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The approach presents a multi braille character (MBC) recognition system 

for Indonesian syllablesdesigned to address real-world imaging variations. 

The proposed framework formulates 105-class visual classification task, 

where each class represents a two-character Braille unit. This design aims to 

preserve inter-character spatial relationships and reduce error propagation 

commonly found in single-character segmentation approaches. A carefully 

constructed dataset undergoes spatial pre-processing stages, including 

rotation normalization, grid assignment, and multicell cropping, resulting in 

uniform 89×89 pixel image patches that ensure geometric consistency across 

samples. To enhance model generalization under varying illumination 

conditions, single-dimension photometric augmentation is applied 

exclusively during training, including brightness (±25%), exposure (±20%), 

saturation (±40%), and hue (±30%). ResNet-101 is adopted as the backbone 

architecture based on prior comparative studies conducted on the same 

dataset, demonstrating its effectiveness in capturing fine-grained Braille dot 

shadow patterns. The network is trained for 300 epochs with a batch size of 

32 under consistent experimental settings, and performance is evaluated 

using a confusion-matrix-based framework with overall accuracy as the 

primary metric. Experimental results indicate that moderate photometric 

reductions significantly improve recognition performance by preserving 

critical micro-contrast cues. In particular, an exposure reduction of −20% 

achieves the best balance between accuracy (86.13%) and training efficiency 

(14.12 minutes), outperforming the non-augmented baseline (74.37%, 22.10 

minutes). A hue reduction of −30% further improves robustness to ambient 

color variations, while aggressive positive adjustments degrade performance 

due to structural distortion. These findings confirm the effectiveness of the 

proposed MBC framework for practical Braille recognition in real-world 

environments. 
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1. INTRODUCTION 

A computer vision-based Braille recognition system with deep learning offers a promising solution due 

to its ability to automatically and robustly extract raised dot patterns under various lighting conditions and 

paper textures [1]-[3]. The Multi Braille Character (MBC) based approach is strategic for syllabic Indonesian, 

as it has the potential to reduce serial error propagation while speeding up reading time. This approach is 

inspired by multi-character recognition and syllable segmentation studies in other domains [4][5]. A variety of 

approaches have been developed to facilitate the recognition of Braille from scanned or captured images. These 

approaches include the use of image processing techniques and artificial intelligence [6]-[8]. The primary 

challenges associated with Braille detection include the variability of dot shapes, the presence of noise in the 

background, and irregularities in lighting that occur during the capture of images [9]-[11].  

The present study focuses on Multi Braille Character (MBC) recognition, which consists of 105 classes 

based on the combination of two braille characters per image, ranging from "ba" to "zo." To ensure the model's 

capacity for generalization to real environmental variations is maximized, an image augmentation technique is 

employed. This technique encompasses modifications in brightness (±25%), exposure (±20%), saturation 

(±40%), and hue (±30°), a methodology that has been previously demonstrated to be effective in related studies 

[12]-[15]. It is hypothesized that moderate photometric augmentation improves MBC recognition robustness 

by preserving essential dot shadow contrast under realistic imaging conditions. ResNet-101 is selected as the 

backbone network due to its deep residual structure and its stable performance reported in prior Braille 

recognition studies, as well as in the authors’ previous experiments conducted on the same dataset [16][17].  

Research on braille detection has been carried out using various approaches, including morphological 

segmentation [18][19], support vector machine (SVM) based recognition [20]-[22] as well as the use of 

convolutional neural networks (CNNs), such as LeNet and AlexNet [23][24]. However, there is a need for 

further research on the detection of Multi Braille Character (MBC) with intensive augmentation schemes and 

empirically adjusted image resolutions, such as the use of 89x89 pixel resolution inspired by the Fibonacci 

sequence, which has been adopted in prior studies as a heuristic for balancing spatial detail preservation and 

computational efficiency. In the context of Braille recognition, this resolution was found to retain critical dot–

shadow micro-structures while minimizing redundant background information [25]-[27]. Existing studies 

predominantly focus on single-character Braille recognition or employ generic image resolutions, with limited 

investigation into multi-Braille-character (MBC) recognition under controlled photometric augmentation and 

calibrated spatial resolutions. In particular, the combined impact of resolution selection, dot–shadow geometry 

preservation, and single-dimension photometric perturbation remains insufficiently explored. 

The purpose of this research is to develop a Multi Braille Character (MBC) detection model based on the 

ResNet101 architecture and evaluate its performance on an augmented MBC dataset comprising 105 classes. 

The core contribution of this research lies in the evaluates a Fibonacci inspired resolution calibration scheme 

and various augmentations for Multi-Braille Character recognition can be seen in Figure 1. 

 

 
(a) (b) (c) 

Figure 1. The following braille characters are presented: the dot matrix (a), the letter ‘b’ single character (b), Multi-

Braille Character (MBC) unit “ba”, which constitutes the core recognition target in this study (c) [16] 

 

2. LITERATURE REVIEW 

Research in the domain of image-based Braille recognition has demonstrated substantial advancement, 

concomitant with the evolution of convolutional neural network (CNN) architectures and data augmentation 

techniques. A plethora of approaches have been proposed to enhance the accuracy and efficiency of detecting 

Braille characters, particularly in the context of complex datasets comprising multi-character or multi-class 

characters. The following literature studies pertain to the subject of braille detection (Table 1): 
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Table 1. Literature Review of Deep Learning Architecture in Braille Character Classification and Detection 
Ref Method / Focus Result 

[1] End-to-end CNN for Braille OCR 95.2% (English) and 98.3% (DSBI) accuracy 

[28] CNN + Ratio Character Segmentation (RCSA) 98.73% accuracy on 71 Braille classes 

[29] Custom CNN for Braille detection & TTS 96.15% accuracy 
[21] Grade-1 Braille pattern identification ≥97% on most docs; 100% on three 

[30] ResNet-based Braille classification Up to 100% on test subsets 

[31] Anchor-free Braille detection in natural scenes Good small-object detection (mAP not reported) 
[32] DL for low-light enhancement survey Motivates robustness to exposure/brightness variation 

[33] LLE evaluation Provides exposure/contrast pre-processing guidelines 

[34] Augmentation survey (brightness/hue/saturation) Recommends safe ranges to avoid dot-pattern distortion 
[35] Retinex for low-light enhancement Improves contrast and SNR; complements exposure aug. 

[36] Braille detection in varied lighting Supports need for photometric augmentation 

 

3. METHODS 

The proposed method is divided into six primary operational stages: data collection, dataset partitioning, 

pre-processing and MBC splitting, augmentation (training only), model training, and evaluation. The process 

begins with 1,050 original images representing 105 MBC (Multi Braille Character) classes. The data is then 

stratified by a strict ratio into training, validation, and testing sets. In the pre-processing stage, an interactive 

rotation-grid normalization is applied, followed by a multi-cell cropping (MBC splitting) procedure that 

produces homogeneous input patches of 89 x 89 pixels. To improve generalization, photometric augmentation 

(brightness +- 25%, exposure +- 20%, saturation +- 40%, and hue +- 30%) was applied exclusively to the 

training data (train-only) to strictly prevent data leakage to the validation and testing sets. The ResNet-101 

architecture model was then trained for 300 epochs with a batch size of 32, and performance was evaluated 

using industry-standard metrics: Test Accuracy, Macro-F1 Score, and computation time. The complete, 

replicable experimental workflow is presented in Figure 2. 

Ensuring data pre-processing is meticulous and consistent is imperative for the successful training of deep 

learning models [37], especially in fine-grained classification tasks such as Multi Braille Character (MBC) 

recognition that are highly sensitive to spatial orientation and the visual quality of dots. In order to ensure the 

reproducibility and verifiability of our process, we have summarized the transformative steps from raw Braille 

image to homogeneous input patch in the form of PSEUDOCODE. 

 
PSEUDOCODE: Multi-Braille Character (MBC) Recognition 
------------------------------------------------------------------------------ 
# Constants  
PATCH_SIZE = 89  
NUM_CLASSES = 105 
 
1) Data Collection  
images, sheet_labels = load_braille_sheets(path)             # 21 Braille sheets 
 
2) Rotation Normalization  
for img, sheet_label in zip(images, sheet_labels): 
  angle = estimate_rotation(img)                                       # manual or automatic  
  img_norm = rotate(img, angle) 
3) Grid Assignment  
grid_params = set_grid(img_norm)                                  # anchor(x0,y0), cell_w, cell_h, 
                                                                                                 # spacing_x, spacing_y, rows, cols 
 
4) Patch Extraction  
for (i, j) in grid_cells(rows, cols): 
  x1, y1, x2, y2 = compute_cell_bounds(grid_params, i, j)  
  patch = img_norm[y1:y2, x1:x2] 
  patch = resize(patch, PATCH_SIZE, PATCH_SIZE) 
  label = assign_mbc_label(sheet_label, i, j) 
  dataset.append(patch, label) 
 
5) Dataset Split  
train_set, val_set, test_set = split_dataset( 
  dataset,  
  train_ratio = 0.70, val_ratio = 0.20, test_ratio = 0.10, 
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  stratified = True  
) 
 
6) Model Training  
model = initialize_model(backbone="ResNet-101", num_classes=NUM_CLASSES) train_model( 
  model, train_set, val_set, 
  augmentation = {brightness, exposure, hue, saturation}  
) 
 
7) Evaluation  
y_true, y_pred = evaluate(model, test_set) compute_metrics(y_true, y_pred, metrics=["accuracy", "precision", 
"recall", "f1-score"]) save_model(model) save_confusion_matrix(y_true, y_pred) 
 

 

 
Figure 2. Flowchart of Multi Braille Character (MBC) recognition method 

 

3.1. Collect Data 

The dataset is taken from Braille sheets organized by syllable format, given the focus of this study on 

fine-grained Multi Braille Character (MBC) classification. Where each MBC represents a multi-character 

combination. To ensure consistency and integrity of the visual input which is a key factor for robustness of the 

model a strict acquisition protocol was implemented. Image acquisition was performed indoors with a lighting 

system consisting of three 10watt LED lights positioned at a 45° angle relative to the Braille sheet [20]. These 

controlled lighting arrangements are strategically designed to accentuate dot protrusions through the formation 

of subtle shadows, thereby enhancing contrast and effective feature extraction. The formation of these shadows 

serves as the foundational principle in the domain of computer vision-based Braille dot detection. The CNN 

model operates on the premise that shadow patterns of protrusions are more reliable indicators than tactile data 

[38]. 

 

3.2. Augmentation 

Perform augmentation process from the original dataset of 105 classes with 4 types of augmentation, 

namely brightness (±25%), exposure (±20%), saturation (±40%), and hue (±30%), a methodology that has been 

previously demonstrated to be effective in related studies [12]. These variations collectively expand the dataset 

from the original 1,050 images to 9,450 samples, which strengthens the model's robustness to varying lighting 

conditions. By simulating a wide range of non-ideal image capture conditions, this multidimensional 

augmentation serves as a vital regulation technique, ensuring ResNet-101 can learn a robust feature 

representation and maintain optimal performance. 

 

3.3. Data Rotation and Transformation 

Rotation correction is a pre-processing step that is essential to correcting the subtle skew caused by the 

image acquisition process [39]. This process can lead to misclassification. This normalization is performed 

semi-automatically through an interactive graphical interface (GUI), where the user selects a precise rotation 
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angle (≈0.1°) with the help of a visual guideline (crosshair/grid) to align the row and column structure of the 

Braille dots with the image axis (Figure 3). The operation utilizes the OpenCV library, employing the functions 

cv2.getRotationMatrix2D to calculate the rotation matrix and cv2.warpAffine to apply the affine 

transformation. The resultant output is a rotation-normalized Braille image that is then stored as a baseline to 

mitigate the risk of misclassification caused by spatial misalignment. 

 

 
Figure 3. Braille Image Initial Rotation Correction Process Using ipywidgets and OpenCV Library 

 

3.4. Grid and Cell Parameter Determination 

A procedural step within normalization of the braille structure is the subsequent assignment of grid and 

cell parameters (Figure 4). This process utilizes an interactive Grid Generator (GUI) that allows real-time 

calibration of anchor points (𝑥0, 𝑦0), cell dimensions (𝑊𝑐, 𝐻𝑐), and column/row spacing via dynamic sliders. 

It is imperative to note that supplementary ipywidgets controls are utilized for the purpose of making precise 

adjustments to the padding and spacing parameters. This verified grid consistency ensures that image 

segmentation is executed with maximum spatial precision, which is a vital prerequisite for the extraction of 

uniform and consistent MBC bounding boxes as input for ResNet-101 training. The grid calibration process 

assumes successful dot segmentation under controlled acquisition conditions. In cases of extreme glare or 

shadow occlusion where thresholding fails and a valid grid cannot be constructed, such samples are treated as 

failure cases and excluded from further processing to prevent error propagation. 

 

 
 

(a) (b) 

Figure 4. Grid Assignment Process (a) and Cell Parameters to map Braille structures (b) 
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3.5. Split Data 

The pre-processing process is concluded with the precise grid definition, which results in the image being 

divided into character patches. The tool automatically calculates the slice coordinates [y1: y2, x1:x2] of the 

grid for each Braille cell (or multi-cell block, as appropriate). Subsequently, each patch is extracted and stored 

in a sequential naming scheme. This procedure is technically crucial, given that the CNN model relies on 

protrusion shading patterns (rather than tactile data). Consequently, consistency of orientation and relative 

position of points is imperative. Consequently, the implementation of rotational normalization in conjunction 

with grid-based splitting effectively mitigates spatial jitter, thereby ensuring that the CNN is exposed to MBC 

patterns that are both highly homogeneous and standardized. This homogeneity is demonstrated to minimize 

confusion between classes that have similar dot patterns, thus serving as a vital prerequisite for maximizing 

the effectiveness and generalizability of the ResNet-101 model.  

Post-splitting (Figure 5), the 89x89 pixel MBC character patches are to be organized into discrete sub-

folders, meticulously labeled according to the 105 MBC classes. This hierarchical data structure is a standard 

format required by CNN frameworks, such as TensorFlow and PyTorch. This configuration is paramount 

because these frameworks automatically interpret folder names as ground-truth labels during training, ensuring 

that the model learns the correct associations between visual features and their corresponding MBC classes. 

The dataset was partitioned using a stratified split of 70% for training, 20% for validation, and 10% for testing 

to preserve class distribution across all subsets. All subsets share the same spatial resolution (89x89) to ensure 

architectural consistency, while photometric augmentation is applied exclusively to the training set to preserve 

the realism and integrity of validation and test evaluations. 

 

 
Figure 5. Image Splitting Process based on slice coordinates 

 

3.6. Model Training 

The model training process utilizes the ResNet-101 architecture due to its proven ability to handle the 

complexity of Braille features and overcome the vanishing gradient problem through its residual connections 

(Figure 6). The ResNet-101 architecture was configured to perform a 105-class MBC classification task. In 

this architecture, the fourth stage consists of 23 residual blocks, enabling deep feature extraction while 

maintaining stable gradient flow, followed by global average pooling and a fully connected classification layer. 

 

 
Figure 6. CNN Architecture Model with ResNet-101 

 

The training phase was meticulously designed as a rigorous comparative study, wherein the model 

underwent training separately on nine data subsets, the original dataset and eight variations of single-

dimensional augmentation. The variations encompassed brightness (25%), exposure (20%), saturation (40%), 

and hue (30%) conditions [12]. The optimal hyperparameter configuration (batch_size = 32 and epochs = 300) 

established in the preliminary study was consistently maintained across all training runs [16]. This specific 

configuration, in conjunction with the Adam optimizer with an initial learning rate of 1×10⁻⁴ and the categorical 

cross-entropy loss function, enabled a precise evaluation of the impact of each type of photometric perturbation 
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simulated by the nine datasets on ResNet-101's generalization capability and the stabilization of the Multi 

Braille Character (MBC) classification performance of 105 classes. All experiments were conducted using the 

PyTorch framework in Python on the Google Collab platform, utilizing an NVIDIA A100 GPU, which enables 

efficient large-scale model training. 

The confusion-matrix approach was used to assess classification performance [18],[34]. The MBC 

classifier using the multi-class confusion matrix 𝐶 ∈  ℕ𝐾×𝐾  with 𝐾 =  105, where 𝐶𝑖𝑗 counts test images of 

true class 𝑖 predicted as class 𝑗. Overall performance is reported as Accuracy. For class-wise analysis (one-vs-

rest): for each class 𝑘, 𝑇𝑃𝑘 = 𝐶𝑘𝑘, 𝐹 𝑃𝑘 =  𝛴𝑖≠𝑘  𝐶𝑖𝑘, 𝐹𝑁𝑘  =  𝛴𝑗≠𝑘 𝐶𝑘𝑗 , and 𝑇𝑁𝑘 = 𝑁 − 𝑇𝑃𝑘 − 𝐹𝑃𝑘 − 𝐹𝑁𝑘, 

with 𝑁 = ∑ ∑ 𝐶𝑖𝑗
𝐾
𝑗=1

𝐾
𝑖=1 . Accuracy is the proportion of correct decisions. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑘 and 𝑅𝑒𝑐𝑎𝑙𝑙𝑘 measure 

reliability and coverage for class 𝑘. 𝐹1𝑘 is the harmonic mean of Precisionk and 𝑅𝑒𝑐𝑎𝑙𝑙𝑘. All metrics are 

expressed in percent (×100) [40]. 

 

 Accuracy =
∑ 𝐶𝐾

𝑘=1 𝑘𝑘

∑𝐾
𝑖=1 ∑𝐾

𝑗=1 𝐶𝑖𝑗

× 100% (1) 

 Precision𝑘 =
𝐶𝑘𝑘

∑𝐾
𝑖=1 𝐶𝑖𝑘

× 100% (2) 

 Recall𝑘 =
𝐶𝑘𝑘

∑𝐾
𝑗=1 𝐶𝑘𝑗

× 100% (3) 

 F1𝑘 =
2 Precision𝑘  Recall𝑘

Precision𝑘 + Recall𝑘

× 100% (4) 

 

4. RESULT AND DISCUSSION 

4.1. Collect Data 

The dataset collected (Figure 7) during the data collection phase contains 21 images of braille sheets 

comprising braille characters that will be processed in the subsequent stage. This curated set constitutes the 

input to the preprocessing. 

 

 
Figure 7. One of the results of collecting braille sheets 

 

4.2. Augmentation 

The second stage involves augmenting the original dataset of 21 images with four types of augmentation: 

brightness (±25%), exposure (±20%), saturation (±40%), and hue (±30%). This augmentation process resulted 

in the creation of 210 Braille sheet images consisting of 21 original sheet images and 189 augmented sheet 

images (Figure 8). 
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Figure 8. Sample of Data Original Image and Augmentation Brightness, Exposure, Saturation and Hue 

 

4.3. Data rotation,Transformation, Grid, and Cell Parameter Determination 
The outcome of the third stage is an augmented image dataset of Braille sheets that have been rotated 

with the assistance of visual guidelines. The results are stored as a baseline to mitigate the risk of 

misclassification caused by spatial misalignment. In the next stage, the results of determining the grid and cell 

parameters are obtained in the form of MBC structure mapping, which will be used for processing. The fifth 

stage of data preprocessing is the final stage, which involves the division of data. Figure 9 shows the flow of 

dataset creation. This process yields MBC images that exhibit a consistent grid and dimension, measuring 

89x89 pixels. This process produces 105 sub-directories for each augmentation type, which serve as containers 

for the training data. As a result, the number of datasets, which initially consisted of only 1,050 original MBC 

images, increased to 9,450 augmented MBC images. Figure 10 is the result of the process of rotation, grid and 

cutting braille based on the grid to form the MBC dataset. 

 

 
Figure 9. Workflow of dataset construction for MBC recognition, illustrating alphabet selection, photometric 

augmentation, sheet collection, and extraction of 9,450 Multi-Braille Character (MBC) samples from 189 Braille sheets 

 

 
Figure 10. The result of the image cutting process based on the grid with augmentasion of original (a), brightness +25% 

(b), brightness -25% (c), exposure +20% (d), exposure -20% (e), saturation +40% (f), saturation -40% (g), hue +30% (h) 

and hue -30% (i) 
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4.4. Model Training and Evaluation 

The training process is carried out using the ResNet101 architecture to get the best model from the input 

data in the form of datasets that have been augmented with brightness (±25%), exposure (±20%), saturation 

(±40%), and hue (±30%) as well as the original dataset. Visual analysis of the bar charts comparing 

performance metrics (Test Accuracy and F1-Score) and training time efficiency (Time) for each individual 

augmentation scenario revealed substantial trade-offs. It is generally seen that F1-Score in almost all individual 

scenarios is lower than Test Accuracy, corroborating the importance of F1-Score as a more honest metric to 

measure the stability of multi-class classifications (105 MBC classes). Figure 11 employs dual y-axes to clearly 

distinguish Test Accuracy and F1-Score, which represent different evaluation metrics with distinct 

interpretative meanings. This visualization avoids potential misinterpretation that may arise when both metrics 

are plotted on a single axis.  

 

 
Figure 11. Comparison of Test Accuracy and F1-Score across different photometric augmentation strategies. Test 

Accuracy is plotted on the left y-axis, while F1-Score is shown on the right y-axis to account for their different scales and 

evaluation meanings 

 

Evaluation of the effectiveness of individual data augmentation techniques showed a significant trade-off 

between model accuracy and computational cost. Exposure -20% (Exp -20%) augmentation emerged as the 

most efficient solution, as it achieved a Test Accuracy of 86.13%-improving the model performance by 11.76% 

compared to the Original base model (74.37%) while simultaneously reducing the training time to 14.12 

minutes, much shorter than the 22.10 minutes required for the model without augmentation. However, extreme 

augmentation treatments, such as Bright +25% and Hue +30%, resulted in significant performance degradation. 

Bright +25% caused the accuracy to plummet to 64.76% (-9.61%), and Hue +30% resulted in 68.14% (-6.23%). 

The opposite conclusion is reached when considering aggressive augmentation, which has been found to 

be detrimental. Specifically, an increase of 25% in brightness results in a 9.61 point percentage decrease in 

accuracy, to 64.76%, and a 6.23 point percentage decrease in accuracy when the hue is increased by 30%, to 

68.14%. It has been observed that both treatments have a tendency to disrupt the subtle shading patterns that 

serve as the primary cue for CNNs to differentiate between similar point configurations. Over brightening 

results in the image floor level being elevated, leading to a loss of micro-contrast, while a significant hue shift 

causes a deviation from the natural color distribution. The performance curves of the ResNet-101 model 

demonstrate stable and effective learning for the 105-class Multi-Braille Character (MBC) classification task. 

Figure 12 corresponds to the Exp −20% augmentation setting reported in Table 2. 

The training accuracy quickly converges to 100%, while the validation accuracy stabilizes at 86.13%, 

indicating strong and consistent generalization. This behavior is supported by the loss curves, where the 

training loss approaches zero and the validation loss converges to a low and stable value (≈0.5). Indicating that 

the model has good generalisation and does not suffer from severe overfitting.  

Figure 13 illustrates the row-normalized confusion matrix of the proposed 105-class Multi-Braille 

Character (MBC) recognition model evaluated on the test set. The pronounced diagonal dominance indicates 

high per-class recall and stable classification behavior across the majority of MBC classes. The limited off-

diagonal responses correspond to systematic misclassifications between MBC pairs with minimal structural 

differences, typically differing by a single Braille dot or slight positional variation within the same grid cell. 

These patterns generate highly similar dot–shadow intensity distributions, which can reduce inter-class 

separability at the feature level. Additional minor confusions are observed near grid boundaries, where small 

spatial deviations may alter local contrast relationships. The absence of large error clusters confirms that the 
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proposed spatial normalization and controlled photometric augmentation effectively maintain discriminative 

representations, and that residual errors are primarily attributable to intrinsic visual similarity rather than model 

overfitting or instability MBC recognition framework. 

In summary, the present visualization underscores the pivotal role of the specific augmentation technique 

in question. It is imperative to note that not all methods are equally beneficial; indeed, some have the potential 

to be deleterious. The findings indicate that strategies that augment contrast or stabilize visual features, such 

as reducing exposure, are the most promising approaches for enhancing model accuracy in Multi-Braille 

Character recognition tasks. 

 
Table 2. The Most Effective Individual Augmentation (Accuracy-Time Trade-off) 

Scenario Time (mint) Test Accuracy (%) F1-Score (%) Improved Accuracy (vs Original) 

Original 22.10 74.37% 69.48% 0.00% 

Exp -20% 14.12 86.13% 74.31% +11.76% 

Sat -40% 10.26 83.22% 62.43% +8.85% 

Hue -30% 10.30 80.95% 76.98% +6.58% 

Bright -25% 12.35 80.00% 73.97% +5.63% 

Sat +40% 10.07 79.69% 52.97% +5.32% 

Exp +20% 13.87 75.61% 62.88% +1.24% 

Hue +30% 10.36 68.14% 59.82% -6.23% 

Bright +25% 4.52 64.76% 57.78% -9.61% 

 

 
Figure 12. Model Training Performance for Accuracy and Loss 

 

 
Figure 13. Confusion Matrix for 105-Class Braille Character Recognition (MBC) 
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5. CONCLUSIONS 

The present study empirically evaluates Multi-Braille Character (MBC) classification with a particular 

emphasis on the ResNet-101 framework applied to a 105-syllable class dataset. The primary methodological 

contributions lie in the proposed pre-processing and controlled augmentation strategy. Experimental results 

identify Exposure −20% as the most effective single augmentation, improving test accuracy to 86.13% while 

reducing training time to 14.12 minutes. Additionally, the use of OpenCV-based semi-automated preprocessing 

and grid-based splitting effectively mitigates spatial jitter, which is a fundamental prerequisite for robust model 

generalization. Overall, this approach provides an efficient and reliable pipeline for accurate Braille document 

digitization under realistic imaging conditions, making it well suited for assistive technologies and large-scale 

Braille content conversion where robustness to illumination variation and computational efficiency are 

essential. 
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