
Buletin Ilmiah Sarjana Teknik Elektro

Vol. 5, No. 4, December 2023, pp. 455-466

ISSN: 2685-9572, DOI: 10.12928/biste.v5i4.9394 455

Journal Website: http://journal2.uad.ac.id/index.php/biste/ Email: biste@ee.uad.ac.id

Fuzzy A* for optimum Path Planning in a Large Maze

Gregorius Airlangga
Information Systems Study Program, Universitas Katolik Indonesia Atma Jaya, Jakarta, Indonesia

ARTICLE INFORMATION ABSTRACT

Article History:

Submitted 19 October 2023

Revised 28 November 2023

Accepted 30 November 2023

Traditional A* path planning, while guaranteeing the shortest path with an

admissible heuristic, often employs conservative heuristic functions that

neglect potential obstacles and map inaccuracies. This can lead to inefficient

searches and increased memory usage in complex environments. To address

this, machine learning methods have been explored to predict cost functions,

reducing memory load while maintaining optimal solutions. However, these

require extensive data collection and struggle in novel, intricate environments.

We propose the Fuzzy A* algorithm, an enhancement of the classic A*

method, incorporating a new determinant variable to adjust heuristic cost

calculations. This adjustment modulates the scope of scanned vertices during

searches, optimizing memory usage and computational efficiency. In our

approach, unlike traditional A* heuristics that overlook environmental

complexities, the Fuzzy A* employs a dynamic heuristic function. This

function, leveraging fuzzy logic principles, adapts to varying levels of

environmental complexity, allowing a more nuanced estimation of the path

cost that considers potential obstructions and route feasibility. This

adaptability contrasts with standard machine learning-based solutions, which,

while effective in known environments, often falter in unfamiliar or highly

complex settings due to their reliance on pre-existing datasets. Our

experimental framework involved 100 maze-solving trials in diverse maze

configurations, ranging from simple to highly intricate layouts, to evaluate the

effectiveness of Fuzzy A*. We employed specific metrics such as path length,

computational time, and memory usage for a comprehensive assessment. The

results showcased that Fuzzy A* consistently found the shortest paths (99.96%

success rate) and significantly reduced memory usage by 67% and 59%

compared to Breadth-First-Search (BFS) and traditional A*, respectively.

These findings underline the effectiveness of our modified heuristic approach

in diverse and challenging environments, highlighting its potential for real-

world pathfinding applications.

Keywords:

Fuzzy;

A*;

Path Planning;

Maze;

Optimization

Corresponding Author:

Gregorius Airlangga,

Universitas Katolik Indonesia

Atma Jaya, Jakarta, Indonesia.

Email:

gregorius.airlangga@atmajaya.

ac.id

This work is licensed under a Creative

Commons Attribution-Share Alike 4.0

Document Citation:

G. Airlangga, “Fuzzy A* for optimum Path Planning in a Large Maze,” Buletin Ilmiah Sarjana Teknik

Elektro, vol. 5, no. 4, pp. 455-466, 2023, DOI: 10.12928/biste.v5i4.9394.

https://doi.org/10.12928/biste.v5i4.9394
http://journal2.uad.ac.id/index.php/biste/
http://journal2.uad.ac.id/index.php/biste/
mailto:biste@ee.uad.ac.id
mailto:gregorius.airlangga@atmajaya.ac.id
mailto:gregorius.airlangga@atmajaya.ac.id
https://creativecommons.org/licenses/by-sa/4.0/deed.id
https://creativecommons.org/licenses/by-sa/4.0/deed.id
https://creativecommons.org/licenses/by-sa/4.0/deed.id
http://journal2.uad.ac.id/index.php/biste/article/view/9394

456 Buletin Ilmiah Sarjana Teknik Elektro ISSN: 2685-9572

Buletin Ilmiah Sarjana Teknik Elektro, Vol. 5, No. 4, December 2023, pp. 455-466

1. INTRODUCTION

Path planning is essential for an autonomous agent to proceed from its starting point to its destination

while avoiding obstacles and achieving its goals [1][2]. Generally speaking, the goals are the shortest path and

optimal memory consumption [3]-[5]. This task becomes increasingly challenging in complex [6]-[9] and vast

environments, often categorized as Maze-Like or Labyrinth challenges [10]-[14]. Several methods, including

Djiskstra’s, Breath-First Search, Depth First Search, Greedy Algorithm, Best First Search, and A*, have been

utilized to solve the problem. However, despite creating an optimal path, Djikstra’s and Breath-First search

compromise memory efficiency due to the extensive exploring characteristics of traversing each nearby vertex

until the goal is reached [15]-[19]. In contrast, algorithms such as Best First Search, Depth First Search, and

Greedy algorithm can effectively guarantee path completeness; but, they may miss major path optimality with

dead-end paths by constructing paths that are typically lengthy and circular [20]. A* algorithm is the most

effective method for achieving a balance between optimal path and memory consumption. In many instances,

the algorithm can guarantee not only completeness, but also memory efficiency and global optimality [21].

The A* algorithm estimates costs using a heuristic function. The heuristic function must have admissible

heuristic characteristics that do not exaggerate the cost in the searching space in order to guarantee a global

optimal solution. Although admissible heuristic functions effectively generate an optimal path, the heuristic

functions are typically constructed conservatively to avoid overestimating the significance of obstacles,

objective directions, and infeasible regions on the map. The characteristic causes the calculation time and

visited vertex count to explode, particularly when the environment contains numerous local dead-ends [22][23].

For this circumstance, the back-track technique could be relocated far from the last dead-end point that requires

calculating an adjacent collision-free position. Even if the computation time increases, the technique can still

ensure the optimal global answer.

 𝑓 (𝑣𝑗) = 𝑐(𝑣𝑗) + 𝑘 × ℎ(𝑣𝑗) (1)

In order to reduce memory consumption, the heuristic function can be defined flexibly, since the searching

process can result in a stronger force to locate a path more quickly by not exploring many vertices. The search

can be undertaken using the heuristic inflation illustrated in equation (1). The first equation clearly

demonstrated that the cost of a successor vertex vj is determined by the true cost and heuristic function times

constant k values. The effect of k value is to exaggerate the heuristic value. By using the formula, the

produced path can have cost result not greater than k times than the cost of the global optimal paths. This

condition is well-known as bounded suboptimality [24]. The effect of the k value is visualized on the Figure 1.

Figure 1. The effect of the k value

Based on the Figure 1, when k > 1 times, the number of visited vertex can be reduced while sacrifice the

optimal path. Therefore, by observing those characteristics, the optimal heuristic cost can be achieved by

combining other approaches that predicting the cost to minimizing searching space while guarantees the

optimal path. Several researchers have initiated the research by using machine learning approaches such as

[25]-[29]. However, data-driven approach is unstable, slow to converge and susceptible to poor local optima.

In addition, the approach is dependent on the data preparation and hyper parameter tuning. Even if, the

heuristics can be predicted optimally, however due to the black box characteristics, the method is not adaptable

to be analyzed for further situations, therefore it cannot always guarantee the global optimum [30].

457 Buletin Ilmiah Sarjana Teknik Elektro ISSN: 2685-9572

Fuzzy A* for optimum Path Planning in a Large Maze (Gregorius Airlangga)

In this research, we present an innovative way for adjusting the heuristic function of the original A*

algorithm by altering the equation one. We suggest a variable parameter known as the Strength Direction

Parameter, which is governed by a Fuzzy-Logic prediction approach. Our technique differs from existing path

planning approaches that independently employ Fuzzy methods and A* methods. We merge these methods

into a single algorithm to determine the shortest path. At each iteration, the fuzzy-controller decides the

Strength Direction parameter for the A* mechanism by examining the present state of the current vertexx

candidate. The fuzzy-controller employs the number of visited vertices, the number of obstacles, and the current

distance to control the strength direction parameters. The parameter itself plays a crucial function in

determining the candidate visited vertex at each iteration towards goals. In Section 2, we provide a complete

explanation of the suggested technique. In Section 3, we present the theoretical analysis by examining the

algorithm and its effectiveness. In addition, experimental analysis is presented in Section 4, and the conclusion

and future work are explored in Section 5.

2. METHOD

In this part, there are five subsections that explain the proposed Fuzzy A* approach. First, we discuss the

formulation of the problem in a vast maze setting, followed by the rationale for modified A*. In the third

subsection, we discuss the fundamental concept underlying the modified A* method with the Strength

Direction parameter. In the latter two subsections, we describe the fuzzy logic behind the suggested method

and its algorithm.

2.1. Problem Formulation

In this study, we examine the graph path planning problem 𝐺 = (𝑉, 𝐸) where 𝑉 is the set of feasible

vertices and 𝐸 is the set of edges connecting pairs of vertices in 𝑉, whose costs are 𝑔. Typically, each viable

vertex corresponds to an obstacle free map or environment configuration. A feasible path from 𝑣𝑖 ∈ 𝑉 to 𝑣𝑔 ∈

𝑉 can be represented as a sequence of vertices in 𝑉, 𝜋 = (𝑣0, 𝑣1, 𝑣2, … , 𝑣N−1, 𝑣n), where 𝑣0 = 𝑣𝑖 and 𝑣𝑁 = 𝑣𝑔

, while there exist all the edges connecting adjacent vertices, {𝑣𝑗−1, 𝑣𝑗 ∈ 𝐸 for ∀𝑗∈ [1,2, … , 𝑁]}. The cost of a

path is the total of the costs of its edges, 𝑐(𝜋∗) ≤ 𝑐(𝜋) for all feasible paths, 𝜋 with the same boundary

condition, the total cost of the path can be defined as 𝑐 × (𝑣𝑖 , 𝑣𝑔) = 𝑐(𝜋∗).

The difficulty occurs when the agent is entrusted with determining the ideal path (𝜋∗) in a vast

environment, if pathways have a large number of obstacles and dead-end vertices, then they are deemed to be

obstructed and dead-end. To ensure global optimality, this may result in the evaluation or exploration of all

potential vertices. The searching procedures may be exponentially proportional to the environment's dimension

count. On the other hand, despite the fact that the admissible heuristic 𝐴∗ can ensure the global optimal path,

the heuristic function is typically constructed conservatively to avoid overestimating the value of barriers, goal

directions, and infeasible regions in the map. Additionally, the heuristic depends on the environment's

characteristics. In order to reduce such evaluations, several modifications of the graph search algorithm 𝐴∗

have been designed to guarantee the existence of a bounded suboptimal path whose cost does not exceed ≥ 𝑘

times that of the optimal path. In this paper, the suggested Fuzzy A* algorithm is designed to reduce

computation burden by altering extra Strength Direction parameters in the heuristic function used in A∗

calculation. At each iteration, a dynamic and intelligent decision is made to provide the ideal path while

minimizing the number of expanding vertices.

2.2. Motivation of Fuzzy 𝐀∗

Our method is primarily motivated by the original A∗ characteristics. Consider an agent on a Graph with

an order to traverse from the start point to the goal location (𝐺). The movement is governed by two primary

constraints: the shortest path must be found, and the searching process must be as memory-efficient and quick

as possible.

As previously noted, 𝐴∗ with admissible heuristic might be seen as a solution for achieving the aim. Even

if the suitable heuristic function can lead to the ideal path and reduce memory consumption, memory

consumption and searching process time still take a significant percentage in many circumstances, particularly

when the environment expands, and the number of barriers increases. To guarantee the optimal path, a heuristic

function of A∗, ℎ(𝑣) must has admissible property [10], hence, the heuristic value is never greater than the

actual cost of reaching the goal from 𝑣. By enhancing the heuristics with a constant value 𝑘 ∗ ℎ(𝑣) for 𝑘 > 1,

the algorithm results in significantly fewer state expansions and, as a result, speedier searches. Using this

approach, however, can break the admissibility property; as a result, an optimal solution is no longer

guaranteed.

Because numerous preceding methods, like weighted A∗, ARA∗, and D∗, inflate the heuristics by a

predefined cost at each iteration until the goal is accomplished, the searching process can overestimate the

458 Buletin Ilmiah Sarjana Teknik Elektro ISSN: 2685-9572

Buletin Ilmiah Sarjana Teknik Elektro, Vol. 5, No. 4, December 2023, pp. 455-466

vertex value if the true cost of the shortest path is not meticulously assessed. In contrast to these methods, we

adjust the heuristic function at each iteration using the Strength Direction Parameter (SDP). The value change

may be either moderate or significant. If the direction is weak, the cost of the visited vertex will be increased

by the value of the weak direction, and vice versa. In addition, the Fuzzy prediction model can provide a smooth

value by considering three input variables, such as the number of barriers, the number of visited vertices, and

the current distance from the current vertex position to the objective.

2.3. Modified Heuristics

Initially, A∗ accepts as input a heuristic ℎ(𝑣) which must be consistent, that is ℎ(𝑣) ≤ 𝑝(𝑣, 𝑣′) + ℎ(𝑣′)

For any successor vertex 𝑣′ of 𝑣 if 𝑣 ≠ 𝑣goal and ℎ(𝑣) = 0 if 𝑣 = 𝑣goal . Here 𝑝(𝑣, 𝑣′) represents the cost of

an edge from 𝑣 to 𝑣′ and must be positive, in many cases, the default of additional cost 𝑝(𝑣, 𝑣′) is defined as

one since each adjacent vertex considered to be closely spaced. Consistency, in its turn, guarantees that the

heuristic is admissible: ℎ(𝑣) is never larger than the true cost of reaching the goal from 𝑣. In our approach, we

replace the constant additional cost 𝑝(𝑣, 𝑣′) that assigned at each iteration into Strength Direction Parameter

(SDP), where 𝑖 = 0, … 𝑛 and 𝐷 = set of Directions.

The dependent variable 𝑆𝐷𝑃(𝑣′) in the equation (2) is modified at each iteration by a Fuzzy prediction

model that relates the position of each succeeding vertex to the position of the target vertex. The details of

Fuzzy prediction model are explained in Section Fuzzy Prediction Model. Once 𝑆𝐷𝑃(𝑣′) value of the equation

(3) has been obtained. If the successor vertex 𝑣′ satisfies the condition where the successor vertex's 𝑣′ real cost

path value is greater than the total of the current vertex 𝑣 and default cost value, then the true cost path of 𝑣′ is

updated by adding to 𝑐(𝑣) and 𝑆𝐷𝑃(𝑣′). Finally, the cost function in equation (4) will be adjusted by including

the improved heuristics.

 SDP (𝑣′) = FuzzyPrediction ({𝑑𝑖 ∈ 𝐷; 𝑑𝑖(𝑣′) = 1}) (2)

 𝑐(𝑣′) = 𝑐(𝑣) + 𝑆𝐷𝑃(𝑐′) if 𝑐(𝑣′) > 𝑐(𝑣) + 𝑝(𝑣, 𝑣′) (3)

 𝑓(𝑣′) = 𝑐(𝑣′) + ℎ(𝑣′) (4)

The generated updated cost compares more smoothly than the default cost because, at each iteration, the

searching space can prevent false directions by overestimating the linked successor vertex 𝑣′ that moves in

incorrect directions. In contrast, the true direction will have a low-cost value, which will lead to the dominant

election state 𝑣 which has the true direction at each iteration. This is because the smallest value 𝑓(𝑣) should

be chosen as a new candidate at each iteration until 𝑣goal is located.

2.4. Fuzzy Prediction Model

This study expands upon the functional method by applying it to a fuzzy prediction model for path

planning. Numerous variables affect the value of the decision path, making it impossible to predict it with

precision. The proposed Fuzzy A* method generates a fuzzy set of trapezoidal shape that indicates both the

representative value (modal value) and the support interval of the predicted value. The input variables for this

model are the number of barriers, the number of visited grids, and the distance between the agent’s present

position and the objective. The output variables weakPowerDirection and strongPowerDirection are examples.

We use the fuzzy prediction model of Shimakawa and Murakami [16] to automatically generate

weakPowerDirection and strongPowerDirection values. The rules used in this investigation are derived from

the equation (5).

 𝑅𝑗: 𝐼𝐹𝑎1 𝑖𝑠 𝑋𝑖1 𝑎𝑛𝑑 𝑎𝑛𝑑 𝑎𝑚 𝑖𝑠 𝑋𝑖𝑚 ,
(5)

𝑇ℎ𝑒𝑛 𝑏 𝑖𝑠 𝑌𝑖 𝑎𝑛𝑑 𝑐 𝑖𝑠 𝑍𝑖(𝑖 = 1, … , 𝑛)

Where 𝑎𝑖,…..𝑎𝑚 represent input variables and 𝑏 and 𝑐 represent outcome variables. Moreover, 𝑌 and 𝑍 are

fuzzy set representations. The 𝑝 position parameters and ℎ position parameters define the fuzzy sets 𝑋, 𝑌, and

𝑍. Each fuzzy set's membership function shape is constructed using the position and height parameters. The

position parameter represents a set of 𝑦-axis values that specify the form or width of the membership function.

Alternatively, the height parameter represents the height of the membership function at a certain position

parameter. The fuzzy set of 𝑋, 𝑌, and 𝑍 is therefore characterized by the membership function 𝑓, as indicated

in equation (6).

459 Buletin Ilmiah Sarjana Teknik Elektro ISSN: 2685-9572

Fuzzy A* for optimum Path Planning in a Large Maze (Gregorius Airlangga)

 𝜇𝑋𝑖(𝑏) = 𝑓(𝑝𝑖1, … . , 𝑝𝑖𝑚; ℎ𝑖1, … . , ℎ𝑖𝑛 , 𝑏)

(6)

(𝑖 = 1, … . , 𝑛)

In this work, we use trapezoidal membership function. Equation (7) shows the formula. This function

depends upon four position parameters 𝑝𝑖1, 𝑝𝑖2, 𝑝𝑖3 and a height parameter ℎ𝑖1.

 𝜇𝑋𝑖(𝑦) = 𝑓𝑡𝑟𝑎𝑝𝑒𝑖𝑧𝑜𝑑𝑎𝑙(𝑝𝑖1 , 𝑝𝑖2, 𝑝𝑖3 , 𝑝𝑖4; ℎ𝑖1, 𝑦) (7)

Using equation (6), we can define R's fuzzy relationship. Based on all input variables, a fuzzy relation

function will be utilized to reason. Moreover, the fuzzy relation function itself is a membership function of

R(𝜇𝑅) that maps input 𝑎 into 𝑏 and 𝑐 where denoted as 𝜇𝑅(𝑎, 𝑏) and 𝜇𝑅(𝑎, 𝑐) [17]. The 𝑅 membership 𝜇𝑅

depends on 𝑝 weighted averages of each position parameters and ℎ weighted sum of each height parameters.

In addition, using max-min rule to find the relationship R the membership function will be defined as equation

(8).

Where 𝜇𝑋(𝑎𝑗) are the antecedent part membership functions. 𝑤𝑖(𝑎) as presented in equation (12) reflects

the compatibility levels for each fuzzy rule's antecedent portion. 𝑝𝑘 × (𝑎) and ℎ𝑙 × (𝑎) determine the position

and height parameters between the fuzzy rules using equations 10 and 11 respectively. The fuzzy relation R is

defined using membership function 𝑓 which contains parameter 𝑝𝑘𝑘∗ and ℎ𝑙* the height of the membership

function 𝜇𝑅(𝑎, 𝑏) also become zero. For the case in which ℎ𝑙 × (𝑎) exceeds 1, equation eight must limit the

height of the membership function 𝜇𝑅(𝑎, 𝑏) to 1.

 𝜇𝑅(𝑎, 𝑏) = 𝑓(𝑝1 × (𝑎), … … , 𝑝𝑟 × (𝑎); (8)

 ℎ1 × (𝑎), … … ℎ𝑠 × (𝑎), 𝑏) ∧ 1 (9)

𝑝𝑘 × (𝑎) =

∑  𝑛
𝑖=1  𝑤𝑖(𝑎)𝑝𝑖𝑘

∑  𝑛
𝑖=1  𝑤𝑖(𝑎)

(𝑘 = 1, … , 𝑟) (10)

ℎ𝑙 × (𝑎) = ∑  

𝑛

𝑖=1

 𝑤𝑖(𝑎)ℎ𝑖𝑙(𝑙 = 1, … , 𝑠) (11)

𝑤𝑙(𝑎) = ∏  

𝑚

𝑗=1

 𝜇𝑋𝑖𝑗
(𝑎𝑖𝑗) (𝑖 = 1, … , 𝑛) (12)

In the case of high overlapping fuzzy sets 𝑋𝑖𝑗 of the antecedent part, the value of ℎ𝑙 × (𝑎) is likely to

exceed 1, leading to a subnormal result. Consequently, this might be viewed as a restriction of the approach,

as the relation will not be able to differentiate between circumstances that overlap. In other words, all

membership levels would equal the maximum value of 1….0.

2.5. Fuzzy 𝐀∗

The Fuzzy A* algorithm employs three primary functions: the Heuristic Function, the Main Fuzzy A∗

function, and the FindDirection function. In our proposed strategy, the additional cost between adjacent vertices

𝑝(𝑣, 𝑣′) is separated into two groups. First, we create the default cost value, which is set to one, and the Strength

Direction Parameter, which has a dynamic value derived from a fuzzy inference function that considers three

input variables, including NumberOfObstacles, CurrentDistance, and VisitedGridCounter. The input variables

will then generate two output variables, including weakPowerDirection and strongPowerDirection. The

specifics of the fuzzy inference system have already been described in Section 2.4.

Since the heuristic function ℎ(𝑣) must be admissible to guarantee the optimal path, the heuristic value is

never larger than the true cost of reaching the goal from 𝑣. By improving the heuristics using a constant value

𝑘 × ℎ(𝑣) for 𝑘 > 1, The technique yields significantly fewer state expansions and, thus, quicker searches.

However, applying this approach can violate the admissibility property, and as a result, the optimality of a

solution cannot be guaranteed. Our proposed method is inspired by these properties, in which adjusting the

appropriate value at each iteration leads to the reduction of the number of the visited vertices while maintaining

the property of admissibility.

The dynamic cost value will be initiated as weakPowerDirection if the direction from the current state to

goal is indicating the true direction, then weakPowerDirection [𝑣′] = 1 and otherwise initiated as

460 Buletin Ilmiah Sarjana Teknik Elektro ISSN: 2685-9572

Buletin Ilmiah Sarjana Teknik Elektro, Vol. 5, No. 4, December 2023, pp. 455-466

strongPowerDirection if false direction state assigned in the successor vertex 𝑣′, thus strongPowerDirection

[𝑣′] = 0. weakPowerDirection has a membership values between 0…..0.001 and strongPowerDirection has

membership values between 0-100. Based on the present heuristic function, using the weakPowerDirection can

inflate a modest value. The heuristic value of the successor vertex can be evaluated with attention as opposed

to a hasty pursuit of the goal. This approach enables the searching process to maintain the optimal path location

by decreasing cost while remaining vigilant, particularly when the future child vertex contains numerous

barriers with dead-end positions. In addition, by incorporating a big value between 0 and 100 into the false

direction, we assign a high value wo the candidate vertex that indicates a penalty if the vertex is classified as a

false direction, thus enhancing the visited vertex, and maybe containing numerous barriers.

The pseudocode of the Fuzzy A* approach in Algorithm 1, Algorithm 2, and Algorithm 3 are merely the

simple formula of the Euclidean Distance function, which is of ten employed as a Heuristic Function on 4-

direction, 2-grid maps. In our experiment, we apply the formula to execute the A∗ and Fuzry A∗ programs. The

Fuzzy A∗ method maintains two functions from states with real numbers: the cost of the currently found path

from the start vertex to current (𝑣) and it is assumed to be 0 if no path to 𝑣 has been found yet, and 𝑓(𝑣) =
𝑐(𝑣) + ℎ(𝑣) is an estimate of the total distance from start to goal going through 𝑣. The Fuzzy A∗ method

additionally maintains a priority Min Heap, OPEN_HEAP, of vertices that it indents to expand. The

OPEN_HEAP k is ordered by 𝑓(𝑣) from least to maximum, such that the Furry A∗ algorithm always extends

the vertex that looks to be on the shortest path from start to goal.

Figure 2 depicts the pseudo code of the very important module in Fuzzy A* approach, which is the

formula for determining the direction from the present vertex to the target. Assume there are four direction

vertices that go to the goal position: [north, south, left, and right]. If the current vertex position is positioned to

the north-left of the target position, then the function returns the values [1,0,1,0]. The returned value will be

used to determine whether weakPowerDirection or strongPowerDirection will add 𝑣′ cost to the successor

vertex.

1: Input: startNode, goalNode;

2: Result: distance;

3: distance = √((startNode.x - goalNode.x)² + (startNode.y - goalNode.y)²);

Algorithm 1. Euclidean distance

1: g(s_start) ← 0;

2: OPEN_HEAP ← ∅;

3: PARENT_SET ← ∅;

4: VISITED_NODE ← ∅;

5: H ← Euclidean(s_start, s_goal);

6: f(s_start) ← H;

7: insert s_start into OPEN_HEAP;

8: visitedNodeCounter ← 0;

9: obstaclesCounter ← 0;

10: obstaclesChecked ← ∅;

11: numberOfPossibleDirections ← 4;

12: strengthDirection ←

zeros(numberOfPossibleDirections, 1);

13: fuzzyKnowledge ← callKnowledge();

14: default_cost ← -1;

15: while f(s_goal) > min OPEN_HEAP(f(s)) do

16: remove s with the smallest f_value from

OPEN_HEAP;

17: if s not in VISITED_NODE and s not obstacle

then

18: insert s into VISITED_NODE with state(s) ≠

obstacle;

19: else

20: update s from VISITED_NODE with state(s)

= obstacle;

21: end if

22: visitedNodeCounter++;

23: currentDistance ← Euclidean(s_current,

s_goal);

24: for each successors s' do

25: if isEmpty(obstaclesChecked(s')) then

26: insert s' into obstaclesChecked;

27: obstaclesCounter++;

28: end if

29: if s' was not visited before and not the obstacle then

30: f(s') ← ∞;

31: g(s') ← ∞;

32: end if

33: weakPowerDirection, strongPowerDirection ←

fuzzyInference();

34: Directions ← findDirection(s_current, s_goal);

35: for all d in D do

36: if d == 1 then

37: strengthDirection(d) ← weakPowerDirection;

// β ∈ (0,...,0.01)

38: else

39: strengthDirection(d) ← strongPowerDirection;

// β ∈ (0,...,100)

40: end if

41: end for

42: if g(s') > g(s) + default_cost then

43: g(s') ← g(s) + strengthDirection(d);

44: f(s') ← g(s') + Euclidean(s_current, s_goal);

45: insert PARENT_SET with parent=s and child=s';

46: insert s' into OPEN_HEAP with f(s');

47: end if

48: end for

49: end while

Algorithm 2. Fuzzy A* method

461 Buletin Ilmiah Sarjana Teknik Elektro ISSN: 2685-9572

Fuzzy A* for optimum Path Planning in a Large Maze (Gregorius Airlangga)

1: Input: startNode, goalNode, numberOfPossibleDirections;

2: Result: Directions;

3: begin

4: difference_y ← startNode.y - goalNode.y;

5: difference_x ← startNode.x - goalNode.x;

6: Directions ← zeros(numberOfPossibleDirections, 1);

7: if difference_x > 0 then

8: Directions(x_axis) ← 1;

9: end if

10: if difference_y > 0 then

11: Directions(y_axis) ← 1;

12: end if

13: end

Algorithm 3. Find direction method

3. THEORETICAL ANALYSIS

In this part, some of the theoretical features of the proposed Fuzzy A∗ approach is discussed. In the

theorems we used 𝑐*(v) to represent the optimal cost from vertex 𝑣𝑥𝑡𝑎𝑟𝑡 to 𝑣. There are three accompanying

notes for this section. First, we have just included the line codes stated in this section in Algorithm 2. Second,

we assume a greedy algorithm as a comparison by establishing a greedy route from 𝑛ntart to 𝑛, and at each

vertex 𝑣𝑖 we choose a vertex 𝑣𝑖−1 = arg min𝑣′  cpred(𝑣𝑖)(𝑐(𝑣′) + 𝑝(𝑠′, 𝑠𝑖)) until 𝑣𝑖−1 = 𝑣start . Finally, we

define the recurrence visited vertex (RVV) as the condition in which the visited vertex is reused as the current

vertex 𝑣 for path calculation, thereby reducing the total number of candidate successor vertex 𝑣′ on the

subsequent iteration because the previously chosen successor vertex 𝑣′ will be defined as an obstacle.

Theorem 1: When function of insert of successor vertex 𝑣′ into collections of OPEN_HEAP with 𝑓(𝑣′)

returns, for any vertex 𝑣∗ with 𝑓(𝑣goal) ≤ min𝑣≤𝑂𝑃𝐸𝑁−𝐻𝐸𝐴𝑃(𝑓(𝑣))   will have the value 𝑐 ∗ (𝑣) ≤ 𝑐(𝑣) and the

loop will end.

Proof: The function of 𝑐 can only change on line 43 if the condition 𝑐(𝑣′) > 𝑐(𝑠) + default_cost is met;

afterwards, the function is utilized to determine the value of 𝑓. When 𝑣′ = 𝑣goal is reached, the statement on

line 46 will add the vertex(v) to OPEN_HEAP. Therefore, on the following iteration, the value of 𝑓(𝑣goal) will

change from ∞ to 0 ≤ 𝑓(𝑣goal) ≤ ∞, and when the vertex 𝑣goal are reached, the iteration will end and the

condition 𝑐 × (𝑣) ≤ 𝑐(𝑣) will be satisfied.

Theorem 2: For each pair of vertices 𝑠 and 𝑠′, the value of 𝑐(𝑣′) + weakPowerDirection < 𝑐(𝑣′) +

strong PowerDirection and the value of 𝑓(𝑣′) from weak PowerDirection < 𝑓(𝑣′) from strongPowerDirection.

Proof: Line 33 determines the values of weakPowerDirection and strongPowerDirection for each

iteration. Before further assignment to line 37, line 39, and line 43 correspondingly. The implementation of

Fuzzy knowledge on line 13 generates weakPowerDirection, which has a modest value between (0 … . 0,01)

and strongPowerDirection (0, … 100). The validity of the theorem may thus be demonstrated.

Lemma 3: PARENT SET values are limited to a maximum of numberOfPossible Directions pairs

between parent and child vertices.

Proof: Given a vertex 𝑣 and a value of four for number 𝑂. Possible Directions: four possible directions

will be considered. The vertex 𝑣 are next to vertex with free collision obstacles. Consequently, according to

the line 24, every 𝑐(𝑣′) on the successor vertex can be regarded as a possible vertex. Additionally, the syntax

on line 45 will push the pair information between parent vertex 𝑣 and four free collision obstacles vertex 𝑣′ as

offspring vertices into the PARENT_SET.

Theorem 4: Recurrence visited vertex (RVV) can occur no more than 𝑅𝑉𝑉 times, where 𝑅𝑉𝑉 is

calculated from the equation (13) and representing several maximum revisited vertex occurs, 𝑁𝐷 is the number

of alternative directions of the current vertex 𝑣 and 𝑁𝑂 denotes the number of possible obstacles. Before and

after a RVV, the value of successor vertex (𝑣′) is always changed and must fulfill 𝑐(𝑣′)𝑡 ≠ 𝑐(𝑣′)𝑡−1.

 RVV = ND − NO − 1 (13)

Proof: When RVV cocurs, the selected vertex 𝑣 will be determined by the smallest value of OPEN_HEAP

on line 16 where 𝑓(𝑣) ≤ min𝑣𝑠
 𝑂𝑃𝐸𝑁−𝐻𝐸𝐴𝑃(𝑓′(𝑣′)), when vertex 𝑣 is re-selected as the current vertex, the

successor vertex 𝑣′ will no longer be ∞. In addition, the strong PowerDirection parameter will update all

potential 𝑐(𝑣′) values with the increment value of numberOfObstacles (the previous selected successor vertex

𝑣′ will be considered obstacles).

Theorem 5: At line 1, the cost of vertex in start position is always zero 𝑐(𝑣𝑠𝑡𝑎𝑟𝑡) = 0 and for another

vertex 𝑣, ∀𝑣≠ is met.

462 Buletin Ilmiah Sarjana Teknik Elektro ISSN: 2685-9572

Buletin Ilmiah Sarjana Teknik Elektro, Vol. 5, No. 4, December 2023, pp. 455-466

Proof: From the first line, it is evident that when 𝑐(𝑣star) = 0, the remaining 𝑐 values are not zero. The

only location where 𝑐 values change is on line 43. If 𝑐(𝑣) is modified, the c-values of its descendants will drop.

The test at line 42 verifies this and, if required, changes the 𝑐-values. Since all default cost are constant and

positive, 𝑐(𝑣𝑥𝑡𝑎𝑟𝑡) can never change and is consequently always 0.

Theorem 6: In the worst-case situation, where several RVV occur, the cost of the suggested Fuzzy A∗

technique will exceed that of the greedy path 𝑐(𝑣)𝑓𝑤𝑧𝑧𝑦𝐴∗ > 𝑐(𝑣)𝑔𝑟𝑒𝑒𝑑 ≥ 𝑐∗(𝑣).

Proof: As stated in Theorem 4, the values of 𝑐(𝑣′) will differ from prior values. In this condition, the

candidate for the next vertex 𝑣 can be derived from 𝑐(𝑣′) = 𝑐(𝑣) + strongPowerDirection, as the knowledge-

kased properties provide much greater value than the default cost considered by the greedy path algorithm;

consequently, the total cost from 𝑣𝑥𝑡𝑎𝑟𝑡 to 𝑣 will always be greater than the total cost generated by the greedy

path algorithm.

Theorem 7: In the best-case situation, when RVV does not occur, the proposed Fuzzy 𝐴∗ technique will

be considerably less expensive than the greedy path. 𝑐(𝑣)𝑔𝑟𝑒𝑑𝑑𝑦 > 𝑐(𝑣)𝑓 min 𝐴 ∗≥ 𝑐 ∗ (𝑣)

Proof: Since the selected vertex 𝑣 is determined by code on line 16 based on the minimal 𝑓 values, If the

RVV condition never occurs, all picked vertices will become (𝑣) = min𝑣∗  𝜀pred (𝑣)(𝑐(𝑣𝑐) +

weakPowerDirection (𝑣))., where the weakPower𝐷irection value is significantly less than the default cost

utilized by the greedy approsch. Consequently, the overall cos from 𝑣start to 𝑣 is always less than total cost

computed by the greedy algorithm.

4. RESULTS AND DISCUSSIONS

To assess the efficacy of the proposed Fuzzy A* approach, we utilized MATLAB simulation in

conjunction with the Fuzzy Toolbox. This choice of software tools is crucial for our study as they offer a robust

platform for developing and testing complex algorithms like ours, particularly in the domain of autonomous

navigation and robotics shown in the Figure 2. A brief overview of existing challenges in path planning,

including dynamic environment adaptation and real-time decision-making, underscores the significance of our

approach in addressing these issues. Our experiments were conducted on standard simulation hardware,

comprising an Intel Pentium i7 2.2GHz processor, 16 GB RAM, a 1.5 TB solid-state drive, and a VGA GTX

1050 Ti 16GB. This configuration was selected for its ability to effectively simulate complex pathfinding

algorithms and is representative of the typical setup used in similar research scenarios, ensuring reproducibility

and relevance to the field.

Figure 2. Path Planning Result for coordinates (0.0) to (200.100)

We employed randomly generated maps with specific constraints to mimic real-world path planning

challenges. These constraints, including the positioning of start and end points and the distribution of obstacles,

are designed to replicate common scenarios encountered in autonomous navigation. The chosen constraints are

reflective of situations where path planning must account for unpredictable environments and limited

maneuverability, thus providing a rigorous test for our algorithm. The randomly generated maps have 20301

vertices, 10548 non-obstacle vertices, and 9753 obstacle vertices, with 50 percent of the paths comprising

obstacles and a dead-end environment. When establishing the strong direction parameter, other factors, such

463 Buletin Ilmiah Sarjana Teknik Elektro ISSN: 2685-9572

Fuzzy A* for optimum Path Planning in a Large Maze (Gregorius Airlangga)

as the visited vertex's memory and the number of obstacles, will be considered in addition to the direct true

direction. The experiment employs 100 maps with 200 × 100 (width x Height) dimensions, and the beginning

and ending coordinates are fixed and determined at random. The constraints include several restrictions, such

as (i) the position of start coordinate and goal coordinate must be on the last comer in opposite directions, (ii)

the direct length between start and goal coordinates must be at least half the width or height of the map, and

(iii) the area separated by the position of start coordinate and goal coordinates must contain at least 40 percent

of the total number of obstacles shown in the Figure 3.

Figure 3. The Results of the Fuzzy A* method comparing with other methods for coordinates (32.20) and

(90.105)

Table 1 contains the comparison findings for eight algorithms, including Dijkstra's, Breadth First Search

(BFS), Depth First Search (DFS), Bidirectional BFS (BIBFS), Bidirectional DFS (BIDFS), Best First Search

(BEFS), Bidirectional BEFS (BIBEFS), A*, and the Fuzzy A* method. Each approach yields the average path

length and number of visited vertices based on 100 total path length and visited vertex studies. In addition, we

display the degree of path suboptimality based on Dijkstra and Breath First Search.

Table 1. Comparison result

Algorithm Path Length
Visited

Node

Execution

Time

Path

Suboptimality

𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝑽𝒆𝒓𝒕𝒆𝒙

𝑫𝒋𝒊𝒌𝒔𝒕𝒓𝒂′𝒔 𝑽𝒆𝒓𝒕𝒆𝒙

Djikstra's 208 7181 207.02 Optimal 1

BFS 208 7185 239.22 Optimal 1.00055

DFs 1393 5758 231.59 6.7 x Optimal 0.8018

BEFS 257 492 13.69 1.23 x Optimal 0.0685

BIBFS 208 4600 515.118 Optimal 0.640

BHFS 878 2261 3198.83 4.22 x Optimal 0.314

BIBES 257 749 38.36 1.23 x Optimal 0.104

A* 217 6438 202.82 1.043 x Optimal 0.896

A* with admissible

heuristic
208 3826 131.07 Optimal 0.53

Fuzzy A* 209 2697 86.04 1.0048 x Optimal 0.375

Our analysis delves into the specific features of the Fuzzy A* method that contribute to its superior

performance. We focus on how the Strength Direction parameter and Fuzzy Inference method dynamically

optimize pathfinding, leading to reduced execution time and shorter path lengths without compromising

optimality. Fuzzy A∗ algorithm is faster than all other algorithms, except for Best First Search (BEFS) and

Bidirectional Best First Search, as seen in Table 1. (BIBEFS). However, this method resulting 1.23 x optimal,

464 Buletin Ilmiah Sarjana Teknik Elektro ISSN: 2685-9572

Buletin Ilmiah Sarjana Teknik Elektro, Vol. 5, No. 4, December 2023, pp. 455-466

indicating that the average created route is 1.23 times longer than the optimal path (208 vertices). In contrast,

the Fuzzy A* method may yield 1.0048 × Optimal path (209 vertices), which is a lesser number than BEFS

and BIBEFS.

Fuzzy A∗ uses 67%, 59%, and 30% more efficient vertices and less execution time than Dijlstra's, 𝐴∗,

and 𝐴∗ with an appropriate heuristic, respectively, while ensuring a high degree of suboptimality. Evidently,

the proposed algorithm can dynamically alter the cost 𝑐(𝑣′) and efficiently estimate the value of the heuristic

function. In addition, the proposed method does not necessitate laborious data collection, preprocessing,

validation, trial-and-error modification of complex hyper parameters, or training. Instead, the cost is modified

using the Fuzzy Inference method and the Strength Direction parameter.

5. CONCLUSION

In addressing real-world challenges such as obstacle avoidance, memory consumption, and time-sensitive

operations, our study highlights the potential of the Fuzzy A* method in path planning. While traditional A*

with admissible heuristics demonstrates commendable performance, our approach, through the introduction of

the Strength Direction parameter, effectively balances computational time, memory efficiency, and near-ideal

pathfinding. This is achieved by dynamically adjusting the searching cost and heuristic values through

weakPowerDirection and strongPowerDirection parameters. However, it's important to acknowledge that the

current parameter settings are based on expert knowledge and observations, which may limit the method's

adaptability in environments with varying characteristics. To enhance the robustness and flexibility of our

approach, future work will delve into optimizing the Strength Direction parameter using more sophisticated

methods, potentially integrating adaptive learning techniques. This will allow the Fuzzy A* method to better

adjust to diverse and unpredictable scenarios, further enhancing its applicability across various domains. From

a practical standpoint, while the Fuzzy A* method shows promise, it's crucial to consider the implementation

complexities in different real-world applications. Future research will also explore these practical aspects,

focusing on simplifying the integration process and ensuring that the method can be efficiently applied in

diverse operational environments without extensive customization. Moreover, we plan to rigorously test the

robustness of the Fuzzy A* method under a range of conditions, including highly dynamic and unpredictable

environments. This will provide deeper insights into its effectiveness and limitations, guiding further

refinements. In conclusion, our research contributes a novel approach to path planning, balancing efficiency

and performance. The Fuzzy A* method, with its innovative use of the Strength Direction parameter, offers a

promising solution to complex pathfinding challenges. However, continuous improvement and adaptation are

necessary to fully realize its potential in varying real-world applications. As we move forward, our focus will

remain on optimizing, validating, and ensuring the practical applicability of this method, thereby contributing

to the broader field of autonomous navigation and robotics.

REFERENCES
[1] B. K. Oleiwi, A. Mahfuz and H. Roth, "Application of Fuzzy Logic for Collision Avoidance of Mobile Robots in

Dynamic-Indoor Environments," 2021 2nd International Conference on Robotics, Electrical and Signal Processing

Techniques (ICREST), pp. 131-136, 2021, https://doi.org/10.1109/ICREST51555.2021.9331072.

[2] C. S. Tan, R. Mohd-Mokhtar and M. R. Arshad, "A Comprehensive Review of Coverage Path Planning in Robotics

Using Classical and Heuristic Algorithms," in IEEE Access, vol. 9, pp. 119310-119342,

2021, https://doi.org/10.1109/ACCESS.2021.3108177.

[3] K. He, L. He, L. Fan, X. Lei, Y. Deng and G. K. Karagiannidis, "Efficient Memory-Bounded Optimal Detection for

GSM-MIMO Systems," in IEEE Transactions on Communications, vol. 70, no. 7, pp. 4359-4372, 2022,

https://doi.org/10.1109/TCOMM.2022.3176649.

[4] A. A. Z. Ibrahim, F. Hashim, A. Sali, N. K. Noordin and S. M. E. Fadul, "A Multi-Objective Routing Mechanism for

Energy Management Optimization in SDN Multi-Control Architecture," in IEEE Access, vol. 10, pp. 20312-20327,

2022, https://doi.org/10.1109/ACCESS.2022.3149795.

[5] K. L. Keung, L. Xia, C. K. M. Lee and C. Y. Leung, "A Shortest Path Graph Attention Network and Non-traditional

Multi-deep Layouts in Robotic Mobile Fulfillment System," 2022 IEEE International Conference on Industrial

Engineering and Engineering Management (IEEM), pp. 0655-0659, 2022,

https://doi.org/10.1109/IEEM55944.2022.9989607.

[6] L. Zhe, L. Yibin, R. Xuewen, and Z. Hui, “Path Planning Based on ADFA∗ Algorithm for Quadruped Robot,” IEEE

Access, vol. 7, pp. 111 095–111 101, 2019, https://doi.org/10.1109/ACCESS.2019.2920420.

[7] J. Yang, J. Ni, M. Xi, J. Wen and Y. Li, "Intelligent Path Planning of Underwater Robot Based on Reinforcement

Learning," in IEEE Transactions on Automation Science and Engineering, vol. 20, no. 3, pp. 1983-1996, 2023,

https://doi.org/10.1109/TASE.2022.3190901.

[8] J. Yang, J. Huo, M. Xi, J. He, Z. Li and H. H. Song, "A Time-Saving Path Planning Scheme for Autonomous

Underwater Vehicles With Complex Underwater Conditions," in IEEE Internet of Things Journal, vol. 10, no. 2, pp.

1001-1013, 2023, https://doi.org/10.1109/JIOT.2022.3205685.

https://doi.org/10.1109/ICREST51555.2021.9331072
https://doi.org/10.1109/ACCESS.2021.3108177
https://doi.org/10.1109/TCOMM.2022.3176649
https://doi.org/10.1109/ACCESS.2022.3149795
https://doi.org/10.1109/IEEM55944.2022.9989607
https://doi.org/10.1109/ACCESS.2019.2920420
https://doi.org/10.1109/TASE.2022.3190901
https://doi.org/10.1109/JIOT.2022.3205685

465 Buletin Ilmiah Sarjana Teknik Elektro ISSN: 2685-9572

Fuzzy A* for optimum Path Planning in a Large Maze (Gregorius Airlangga)

[9] T. T. Cam Giang, N. T. Dung, H. T. Thanh Binh, D. Q. Huy and M. T. Thoa, "Wave Environment Decomposition

with Adaptive Tri-Objective Particle Swarm Optimization for Mobile Robot Path Planning," 2022 IEEE Symposium

Series on Computational Intelligence (SSCI), pp. 990-997, 2022,

https://doi.org/10.1109/SSCI51031.2022.10022243.

[10] J. Liu, C. -W. Pui, F. Wang and E. F. Y. Young, "CUGR: Detailed-Routability-Driven 3D Global Routing with

Probabilistic Resource Model," 2020 57th ACM/IEEE Design Automation Conference (DAC), pp. 1-6, 2020,

https://doi.org/10.1109/DAC18072.2020.9218646.

[11] T. A. Ayall et al., "Graph Computing Systems and Partitioning Techniques: A Survey," in IEEE Access, vol. 10, pp.

118523-118550, 2022, https://doi.org/10.1109/ACCESS.2022.3219422.

[12] Z. Yao, W. Wang, J. Zhang, Y. Wang and J. Li, "Jump Over Block (JOB): An Efficient Line-of-Sight Checker for

Grid/Voxel Maps With Sparse Obstacles," in IEEE Robotics and Automation Letters, vol. 8, no. 11, pp. 7575-7582,

2023, https://doi.org/10.1109/LRA.2023.3320435.

[13] E. P. Herrera-Alarcón, M. Satler, M. Vannucci and C. A. Avizzano, "GNGraph: Self-Organizing Maps for

Autonomous Aerial Vehicle Planning," in IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 10721-10728,

2022, https://doi.org/10.1109/LRA.2022.3195192.

[14] S. Franco, J. Sustarevas and S. Bernardini, "Hybrid Discrete-Continuous Path Planning for Lattice Traversal," 2022

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 8971-8978, 2022,

https://doi.org/10.1109/IROS47612.2022.9981801.

[15] Z. Husain, A. Al Zaabi, H. Hildmann, F. Saffre, D. Ruta, and A. F. Isakovic, "Search and Rescue in a Maze-like

Environment with Ant and Dijkstra Algorithms," in Drones, vol. 6, no. 10, Art. no. 273, 2022,

https://doi.org/10.3390/drones6100273.

[16] S. Zhang, Y. Li, F. Ye, X. Geng, Z. Zhou, and T. Shi, "A Hybrid Human-in-the-Loop Deep Reinforcement Learning

Method for UAV Motion Planning for Long Trajectories with Unpredictable Obstacles," in Drones, vol. 7, no. 5, Art.

no. 311, 2023, https://doi.org/10.3390/drones7050311.

[17] W. He, Z. Cao, and H. Ye, "Path Planning Algorithms for Mobile Robots in Hospital Environment during Covid-

19," in Proceedings of the 3rd International Symposium on Artificial Intelligence for Medicine Sciences (ISAIMS

'22), pp. 522-530, 2022, https://doi.org/10.1145/3570773.3570853.

[18] S. Kim and B. An, "Learning Heuristic A: Efficient Graph Search using Neural Network," 2020 IEEE International

Conference on Robotics and Automation (ICRA), pp. 9542-9547, 2020,

https://doi.org/10.1109/ICRA40945.2020.9197015.

[19] M. P. Strub and J. D. Gammell, "Adaptively Informed Trees (AIT*) and Effort Informed Trees (EIT*): Asymmetric

bidirectional sampling-based path planning," in Int. J. Rob. Res., vol. 41, no. 4, pp. 390-417, 2022,

https://doi.org/10.1177/02783649211069572.

[20] J. Li and X. Wu, "Constrained Shortest Path by Parameter Searching," 2019 2nd International Conference on Safety

Produce Informatization (IICSPI), pp. 26-29, 2019, https://doi.org/10.1109/IICSPI48186.2019.9095897.

[21] J. Persis, “A novel routing protocol for underwater wireless sensor network using pareto uninformed and heuristic

search techniques,” Wireless Personal Communications, vol. 121, no. 3, pp. 1917-1944, 2021,

https://doi.org/10.1007/s11277-021-08747-y.

[22] M. Chen and D. Zhu, "Optimal Time-Consuming Path Planning for Autonomous Underwater Vehicles Based on a

Dynamic Neural Network Model in Ocean Current Environments," in IEEE Transactions on Vehicular Technology,

vol. 69, no. 12, pp. 14401-14412, 2020, https://doi.org/10.1109/TVT.2020.3034628.

[23] P. Lehner and A. A.-S. affer, “The Repetition Roadmap for Repetitive Constrained Motion Planning,” IEEE Robotics

and Automation Letters, vol. 3, no. 4, pp. 3884–3891, 2018, https://doi.org/10.1109/LRA.2018.2856925.

[24] R. Kong and X. Tong, "Anytime Dynamic Heuristic Search for Suboptimal Solution on Path Search," 2020 13th

International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI),

Chengdu, China, 2020, pp. 1070-1074, https://doi.org/10.1109/CISP-BMEI51763.2020.9263589.

[25] J. Wang, N. Wu, W. X. Zhao, F. Peng, and X. Lin , “Empowering A∗ Search Algorithms with Neural Networks for

Personalized Route Recommendation,” in Proceedings of the 25th ACM SIGKDD international conference on

knowledge discovery & data mining, pp. 539-547, 2019, https://doi.org/10.1145/3292500.3330824.

[26] Y. Wang, S. Wang, Y. Xie, Y. Hu and H. Li, "Q-learning-based Collision-free Path Planning for Mobile Robot in

Unknown Environment," 2022 IEEE 17th Conference on Industrial Electronics and Applications (ICIEA), pp. 1104-

1109, 2022, https://doi.org/10.1109/ICIEA54703.2022.10006304.

[27] X. Wang, Z. Ning, S. Guo and L. Wang, "Imitation Learning Enabled Task Scheduling for Online Vehicular Edge

Computing," in IEEE Transactions on Mobile Computing, vol. 21, no. 2, pp. 598-611, 1 Feb.

2022, https://doi.org/10.1109/TMC.2020.3012509.

[28] S. Choudhury, D. Dey, M. Bhardwaj, S. Arora, A. Kapoor, G. Ranade, and S. Scherer, “Data-driven planning via

imitation learning,” The International Journal of Robotics Research, vol. 37, no. 13-14, pp. 1632–1672, 2018,

https://doi.org/10.1177/0278364918781001.

[29] P. Cai, S. Wang, Y. Sun and M. Liu, "Probabilistic End-to-End Vehicle Navigation in Complex Dynamic

Environments With Multimodal Sensor Fusion," in IEEE Robotics and Automation Letters, vol. 5, no. 3, pp. 4218-

4224, 2020, https://doi.org/10.1109/LRA.2020.2994027.

[30] M. Mia et al., “Identifying factors affecting irrigation metrics in the Haor basin using integrated Shannon's entropy,

fuzzy logic and automatic linear model,” Environmental Research, vol. 226, p. 115688, 2023,

https://doi.org/10.1016/j.envres.2023.115688.

https://doi.org/10.1109/SSCI51031.2022.10022243
https://doi.org/10.1109/DAC18072.2020.9218646
https://doi.org/10.1109/ACCESS.2022.3219422
https://doi.org/10.1109/LRA.2023.3320435
https://doi.org/10.1109/LRA.2022.3195192
https://doi.org/10.1109/IROS47612.2022.9981801
https://doi.org/10.3390/drones6100273
https://doi.org/10.3390/drones7050311
https://doi.org/10.1145/3570773.3570853
https://doi.org/10.1109/ICRA40945.2020.9197015
https://doi.org/10.1177/02783649211069572
https://doi.org/10.1109/IICSPI48186.2019.9095897
https://doi.org/10.1007/s11277-021-08747-y
https://doi.org/10.1109/TVT.2020.3034628
https://doi.org/10.1109/LRA.2018.2856925
https://doi.org/10.1109/CISP-BMEI51763.2020.9263589
https://doi.org/10.1145/3292500.3330824
https://doi.org/10.1109/ICIEA54703.2022.10006304
https://doi.org/10.1109/TMC.2020.3012509
https://doi.org/10.1177/0278364918781001
https://doi.org/10.1109/LRA.2020.2994027
https://doi.org/10.1016/j.envres.2023.115688

466 Buletin Ilmiah Sarjana Teknik Elektro ISSN: 2685-9572

Buletin Ilmiah Sarjana Teknik Elektro, Vol. 5, No. 4, December 2023, pp. 455-466

AUTHOR BIOGRAPHY

Gregorius Airlangga received the B.S. degree in information system from the Yos Sudarso

Higher School of Computer Science, Purwokerto, Indonesia, in 2014, and the M.Eng. degree in

informatics from Atma Jaya Yogyakarta University, Yogyakarta, Indonesia, in 2016. He got Ph.D.

degree with the Department of Electrical Engineering, National Chung Cheng University, Taiwan.

He is also an Assistant Professor with the Department of Information System, Atma Jaya Catholic

University of Indonesia, Jakarta, Indonesia. His research interests include artificial intelligence

and softwareengineering include path planning, machine learning, natural language processing,

deep learning, software requirements, software design pattern and software architecture.

