in

each. Four data sets have problems at 2% density and four have problems at 5% density. The

notation NFG signifies that these data sets are between data sets NRF and NRG in instance sizes.

All 40 WSCPs were randomly generated in the same manner as Beasley’s 65 WSCPs [16].

Specifically, column costs are integers randomly generated from [1,100]; every column covers at

least one row; and every row is covered by at least two columns. Access to these data sets will be

provided at https://github.com/dnr0915/WSCP/. The problems are located in the folder, "NFG"

Table 4. Weighted set covering problem instances introduced in this article

Set
No. of

instances

No. of

rows

No. of

columns

Range of

cost
Density

Optimal

solution

NFG1 5 600 6000 1-100 2% Known

NFG2 5 600 6000 1-100 5% Known

NFG3 5 700 7000 1-100 2% Known

NFG4 5 700 7000 1-100 5% Known

NFG5 5 800 8000 1-100 2% Known

NFG6 5 800 8000 1-100 5% Known

NFG7 5 900 9000 1-100 2% Known

NFG8 5 900 9000 1-100 5% Known

 Gurobi solution information for these eight data sets is given in Table 5. Gurobi solved all 40

WSCPs to optimality. For data sets with less than 9000 columns (NFG1, …, NFG6), the maximum

solution time was 1,325 seconds (NFG64) and the average Gurobi execution time was 274 seconds.

For data sets with 9,000 columns (NFG7 and NFG8), the maximum solution time was 69,590 seconds

(NFG82) and the average Gurobi execution time was 12,497 seconds. Although the average

execution time over all WSCPs with 9,000 columns was 12,497 seconds (3.47 hours), Gurobi was

able to solve all of the largest 900 rows by 9,000 columns by 5% density WSCPs (NFG8). However,

the largest execution time of 69,590 seconds (19.3 hours) was a 5% density WSCP with 900 rows

and 9,000 columns. The next largest execution time was 11,643 seconds (3.2 hours) for WSCP

NFG74 which has 2% density and 900 rows by 9,000 columns.

 Table 6 provides minimum, mean, and maximum solution time information for each of the 8

data sets. It illustrates the impact of both instance size and density on solution time. Of the 40 WSCP

instances defined in this article with sizes and densities from 600 rows by 6000 columns and 2%

density up to 900 rows by 9000 columns and 5% density, only 10 instances can be considered to

https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Fdnr0915%2FWSCP%2F&data=05%7C02%7Cvasko%40kutztown.edu%7C05608f5ae92d41b9cfaa08dc8bba193d%7C03c754af89a74b0abd4bdb68146c5fa4%7C1%7C0%7C638538878661313432%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=kvl%2BQxDnaq47c7JLpYikvqdWiAnzhtOUUhb5ZKQjA2k%3D&reserved=0

IJIO Vol 6. No.1 February 2025 p. 17-27

23 10.12928/ijio.v6i1.10836

require excessive solution times: the 900 rows by 9000 columns for both 2% and 5% densities. The

average execution time for these 10 WSCPs is about 208 minutes. Looking more closely at Table 6,

one notices execution times for NFG1 (600 rows by 6,000 columns at 2% density), NFG2 (600 rows

by 6,000 columns at 5% density), and NFG3 (700 rows by 7,000 columns at 2% density), are very

similar to the execution times for Beasley’s 500 rows by 5,000 columns instances at both 2% and 5%

density (NRE and NRF)—less than 2 minutes. However, for data sets NFG4 (700 rows by 7,000

columns at 5% density) and NFG5 (800 rows by 8,000 columns at 2% density) the execution time

starts to increase into the 3-to-6-minute range. Finally, for data set NFG6 (NFG7 and NFG8 were

discussed earlier) with 800 rows by 8,000 columns at 5% density, the execution time is now in the

15-to-22-minute range.

Table 5. Gurobi optimal solutions for data sets FG1, FG2, FG3, FG4, FG5, FG6, FG7, and FG8 introduced

in this article

Problem

instances

Objective

function

Gurobi

execution

time (seconds)

Problem

instances

Objective

function

Gurobi

execution

time (seconds)

SCPNFG11 217 25.52 SCPNFG51 181 226.46

SCPNFG12 190 12.35 SCPNFG52 182 293.01

SCPNFG13 184 6.51 SCPNFG53 188 75.69

SCPNFG14 203 16.74 SCPNFG54 186 409.77

SCPNFG15 212 11.02 SCPNFG55 183 438.78

SCPNFG21 66 87.38 SCPNFG61 62 830.27

SCPNFG22 61 14.82 SCPNFG62 62 897.34

SCPNFG23 59 31.88 SCPNFG63 57 1184.41

SCPNFG24 62 58.96 SCPNFG64 59 1324.88

SCPNFG25 64 21.15 SCPNFG65 59 1072.89

SCPNFG31 195 13.04 SCPNFG71 182 3561.52

SCPNFG32 182 39.98 SCPNFG72 165 913.40

SCPNFG33 188 44.02 SCPNFG73 174 418.08

SCPNFG34 187 13.94 SCPNFG74 184 11642.64

SCPNFG35 182 10.16 SCPNFG75 178 562.40

SCPNFG41 60 71.01 SCPNFG81 61 11189.09

SCPNFG42 58 158.54 SCPNFG82 61 69590.00

SCPNFG43 61 91.66 SCPNFG83 60 4540.93

SCPNFG44 61 217.33 SCPNFG84 59 10936.47

SCPNFG45 65 531.33 SCPNFG85 57 11620.29

Table 6. Minimum, mean, and maximum execution times by density for the 40 weighted set covering

problem instances introduced in this article

Sets-density
No. of

instances

No. of

rows

No. of

columns

2% density

min/mean/max

execution time(sec)

5% density

min/mean/max

execution time (sec)

NFG1-2%

NFG2-5%

5

5
600 6000

7

14

26

21

43

87

NFG3-2%

NFG4-5%

5

5
700 7000

13

24

44

71

214

531

NFG5-2%

NFG6-5%

5

5
800 8000

76

289

439

830

1,062

1,325

NFG7-2%

NFG8-5%

5

5
900 9000

418

3420

11,643

4,541

21,575

69590

IJIO Vol 6. No.1 February 2025 p. 17-27

Vasko et al. (Filling the Gap …) 24

3.3. Implications for OR Practitioners

 The solution times required to solve 105 randomly generated WSCPs using general-purpose

integer programming software with default parameters on a standard PC can be used to guide OR

practitioners on what solution times to expect as well as if optimums can likely be obtained when

solving industrial applications that are formulated as WSCPs. The 105 WSCP instances discussed

in this paper consist of 65 WSCPs from Beasley’s OR-Library and 40 new instances defined in this

paper to fill the gap in Beasley’s instances between problems with 500 rows by 5,000 columns (data

sets NRE and NRF) and problems with 1,000 rows and 10,000 columns (data sets NRG and NRH).

Filling this gap (which has existed since 1990) was important both academically and practically

because the solution times jump dramatically when going from data sets NRE and NRF to data sets

NRG and NRH. However, because these 105 instances are randomly generated, the authors as

practitioners feel that these execution times are probably upper bounds for the given instance size

and density. The reason for this conjecture is that WSCPs that model real-world applications many

times have structures of which the software algorithms can take advantage. The solution times

discussed in this paper can be used as guidelines for OR practitioners in terms of expected solution

times. However, even if the software terminates because the maximum execution time is reached,

the best answer found and the best lower bound can be very useful in providing an answer to a real-

world problem.

4. Conclusions

 Since the year 2000, there has been a tremendous speed-up in integer programming software

with most of this speed-up due to algorithm improvements. Hence many problems that had

previously only been solved with approximate solution methods can now be solved exactly using

general-purpose integer programming software such as Gurobi and CPLEX. Since 1990, 65

weighted set covering problems (WSCPs) accessible by researchers from Beasley’s OR-Library have

been used to test the performance of approximate solution methods for the WSCP. In this article, we

first confirm, using both Gurobi (10.0) and CPLEX (22.1.1), the CPLEX (12.10) results from [17]

that demonstrated that all but five of these 65 WSCPs could be solved using general-purpose integer

programming software with default parameter settings on a standard PC. In this article, fifty-five of

these WSCPs were solved in less than two minutes with an average solution time of only 6 seconds.

However, the significant and novel contribution of this paper is that, because there was a large gap

in both instance sizes and solution times for Beasley’s 65 WSCPs between data set NRF with 500

rows by 5,000 columns and data set NRG with 1,000 rows by 10,000 columns, we defined 40 new

WSCPs (8 data sets with five WSCPs each) to fill this size gap. All 40 of these new WSCPs were

solved to optimality on a standard PC with 22 of them requiring less than 5 minutes of execution

time each. For these 40 new WSCPs, a detailed analysis was provided demonstrating how the

execution time was impacted by instance size and density.

 Based on Gurobi’s performance on these 105 WSCPs ranging in size from 200 rows by 1,000

columns up to 1,000 rows by 10,000 columns, OR practitioners that need to solve WSCPs that model

real-world problems have some idea of what to expect in terms of execution times. Even when

execution times are expected to be excessive, executing the software for an acceptable amount of

time and using the best solution obtained (even if not proven to be optimum) may very well be an

acceptable strategy for industrial problems. Given that the OR practitioner’s corporation has already

invested in the general-purpose integer programming software, this strategy may be preferred to

using some WSCP-specific approximate solution method that will need to be coded, tested, and

provides no guarantees on solution quality.

 For the WSCP instances that required excessive execution time, since all default parameter

settings were used when solving these instances, exploring fine-tuning of these parameters might

reduce execution times. In particular, Gurobi has a parameter tuning tool that can be used to

efficiently tune parameters.

IJIO Vol 6. No.1 February 2025 p. 17-27

25 10.12928/ijio.v6i1.10836

References

[1] R. M. Karp, “Reducibility among combinatorial problems,” in Miller, R.E., Thatcher, J.W.,

Bohlinger, J.D. (eds) Complexity of Computer Computations. The IBM Research Symposia Series.

Springer, Boston, MA, 1972, pp. 85–103, doi: 10.1007/978-1-4684-2001-2_9.

[2] M. R. Garey, D.S. Johnson. “Computers and Intractability”. Freeman, San Francisco. 1979.

[3] F. J. Vasko, F. E. Wolf, and K. L. Stott, “Optimal Selection of Ingot Sizes via Set Covering”,

Operations Research, 35, 346-353, 1987, doi: 10.1287/opre.35.3.346.

[4] F. J. Vasko, F. E. Wolf, and K. L. Stott, “A Set Covering Approach to Metallurgical Grade

Assignment,” European Journal of Operational Research, 38, 27-34, 1989, doi: 10.1016/0377-

2217(89)90465-7.

[5] D. D. Newhart, K. L. Stott, and F. J. Vasko, “Consolidating Product Sizes to Minimize Inventory

Levels for a Multi-stage Production and Distribution System. Journal of the Operational Research

Society 44, 7, 637-644, 1993, doi: 10.1038/sj/jors/0440701

[6] F. J. Vasko, F. E. Wolf, K. L. Stott, and O. Ehrsam, “Bethlehem Steel Combines Cutting Stock

and Set Covering to Enhance Customer Service”. Mathematical Computer Modelling 16, 9-17, 1992,

doi: 10.1016/0895-7177(92)90075-V.

[7] Z. Feng, H. Okamura, T. Dohi, W.Y. Yun, “Reliability Computing Methods of Probabilistic

Location Set Covering Problem Considering Wireless Network Applications”, IEEE Transactions

on Reliability, August 21, 2023, doi: 10.1109/TR.2023.3301929.

[8] J. Bramel, D, Simchi-Levi, “On the Effectiveness of Set Covering Formulations for the Vehicle

Routing Problem with Time Windows”, Operations Research, 45, 2, March-April 1997, doi:

10.1287/opre.45.2.295.

[9] Y. Park, C. S. Ko, I. Moon, “Unmanned aerial vehicle radius set covering problem for emergency

wireless network”, Computers and Operations Research, 170, 2024, doi:

10.1016/j.cor.2024.106765.

[10] S. S. V. Vianna, “The set covering problem applied to optimization of gas detectors in chemical

process plants”, Computers and Chemical Engineering, 121, 388-395, 2019, doi:

10.1016/j.compchemeng.2018.11.008.

[11] F. Khosghgehbari, S, Mohammand, J. Mirzapour Al-e-Hashem, “Ambulance location routing

problem considering all sources of uncertainty: Progressive estimating algorithm”, Computers and

Operations Research, 160, 2023, doi: 10.1016/j.cor.2023.106400.

[12] B. Erdebilli, S. G. A. Ozsahin, “Uncertainty management with an autonomous approach to fuzzy

set-covering facility location models’’, Journal of Intelligent and Fuzzy Systems, 46, 8233-8246,

2022, doi: 10.3233/JIFS-213220.

[13] B. S. Vierira, T. Ferrari, G. M. Ribiero, L. Bahiense, R. D. O. Filho, C. A. Abramides, N. F. R.

Campos Junior, “A progressive hybrid set covering based algorithm for the traffic counting location

problem”, Expert Systems with Applications, 160, 2020, doi: 10.1016/j.eswa.2020.113641.

[14] M. Yaghini, M. Karimi, M. Rahbar, “A set covering approach for multi-depot train driver

scheduling”, Journal of Combinatorial Optimization, 29, 636-654, 2015, doi: 10.1007/s10878-013-

9612-1.

[15] J. Heil, K. Hoffmann, and U. Buscher, “Railway crew scheduling: Models, methods and

applications,” European Journal of Operational Research, 283, 2, pp. 405–425, 2020, doi:

10.1016/j.ejor.2019.06.016.

[16] J. E. Beasley, OR Library, 1990, available at: http://people.brunel.ac.uk/mastjjb/jeb/info.html.

https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1287/opre.35.3.346
https://doi.org/10.1016/0377-2217(89)90465-7
https://doi.org/10.1016/0377-2217(89)90465-7
https://doi.org/10.1038/sj/jors/0440701
https://doi.org/10.1016/0895-7177(92)90075-V
https://doi.org/10.1109/TR.2023.3301929
https://doi.org/10.1287/opre.45.2.295
https://doi.org/10.1016/j.cor.2024.106765
https://doi.org/10.1016/j.compchemeng.2018.11.008
https://doi.org/10.1016/j.cor.2023.106400
https://doi.org/10.3233/JIFS-213220
https://doi.org/10.1016/j.eswa.2020.113641
https://doi.org/10.1007/s10878-013-9612-1
https://doi.org/10.1007/s10878-013-9612-1
https://doi.org/10.1016/j.ejor.2019.06.016
http://people.brunel.ac.uk/mastjjb/jeb/info.html

IJIO Vol 6. No.1 February 2025 p. 17-27

Vasko et al. (Filling the Gap …) 26

[17] J. E. Beasley, “A Heuristic for the Non-unicost Set Covering Problem Using Local Branching”,

International Transactions in Operational Research, 1-19, 2024. doi: 10.1111/itor.13446,

https://doi.org/10.1111/itor.13446.

[18] B. Crawford, R. Soto, H. Mella, de la Fuente, C. Elortegui, W. Palma, C. Torres-Rojas, C.

Vasconcellos-Gaete, M. Becerra, J. Peña, S. Misra, “Binary Fruit Fly Swarm Algorithms for the Set

Covering Problem”, Computers, Materials & Continua, 71, 3, 4295-4318, 2022, doi:

10.32604/cmc.2022.023068.

[19] B, Crawford, R. Soto, N. G. Astorga, J. Lemus-Romani, S. Misra, M. Castillo, F. Cisternas-

Caneo, D. Tapia, M. Becerra-Rozas, “Balancing Exploration-Exploitation in the Set Covering

Problem Resolution with a Self-adaptive Intelligent Water Drops Algorithm”, Advances in Science,

Technology and Engineering Systems Journal, 6. 1. 134-145, 2021, doi: 10.25046/aj060115.

[20] V. Reyes, I. Araya, “A GRASP-based Scheme for the Set Covering Problem”, Operational

Research, 21, 2391-2408, 2021, doi: 10.1007/s12351-019-00514-z.

[21] B. Crawford, R. Soto, R. Olivares, G. Embry, D. Flores, W. Palma, C. Castro, F. Paredes, J. M.

Rubio, “A Binary Monkey Search Algorithm Variation for Solving the Set Covering Problem”,

Natural Computing, 19, 825-841, 2020, doi: 10.1007/s11047-019-09752-8.

[22] A. Hashemi, H. Gholami, U. Venkatadri, S. S. Karganroudi, S. Khouri, A. Wojceiechowski, and

D. Streimikiene, “A New Direct Coefficient-Based Heuristic Algorithm for Set Covering Problems”,

International Journal of Fuzzy Systems, 24, 2,1131-1147, 2022, doi: 10.1007/s40815-021-01208-5.

[23] T.Adamo, G. Ghiani, E. Guerriero, and D. Pareo, “A Surprisal-Based Greedy Heuristic for the

Set Covering Problem”, Algorithms,16, 321, 2023, doi: 10.3390/a16070321.

[24] C. Luo, W. Xing, S. Cai, and C. Hu, “NuSC: An Effective Local Search Algorithm for Solving

the Set Covering Problem”, IEEE transactions on cybernetics, 54, 3, 2024, doi:

10.1109/TCYB.2022.3199147.

[25] J. E. Beasley, “An algorithm for set covering problem,” European Journal of Operational

Research, vol. 31, no. 1, pp. 85–93, 1987, doi: 10.1016/0377-2217(87)90141-X.

[26] S. Sundar and A. Singh, “A hybrid heuristic for the set covering problem,” Operational

Research, 12, 3, 345–365, 2012, doi: 10.1007/s12351-010-0086-y.

[27] J. E. Beasley and K. Jørnsten, “Enhancing an algorithm for set covering problems,” European

Journal of Operational Research, 58, 2, 293–300, 1992, doi: 10.1016/0377-2217(92)90215-U.

[28] E. Balas and M. C. Carrera, “A dynamic subgradient-based branch-and-bound procedure for set

covering,” Operational Research, vol. 44, no. 6, pp. 875–890, 1996, doi: 10.1287/opre.44.6.875.

[29] F. Carrabs, R. Cerulli, R. Mansini, L. Moreshini, and D. Serra, “Solving the Set Covering

Problem with Conflicts on Sets: A new parallel GRASP”, Computers and Operations Research,

2024, doi: 10.1016/j.cor.2024.106620.

[30] S.Saffari, Y. Fathi, “Set covering problem with conflict constraints”, Computers and Operations

Research, 2022, doi: 10.1016/j.cor.2022.105763.

[31] B. Yelbay, S. I. Birbil, and K. Bulbul. “The Set Covering Problem Revisited: An Empirical

Study of the Value of Dual Information”, Journal of Industrial and Management Optimization, 11,

2, 575-594, 2015, doi: 10.3934/jimo.2015.11.575.

[32] A. Caprara, M. Fischetti, and P. Toth, “A Heuristic Method for the Set Covering Problem”,

Opns Res, 47, 5, 730-743, 1999, doi: 10.1287/opre.47.5.730.

[33] G. Lan, G. DePuy, and G. Whitehouse, “An Effective and Simple Heuristic for the Set Covering

Problem”, European Journal of Operational Research, 176, 3, 1387-1403, 2007, doi:

10.1016/j.ejor.2005.09.028.

https://doi.org/10.1111/itor.13446
https://doi.org/10.32604/cmc.2022.023068
https://doi.org/10.25046/aj060115
https://doi.org/10.1007/s12351-019-00514-z
https://doi.org/10.1007/s11047-019-09752-8
https://doi.org/10.1007/s40815-021-01208-5
https://doi.org/10.3390/a16070321
https://doi.org/10.1109/TCYB.2022.3199147
https://doi.org/10.1016/0377-2217(87)90141-X
https://doi.org/10.1007/s12351-010-0086-y
https://doi.org/10.1016/0377-2217(92)90215-U
https://doi.org/10.1287/opre.44.6.875
https://doi.org/10.1016/j.cor.2024.106620
https://doi.org/10.1016/j.cor.2022.105763
https://doi.org/10.3934/jimo.2015.11.575
https://doi.org/10.1287/opre.47.5.730
https://doi.org/10.1016/j.ejor.2005.09.028

IJIO Vol 6. No.1 February 2025 p. 17-27

27 10.12928/ijio.v6i1.10836

[34] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R.E. Bixby, E. Danna, G.

Gamrath, A.M. Gleixner, S. Heinz, A. Lodi, H. Mittelmann, T. Ralphs, D. Salvagnin, D.E. Steffy,

K. Wolter, MIPLIB 2010, Mathematical Programming Computation, 3, 2011, doi: 10.1007/s12532-

011-0025-9.

[35] T. Koch, A. Martin, M.E. Pfetsch, Progress in academic computational integer programming,

in: M. Jünger, G. Reinelt (Eds.), Facets of Combinatorial Optimization, Springer, Berlin, Heidelberg,

483–506, 2013, doi: 10.1007/978-3-642-38189-8_19.

[36] A. Gleixner, G. Hendel, G. Gamrath, T. Achterberg, M. Bastubbe, T. Berthold, P.M.

Christophel, K. Jarck, T. Koch, J. Linderoth, M. Lübbecke, H.D. Mittelmann, D. Ozyurt, T.K.

Ralphs, D. Salvagnin, Y. Shinano, “MIPLIB 2017: data-driven compilation of the 6th mixed-integer

programming library,” Mathematical Programming Computation, 13, pp. 443-490, 2021, doi:

10.1007/s12532-020-00194-3.

[37] E.R. Bixby, M. Fenelon, Z. Gu, E. Rothberg, R. Wunderling, MIP: theory and practice —

closing the gap, in: M.J.D. Powell, S. Scholtes (Eds.), System Modelling and Optimization, Springer

US, Boston, MA, 2000, pp. 19–49, doi: 10.1007/978-0-387-35514-6_2.

[38] E.R. Bixby, M. Fenelon, Z. Gu, E. Rothberg, R. Wunderling, Mixed-integer programming: a

progress report, in: M. Grötschel (Ed.), The Sharpest Cut: The Impact of Manfred Padberg and His

Work, SIAM, Philadelphia, PA, 2004, pp. 309–325, doi: 10.1137/1.9780898718805.ch18.

[39] R. E. Bixby, “A Brief History of Linear and Mixed-Integer Programming Computation.”

Documenta Mathematica, 107–121, 2012, doi: 10.4171/dms/6/16.

[40] T. Koch, T. Berthold, J. Pedersen, “Progress in Mathematical Programming Solvers from 2001

to 2020”, EURO Journal on Computational Optimization 10, 1-18, 2022, doi:

10.1016/j.ejco.2022.100031.

[41] GUROBI Optimizer Reference Manual, 10.0 version, Gurobi Optimization, Beaverton, Oregon,

U.S.A. 2023.

[42] User's Manual for CPLEX, 22.1.1 version, IBM, Armonk, New York, U.S.A. 2022.

[43] User's Manual for CPLEX, 12.10 version, IBM, Armonk, New York, U.S.A. 2021.

https://doi.org/10.1007/s12532-011-0025-9
https://doi.org/10.1007/s12532-011-0025-9
https://doi.org/10.1007/978-3-642-38189-8_19
https://doi.org/10.1007/s12532-020-00194-3
https://doi.org/10.1007/978-0-387-35514-6_2
https://doi.org/10.1137/1.9780898718805.ch18
https://doi.org/10.4171/dms/6/16
https://doi.org/10.1016/j.ejco.2022.100031

