Buletin Ilmiah Sarjana Teknik Elektro
Vol. 8, No. 1, February 2026, pp. 222-240
ISSN: 2685-9572, DOI: 10.12928/biste.v8il.14677 222

Artificial Intelligence and IoT for Riverine Qil Spill Detection:
A Focused Review and Proposed Adaptive Edge Framework

Shireen M. AL-Khafaji, Hikmat N. Abdullah

Department of Information and Communications Engineering, College of Information Engineering, Al-Nahrain

University, Jadriya, Baghdad, Iraq

ARTICLE INFORMATION

ABSTRACT

Article History:

Received 08 September 2025
Revised 14 December 2025
Accepted 10 February 2026

Keywords:

Freshwater Monitoring;
Synthetic Aperture Radar (SAR);
Multi-Sensor Data Fusion;
Federated Learning;
Hyperspectral Imaging

Corresponding Author:

Shireen M. AL-Khafajil,
Department of Information and
Communications Engineering,
Al-Nahrain University
Baghdad, Iraq.

Email: shireen.migsid@coie-
nahrain.edu.iq

This work is open access under a
Creative Commons Attribution-Share
Alike 4.0

[ Prablem & Traditianal Limitatians | | Prop jcs-Aware Al-loT F

Satellite/SAR River-Edge Nodes Review Findings
(Marine Focus) J
A

>
(47 Studies, 2020-2025
RGB/NIR A A {: ies, )
rarey 3 NB-loT (@) Traditional Hybrid AlHoT
g Thermal —p Wy (SARHyperspecial] (Edge GNNTransforer]
F Infrared :
infrarad ] Lightweight
’

Federated
UVIFluorometric
Probes

Coordination /
& Synthesis \ i
Turbidity/ b \
'g Mutiispectral .
Uit i

[ Findings & Future Directions

Acouracy Latency  Accuracy Latancy
(Revisil Milizscond)

> verscergs gL

Moderate Pawer |
Future Needs
ks
Degraded '

; 4 crﬁﬁﬂ?ﬁ‘ﬁﬁ. !.‘ggmﬂg:fs Hy:rllg:z,ri\:in;cs Open Coordinated

> Dynamic) e ) Embeddings Benchmarks  River Trials
Challenges: High Turbidty, Rapid S i e Standardized Evaluation & | |

Hydrodynarmics, Shallow Depths SEL TurbidityMuls Units (i Accelerated Translation |

Riverine oil spills are more challenging to detect than marine spills due to
shallow depths, high turbidity, and rapidly changing hydrodynamics, which
degrade the performance of satellite- and SAR-based detection methods. This
review examines how artificial intelligence and the Internet of Things can
deliver accurate, low-latency detection in freshwater and defines an Al-IoT
system as distributed river-edge nodes with RGB/NIR cameras, thermal
infrared sensors, UV/fluorometric probes, and turbidity/multispectral units
running lightweight deep models on low-power hardware and networked via
LPWAN or NB-IoT with optional federated coordination. The novel
contribution is a hydrodynamics-aware, adaptive framework that embeds
river flow and turbidity, couples explicit constraints on edge compute,
energy, and inference latency, and derives multi-sensor fusion logic from
comparative synthesis. Performance is organized along accuracy, decision
latency, deployment cost, and environmental adaptability. Using a structured
narrative review with scoping elements, the research screened 145 records
from major databases. It synthesized 47 peer-reviewed studies (2020-2025),
harmonized definitions, and applied descriptive synthesis to manage
heterogeneous metrics and protocols. Results show that SAR and
hyperspectral methods that excel in marine or controlled settings often
degrade in narrow, turbid rivers because of clutter and revisit latency. In
contrast, hybrid AI-IoT architectures employing compact CNN/Transformer
variants at the edge report high accuracy with millisecond-scale inference and
moderate power budgets. Limitations include heterogeneous reporting, non-
standard datasets, and limited multi-site validation. The framework and
synthesis motivate open benchmarks and coordinated river trials to
standardize evaluation and accelerate translation.
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1. INTRODUCTION
Oil spills constitute severe environmental disasters, originating from human activities that release

petroleum hydrocarbons into natural water systems [1][2]. These incidents typically result from exploration,

transportation, and refining activities, with tanker accidents alone accounting for an estimated 5.86 million tons
of oil globally [3]. Reducing the environmental impact of such accidents critically depends on early and
accurate detection. Rivers present a particular challenge compared to marine environments. Unlike oceans and
seas, rivers exhibit dynamic hydrodynamic behaviour, including strong currents, turbulence, shallow depths,
debris, and confined channel geometries that severely hamper conventional oil detection and containment
efforts [4][5]. Spills can spread swiftly, travelling hundreds of kilometres from the source and forming

fragmented or submerged oil layers that are difficult to track [6].

Conventional monitoring has predominantly relied on manual sampling and satellite remote sensing.
Synthetic Aperture Radar (SAR) and related satellite-based methods enable large-scale surveillance, yet they
encounter significant limitations in riverine settings [7]-[9]. In narrow channels, satellite imagery suffers from
insufficient spatial resolution, and the latency of satellite passes fails to capture rapid downstream transport. In
addition, high turbidity, vegetation, and complex backgrounds in inland waters frequently lead to
misclassification, in which natural features or look-alikes are mistaken for oil films [10]-[12]. Comparative
studies further show that models calibrated on open-ocean imagery often degrade when applied to narrow,
turbid waterways, highlighting a performance gap between marine-optimized and riverine detection systems
in terms of accuracy, latency, and operational reliability [13].

Recent advances in the Internet of Things (IoT) and Artificial Intelligence (AI) offer alternative
approaches to these constraints. IoT-based sensing networks employing thermal, optical, fluorometric, and
other advanced sensors are increasingly utilized for high-frequency in-situ water monitoring .Al algorithms
such as Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), and other deep architectures are
applied to remote-sensing and in-situ data for oil spill detection and related environmental assessment [14]-
[17]. A recent YOLOv11-driven model that integrates multispectral UAV imaging with multi-scale feature
fusion and attention mechanisms (YOLO-ADHF-SimAM) has demonstrated that lightweight UAV-AI systems
can achieve high precision and robust mAP performance for inland lake oil spill detection, even under turbid
water and vegetation occlusion. This confirms the feasibility of real-time, edge-oriented monitoring in complex
inland waters [18]. Unlike satellite-based platforms, IoT nodes provide continuous local measurements, and
Al models can capture non-linear patterns arising from turbidity, clutter, and dynamic flow, making Al-IoT
architectures particularly suitable for riverine environments.

Al-IoT integration further enables edge computing, where detection decisions are made close to the
sensors, reducing communication delays and enabling adaptation to local flow dynamics [19]-[21]. These
capabilities indicate that AI-IoT architectures are well-positioned to complement or surpass traditional marine-
optimized technologies for riverine spill detection, particularly when performance is evaluated across multiple
criteria, including detection accuracy, decision latency, deployment cost, and adaptability to changing
hydrodynamic and optical conditions.

Despite these technological advances, a critical gap remains in the literature. Many studies treat sensing
systems and algorithmic analysis in isolation or rely on models trained primarily on marine datasets that do not
generalize well to freshwater environments [13],[22][ 23]. Operational limitations persist where turbulent flow
displaces oil plumes beyond fixed sensor ranges [24], and data privacy or governance concerns restrict the
sharing of large-scale datasets needed to train robust deep learning models [25][26]. Furthermore, reported
performance metrics are heterogeneous and rarely jointly evaluate accuracy, latency, cost, and adaptability
under realistic riverine conditions [7]. Improving robustness under such variable conditions requires a unified
framework that combines advanced data-fusion techniques, adaptive learning algorithms including federated
and generative approaches, and hydrodynamic knowledge of spill transport [27][28]. Consequently, this paper
pursues two distinct objectives:

e  Systematic Review: To critically evaluate how traditional, Al-based, and hybrid technologies compare
regarding accuracy, latency, and adaptability in freshwater environments [29].

e  Conceptual Proposal: To formulate a novel Adaptive AI-IoT Framework that integrates remote and in-
situ sensing [30]-[34]. This framework is not an arbitrary design but is derived directly from the
limitations identified in the review, explicitly addressing the need for hydrodynamic masking [24], edge
computing [21], and privacy-preserving Federated Learning [28],[35] in riverine monitoring, as
schematically illustrated in Figure 1.

Based on the above objectives, the research contributions are (i) a river-focused comparative review
across four axes (accuracy, latency, cost, and adaptability); and (ii) a hydrodynamics-aware, adaptive Al-IoT
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framework derived from the identified limitations, as detailed in Section 5. To address these objectives, the
remainder of the paper is structured as follows. Section 2 characterizes riverine spill dynamics and reviews
conventional and emerging detection modalities. Section 3 details the review methodology, including
databases, screening protocol, and performance criteria. Section 4 synthesizes the evidence in a comparative
analysis of technological and algorithmic options. Section 5 proposes the adaptive, hydrodynamics-aware Al-
IoT framework and discusses implementation considerations for sensor nodes, edge compute, and multi-sensor
fusion. Section 6 concludes with key findings, limitations, and prioritized directions for future research.
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Figure 1. Framework for riverine oil-spill detection

2. MATERIALS AND METHODS

This section describes the methodological approach used to identify, select, and analyze the literature on
riverine oil spill detection technologies. It details the review design, database search strategy, screening and
eligibility procedures, data extraction and synthesis protocol, and the process by which the adaptive Al-IoT
framework was derived from the assembled evidence base.

2.1. Research Methodology

This study adopts a structured narrative review with elements of a scoping review. The methodology
enables a qualitative appraisal of heterogeneous technologies, such as satellite radar, unmanned aerial vehicles,
in-situ ToT sensors, and Al-based classifiers. It supports the derivation of an integrated, adaptive framework.
The methodology follows four main phases: (1) identification of relevant literature using structured Boolean
search strings; (2) screening and eligibility assessment based on predefined inclusion and exclusion criteria;
(3) data extraction and comparative synthesis of performance and operational metrics; and (4) formulation of
an adaptive Al-IoT framework grounded in the identified gaps and limitations [36].

2.2. Search Strategy, Study Selection, and Inclusion Criteria

A systematic search was conducted in IEEE Xplore, Scopus, Web of Science Core Collection, and
ScienceDirect for publications between 1 January 2020 and 31 December 2025, a period chosen to capture the
emergence of Vision Transformers and edge-native Al. A structured Boolean query, applied to titles, abstracts,
and keywords, combined oil-spill terms, riverine terms, and Al/IoT terms; a representative form was (oil spill
detection OR hydrocarbon sensing) AND (river OR freshwater OR inland water) AND (artificial intelligence
OR deep learning OR ToT OR edge computing).

Where supported, subject-area filters were used to restrict results to environmental science, remote
sensing, computer science, and electrical engineering. Google Scholar served solely as a secondary source to
identify grey literature and recent preprints not yet indexed, accounting for less than 5% of the final set of
included studies.
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The initial search returned 145 records. After removing 28 duplicates, 117 unique records underwent title-
abstract screening. Studies were included if they: (1) were peer-reviewed journal articles or full conference
papers in English; (2) addressed oil, hydrocarbon, or closely related surface-water contamination in riverine,
lake, reservoir, estuarine, or other freshwater environments, or presented marine methods whose formulation
and evaluation were explicitly transferable to riverine contexts; (3) employed remote sensing, in-situ or [oT-
based sensing, or combined sensing architectures; (4) used artificial intelligence, machine learning, deep
learning, algorithmic data fusion, or clearly specified architectures relevant to Al-IoT integration; and (5)
reported at least one quantitative or operational metric relevant to detection. Editorials and policy papers
without technical detail, studies focused exclusively on open-ocean spills, purely numerical trajectory models
without sensing components, short abstracts or theses lacking methodological description, non-English
publications, and duplicate or superseded versions were excluded. Application of these criteria resulted in a
final group of 47 eligible studies.

2.3. Screening and Quality Appraisal (PRISMA Workflow)

Title and abstract screening yielded 62 articles for full-text review, of which 47 met the final eligibility
threshold and formed the core evidence base. The selection process is summarized in the PRISMA-style flow
diagram in Figure 2, which reports the numbers of records identified, screened, excluded at each stage, and
retained for synthesis. Methodological quality and risk of bias were qualitatively appraised for each included
study across five aspects: clarity and reproducibility of the sensing and algorithmic pipeline; adequacy of the
ground truth and validation strategy; sample size and environmental diversity; transparency of evaluation
metrics and numerical results; and explicit acknowledgement of limitations and failure modes. Each aspect was
rated as strong, moderate, or weak. These ratings informed the interpretive weight assigned to individual results
in the synthesis but were not used as complex exclusion criteria.
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Figure 2: PRISMA flow diagram of the study selection process for riverine oil spill detection studies
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2.4. Data Extraction and Comparative Synthesis

A standardized extraction template was used for all included studies. Extracted variables encompassed
environmental setting; sensing modality and platform; algorithmic approach; system architecture (standalone
remote sensing, in-situ [oT network, edge cloud hierarchy, federated configuration); dataset characteristics and
ground truth; and performance and operational metrics.

Key concepts were coded using harmonized operational definitions. Detection accuracy was recorded as
the primary accuracy metric reported in each study, with explicit notation indicating whether it corresponded
to mean average precision, F1-score, intersection-over-union, overall accuracy, or a related measure. Latency
denotes the time between data acquisition and the availability of a detection decision. It was either extracted
numerically or categorized into sub-second, second, minute, and longer-than-hour classes when only
qualitative descriptions were available. Deployment cost referred to direct sensing and computing hardware
expenditure and was coded qualitatively as low, medium, or high based on relative platform requirements (for
example, satellite imagery subscription versus low-cost embedded hardware). Adaptability was captured as
robustness to variations in turbidity, flow velocity, illumination, and background clutter. It was coded on an
ordinal scale (low, medium, high) based on the range of conditions tested and the presence of explicit
robustness analysis.

Because of substantial heterogeneity in datasets, evaluation protocols, and reported metrics, formal meta-
analysis was not appropriate. Instead, a descriptive and comparative synthesis was undertaken. Studies were
grouped into three clusters: remote sensing, in-situ IoT sensing, and hybrid AI-IoT architectures. Performance,
latency, cost, and adaptability were summarized as literature-based ranges rather than pooled estimates.
Conflicting or anomalous findings were documented explicitly, with particular attention to conditions under
which methods degraded or failed.

2.5. Quantitative Synthesis and Handling of Heterogeneity
The substantial heterogeneity in evaluation protocols, the use of divergent Intersection-over-Union

thresholds, and the use of varying hardware platforms for latency testing precluded the execution of a statistical

meta-analysis. Consequently, a descriptive best-evidence synthesis was employed. The performance ranges
presented in the Results section, specifically in Table 4 and Table 5, constitute the envelope of peak
performance derived from the eligible studies.

e  Accuracy: The specified ranges define the interval extending from the lowest to the highest optimal F1-
scores or mean Average Precision values documented in peer-reviewed trials. Outliers lacking rigorous
cross-validation were excluded to maintain data reliability.

e Latency: Inference times were categorized according to hardware class, such as distinguishing between
standard single-board computers and GPU-accelerated edge devices, such as Raspberry Pi vs. Jetson
Nano, to ensure valid comparability.

e Interpretation: These ranges represent the technical capability of current state-of-the-art models under
controlled experimental conditions rather than a statistical mean of performance across all operational
field deployments.

2.6. Framework Design Procedure

The final phase translated recurrent limitations identified in the synthesis into a conceptual design for an
adaptive Al-IoT framework. Key shortcomings, such as satellite revisit latency, poor transfer of marine-trained
models to riverine domains, data scarcity and privacy constraints for riverine datasets, and energy and
connectivity limitations of in-situ nodes, were mapped to methodological opportunities in federated learning
for privacy-preserving training [37], edge computing for low-latency inference [21], and multimodal fusion for
robustness under turbid and cluttered conditions [11]. The resulting hydrodynamics-aware framework,
presented in Section 5, combines the most promising sensing modalities and algorithmic components identified
in the review and is proposed as a logically derived response to the gaps and trade-offs revealed by the
comparative analysis.

3. RESULT AND DISCUSSION

This section presents the synthesized results of the literature review and an integrated discussion of how
existing technologies perform for riverine oil spill detection. The review evaluates systems against four joint
criteria: detection accuracy, decision latency, deployment cost, and environmental adaptability. The analysis
first distils the study’s principal findings, then situates them relative to prior work, interprets their implications
and underlying mechanisms, and concludes with a balanced appraisal of strengths and limitations.
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3.1. Main Findings of the Present Study

This subsection synthesizes the key outcomes of the reviewed studies, highlighting how riverine
hydrodynamics, sensing technologies, and AI-IoT integration collectively influence oil spill detection
performance. It distils the main evidence-based patterns in accuracy, latency, cost, and adaptability that
underpin the subsequent discussion.

3.1.1. Riverine Spill Dynamics

Oil behavior in rivers is consistently shown to be governed by hydrodynamic and physicochemical
processes that differ markedly from those in marine environments [2]. Swift longitudinal currents, turbulence,
shallow depths, and confined channel geometries accelerate downstream advection and limit lateral spreading
[6],]24]. As illustrated in Figure 3, a representative hydrodynamic simulation of an oil spill in a curved river
reach (0-3600 s) demonstrates that channel curvature and secondary currents concentrate slicks along the outer
bend, increasing downstream dispersion by about 30-40% relative to an equivalent straight reach due to locally
elevated velocities and turbulent kinetic energy [5]. The key hydrodynamic parameters influencing this
behavior are synthesized in Table 1, which compiles typical ranges of flow velocity, TKE, suspended sediment
concentration, water temperature, and oil viscosity from recent river-focused studies [38] . These ranges (U =
0.2-2.5 m/s, TKE =~ 0.001-0.2 m?/s2, Cs =~ 10-800 mg/L, temperature ~ 5-35 °C, viscosity = 5-200 cP) highlight
substantial spatial and seasonal variability and explain why oil may appear as thin surface films, submerged
oil-particle aggregates in turbid flow, or residues attached to shorelines and vegetation [7] . Overall, the main
hydrodynamic conclusion is that riverine spills are more dynamic, heterogeneous, and localized than marine
spills, making static or low-frequency monitoring particularly prone to missed detection
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Figure 3. Simulated oil spill dispersion in a curved river channel over one hour (0-3600 s) [5]
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Table 1. Key hydrodynamic parameters influencing oil behavior in riverine systems [5],[43]

Parameter Influence on Qil Behavior Typical Range
Flow velocity (U) [m/s] Controls advection rate 0.2-2.5
Turbulent kinetic energy (TKE) [m?/s?] Promotes vertical mixing 0.001-0.2
Sediment concentration (Cs) [mg/L] Enhances oil particle aggregation (OPA) 10 - 800
Water temperature (°C) Affects evaporation and emulsification 5-35
Oil viscosity (cP) Governs the spreading and weathering rate 5-200

3.1.2. Detection Technologies: Traditional Vs. Emerging Approaches
The synthesized body of literature evidences a pronounced shift from conventional, manual-intensive
monitoring practices toward automated, Al- and IoT-enabled architectures for riverine oil spill detection
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[51,[71,[131,[19],[22],[39]. As summarized in Table 2, traditional approaches encompassing visual patrols,
grab sampling with subsequent laboratory analysis, and standalone optical or SAR remote sensing remain
operationally relevant, yet are characterized by delayed detection, localized and intermittent spatial-temporal
coverage, strong dependence on human operators, and substantial recurrent labour requirements [29],[40]. In
contrast, emerging AI-IoT and hybrid systems integrate multi-sensor data streams from satellite, UAV, and in-
situ sensor networks with edge and cloud analytics to support near real-time, largely autonomous detection and
alert generation [13]-[17],[19],[21]. The comparative profiles reported in Table 2, derived from these studies,
indicate that although such architectures entail higher initial investments in sensing, communication, and
computational infrastructure, they deliver marked improvements in detection speed, spatial and temporal
coverage, environmental adaptability, and scalability by reducing routine human intervention and enabling
continuous multi-site monitoring in hydrodynamically dynamic riverine environments.

Table 2. Comparison between traditional and Al-IoT-based oil spill detection approaches in riverine environments.

Aspect

Traditional Approaches

Emerging Approaches (Al-IoT, Hybrid)

Primary techniques
Data source

Detection speed

Spatial/temporal
coverage
Accuracy and
precision

Human involvement

Cost and
infrastructure
Environmental
adaptability
Scalability and
integration

Typical limitations

Visual patrols, manual sampling, laboratory
testing, and standalone optical/SAR remote sensing
Physical water samples, visual observation, single-

sensor imagery
Delayed; dependent on sample collection,
transport, and laboratory processing
Localized and intermittent; periodic field
campaigns or satellite overpasses
High in laboratory conditions, but prone to
sampling and observer error in the field
Extensive manual sampling, inspection, and result
interpretation
Low-moderate equipment cost; high recurring
labor and operational effort
Sensitive to weather, lighting, access constraints,
and operator availability
Limited scalability; largely isolated instruments
and datasets
Slow response, low automation, sparse coverage,
limited real-time capability

Al-based image analysis, in-situ IoT sensing, edge
and cloud analytics
Multi-sensor fusion (satellite, UAV, in-situ),
continuous environmental data streams
Near real-time; autonomous detection through on-
board and edge Al inference
Continuous monitoring; scalable to multiple rivers
reaches and critical sites
Highly underwell-trained models; adaptive to noise,
clutter, and changing conditions
Minimal routine intervention; automated acquisition,
processing, and alerting
Moderate-high initial deployment cost; reduced
marginal cost and labor at scale
Improved robustness under variable flow, turbidity,
and illumination; suitable for dynamic rivers
Highly scalable; integrates heterogeneous sensors,
Al models, and cloud/edge platforms
Requires computational resources, reliable power,
and communication connectivity

3.1.3. Al-Driven Sensing, Data Fusion, and Model Performance

Modern riverine oil spill detection increasingly employs multi-source data fusion and advanced Al models
to reconcile heterogeneous observations under strongly variable hydrodynamic and optical conditions. Several
studies combine SAR imagery, UAV-based hyperspectral or thermal data, and in-situ IoT measurements,
including chemical, optical, water-quality, and water-level sensors, to construct an integrated representation of
river state [8],[11],[22],[31],[32] . Representative specifications of low-cost IoT sensors suitable for real-time
riverine monitoring are summarised in Table 3, highlighting the diversity of measured parameters and
communication protocols that can be exploited within AI-IoT frameworks.

Table 3. Specifications of IoT Sensors for Real-Time Riverine Monitoring
Parameter Monitored Typical Range/Accuracy Communication Protocol
Visual imagery High-resolution; 224x224 pixels Wi-Fi/ Zigbee
Hydrocarbon concentration ppm scale; +5% accuracy LoRaWAN / NB-IoT
Temperature, pH, DO Temperature: -40°C to 85°C MQTT
Water level Range: 0 4 m; 1% accuracy Zigbee / Wi-Fi

Sensor Type
Optical Camera
Chemical Sensor
Water Quality Sensor
Ultrasonic Sensor

Within such architectures, data fusion is typically formulated using state-estimation and probabilistic
frameworks. In Kalman-based fusion [41], the a priori (predicted) state estimate at time step k;denoted Xy |x—1

(equivalently x; ), is updated to the a posteriori (corrected) estimate X or X, after assimilating a new
observation z; according to (1):

X = Ripe—1 T Kie (2 — HRpje-1) (1)

where K, is the Kalman gain and H is the observation matrix [29]. Complementarily, Bayesian fusion
[42] refines the posterior belief over the environmental state 8 given data D Via (2):
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P(D\).P(6)
P(D)

which provides a principled mechanism for combining heterogeneous sensor streams while explicitly
accounting for uncertainty. Across the reviewed studies, application of the formulations in (1) to (2) to
combined SAR, UAV, and IoT datasets has been reported to reduce false positives and yield more stable
detection performance in turbid, cluttered river reaches when compared with single-sensor baselines [22],[24].

At the algorithmic level, deep learning models constitute the analytical core of next-generation systems.
Architectures such as ResNet, DeepLabv3+, Vision Transformers (ViT), and YOLO variants have been
deployed for oil-non-oil discrimination and spill localization on SAR, optical, and hyperspectral imagery
[81,[15],[18],[43][44]. Supervised training typically minimizes the categorical cross-entropy loss [45] in (3):

P(6\D) = 2)

N
L==> ylogy, ()
i=1

where y; and ¥; denote the actual label and predicted probability for class i, respectively. Due to the
limited availability of labelled riverine datasets, transfer learning is widely adopted; models pre-trained on
large-scale image corpora are fine-tuned on domain-specific datasets such as inland-water oil imagery, which
improves generalization under scarce annotations [5],[17].

To address data privacy constraints and distributional heterogeneity across geographically dispersed
monitoring sites, several environmental sensing studies utilise Federated Learning (FL) frameworks
[25],[271[28],[35]. In FL, each local node ii updates its model parameters w a stochastic gradient descent [46],
as in (4):

witt = wi = VL (w;) “4)

Where 7 is the learning rate and £; is the local loss function. A central server then aggregates the local updates
using Federated Averaging (5):

K
n.
Wt+1 — Z t Wit+1 (5)
o

Ntotal

with n; denoting the number of samples at the client i and n,pq = Yk, ni Figure 4 conceptually
summarizes this self-evolving learning loop: IoT nodes perform local training using (4), an edge-cloud or cloud
server aggregates and updates a global model using (5), and refined parameters are periodically redeployed to
the edge. This workflow allows detection models to adapt to seasonal turbidity changes, evolving background
patterns, and sensor drift, while avoiding transmission of raw data and thereby preserving privacy and reducing
bandwidth demands.

Despite these methodological advances, data scarcity and class imbalance remain central challenges,
particularly for rare or extreme spill configurations. To mitigate these limitations, several works employ
Generative Adversarial Networks (GANSs) to augment oil spill datasets synthetically [47][48] .The standard
GAN minimax objective [49] in (6),

rnGin mgx V(D,G) = [E:x~pdam(x) [log D(x)] + E;~p, (2 [log(1 — D(G(2)))]- (6)

Pits a generator G, which produces synthetic samples from noise z, against a discriminator D, which
distinguishes real from generated data. For oil spill imagery, GAN-based augmentation has been reported to
increase robustness under rare conditions such as thin surface sheens, highly turbid water, and complex
background clutter, with improvements of several percentage points in F1-score or mean average precision
relative to training without synthetic samples [48]. Taken together, multi-source fusion as formalized in (1)
and (2), deep learning optimization in (3), FL-based distributed training in (4) to (5), and GAN-based
augmentation in (6) form a coherent methodological toolkit that directly addresses the heterogeneity, non-
stationarity, and data limitations documented in the literature, thereby enabling more reliable and adaptive
riverine oil spill detection than static or single-sensor approaches.
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Field Data Acquisition and Preprocessing

(Noise removal, quality control, annotation)

Data Augmentation and Synthetic Sample Generation

(GAN-based synthesis, geometric and radiometric augmentation)

Deep Learning Model Training

(ResNet, DeepLabv3+, ViT, Transfer Learning)

Federated Learning Module (Edge Nodes)
(Local model update — FedAvg aggregation)

Adaptive Feedback and Model Refinement
(Continuous update with new field data)

Figure 4. Conceptual workflow of the self-evolving deep learning framework for oil spill detection

3.1.4. Edge Computing and Inference Performance

Edge computing places inference close to the data source, reducing end-to-end latency and decreasing
reliance on high-bandwidth, low-latency communication links. The total detection latency L [50] for a sensing
node expressed as in (7):

L= Tnetwork + Tprocessing + Tinference (7)

where Tperwork denotes communication time, Tprocessing denotes pre-inference signal or image
processing, and Tipference denotes model execution time [21],[26]. Deploying lightweight Al models on
embedded platforms such as Raspberry Pi and NVIDIA Jetson Nano allows local analysis of camera or sensor
data and the generation of alerts, substantially reducing T,erwork @and enabling near real-time decision-making
under intermittent connectivity conditions [17],[44],[47][48],[51],[58], accuracies for these models range from
approximately 90-92% for compact architectures such as MobileNet-V3 to 97-98% for ViT-B/16 on domain-
specific downstream tasks under controlled conditions. Corresponding single-image inference times on edge-
class hardware typically range from 10-20 ms for lightweight models such as YOLOv8-nano and ResNet-50,
and from 55-70 ms for ViT-B/16. Reported model sizes extend from roughly 12-25 MB for MobileNet-V3 and
YOLOvVS8-nano to approximately 320-340 MB for ViT-B/16, with FLOPs typically spanning 0.20 —
0.25 x 10° for MobileNet-V3, about 4 x 10° for ResNet-50, around 1.7 — 1.9 x 10° for EfficientNet-B3, and
17 — 18 x 10° for ViT-B/16, while YOLOv8-nano operates in the 8 — 9 X 10° range. These values indicate
a consistent accuracy-efficiency trade-off: architectures suitable for ultra-low-power IoT nodes tend to offer
slightly lower peak accuracy than large transformer-based models, but provide substantially lower latency and
computational demand, which are essential for continuous edge-based monitoring in riverine environments.

The discussion of Table 4 is based on literature-derived ranges rather than a single unified benchmark.
Accuracy values correspond to minimum-maximum results reported for downstream oil spill or environmental
monitoring tasks using the respective architectures. At the same time, FLOPs and model sizes follow standard
ImageNet-scale classifier configurations at 224 x 224 pixels for MobileNet-V3 Large, ResNet-50,
EfficientNet-B3, and ViT-B/16, and the canonical 640 x 640 detection configuration for YOLOv8-nano.
Inference times reflect single-image forward passes on representative edge-class CPUs and GPUs, such as
Jetson-class devices, and should therefore be interpreted as indicative envelopes rather than device-specific
guarantees. Results obtained with atypical input resolutions, aggressive quantization, or specialized
accelerators were not used to define the central ranges to limit bias from outliers. Under these assumptions, the
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Table 4 is intended to characterize relative trade-offs between accuracy and efficiency, and suitability for edge
deployment, rather than to provide exact, directly comparable benchmarks across all architectures.

Table 4. Comparative Performance of Deep Learning Models for Oil Spill Detection (Edge Deployment Suitability).

Model Edge
Al Model Act;r)a ey ,},?ﬁf:z:f:) Size (E(L;)OIZS) Deployment Remarks
° (MB) Suitability
. Ideal for low-power IoT nodes;
MO[ZZTIE?;]VS 90-92 20-35 20-25 0.2-0.25 Very High fastest inference with modest
’ accuracy.
Optimized for embedded
YOLOv8-nano 94-95 10-20 12-15 8-9 Very High inference; effective for small-
[541,[58] . X
scale spill detection.
ResNet-50 Balanced accuracy but heavier
[511,[55] 95-96 20-35 95-105 4.0-4.2 Moderate than mobile-optimized nets;

widely adopted in SAR.

EfficientNet-B3 Excellent accuracy but requires

[591[56] 96-97 25-40 45-55 1.8-1.9 Moderate greater memory and computing
resources.
Vision High precision but
Transformer (ViT- 97-98 55-70 320-340 17-18 Low computationally heavy; suited
B/16) [53],[57] to cloud or GPU processing.

The latency patterns implied by Table 4 are illustrated in Figure 5, which shows that models such as
YOLOvVS8-nano and ResNet-50 typically achieve inference times in the 10-20 ms range on edge hardware,
allowing frame-by-frame analysis close to real-time. In contrast, ViT-B/16 often exhibits latencies above 50
ms per frame, making it more appropriate for low-frequency or batch-processing scenarios. From an energy
perspective, dynamic power consumption E scales approximately with (8):

E « f.CV?2 ®

where C is the effective capacitance, V is the supply voltage, and f is the switching frequency. Higher
FLOPs and longer inference times, therefore, translate into increased energy usage and reduced battery lifetime
in remote deployments. Considered together, equation (7), the ranges synthesized in Table 4, and the latency
profiles depicted in Figure 5 emphasize that resource-aware model selection is a critical design factor in riverine
applications: compact convolutional networks and lightweight detectors are generally more appropriate for
continuous, edge-based monitoring, whereas large transformer-based models are better positioned for cloud-
side post-processing or offline analysis.

70

= N B OO @
o o o o o o©

Median Inference Latency (ms)

o

MobileNet-V3 YOLOv8-nano ResNet-50 VIT-B/16

Figure 5. Median inference Latency of representative deep models on edge-class hardware, derived from Latency ranges
reported in Table 4

3.1.5. Comparative Performance and Technology Gaps
A consolidated view of the comparative performance of the reviewed technologies is provided in Table
5, which classifies detection approaches by cost level, adaptability, and reported detection accuracy over the
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2020-2025 period. Cost levels are defined qualitatively to aid interpretation: low cost corresponds to basic
equipment with minimal automation and typical per-site hardware expenditure below USD 1,000; moderate
cost corresponds to multi-sensor or loT-based systems with embedded computing in the approximate range of
USD 1,000-10,000 per site; and high cost corresponds to specialized airborne or satellite sensors, or complex
UAV-hyperspectral platforms, frequently exceeding USD 10,000 per unit. Accuracy intervals in Table 5
represent literature-derived ranges rather than pooled statistics, assembled from multiple experimental and field
studies [5],[7],[8],[10],[13],[24],[46],[48]. Excessively high or low values reported under very narrow, highly
controlled, or poorly documented conditions were treated as outliers. They were not used to define the central
ranges when there was no corroboration. In cases where studies reported conflicting accuracies for a given
technology, the tabulated range was chosen to encompass the majority of results obtained under comparable
evaluation protocols, while recognizing the underlying heterogeneity in datasets, thresholds, and performance
metrics.

The pattern emerging from this synthesis is that hybrid AI-IoT frameworks occupy the favorable region
of the performance space, combining reported detection accuracies of 94-98% with high adaptability and
moderate cost when built from off-the-shelf components [24],[53]. Traditional visual inspection and grab
sampling fall at the low-cost end but show limited adaptability and lower field-level accuracy, typically around
60-85%, particularly in turbid or difficult-to-access river reaches. Thermal and infrared imaging exhibit
moderate cost and accuracy (approximately 85-90%), whereas SAR achieves accuracies of about 88-94% yet
remains constrained by relatively low adaptability in narrow, cluttered channels. Hyperspectral and UAV -
based sensing provide high accuracies (approximately 90-96%) but at substantially higher capital and
operational costs [8],[10][11],[46][47]. IoT sensor networks and standalone AI models occupy an intermediate
position, with accuracies typically in the 88-97% range and generally high adaptability across river conditions
[17],[21],[24],[53]. Taken together, the evidence indicates that integration and adaptivity rather than reliance
on any single sensor modality are the primary drivers of superior performance in riverine oil spill detection.

Table 5. Summary of Detection Technologies by Cost, Adaptability, and Accuracy (2020- 2025)

Technology Type Cost Level Adaptability Detection Accuracy (%)
Visual / Manual Inspection [29],[5] Low Low 60 -70
Grab Sampling / Laboratory [5][6] Low Moderate Moderate 80 - 85
Thermal / Infrared Imaging [60],[10] Moderate Moderate 85-90
SAR Imaging [8],[17] High Low 88 -94
Hyperspectral / UAV Sensing [60],[39],[23] High High 90 - 96
IoT Sensor Networks [61] Moderate High 88 -93
Al/ Deep Learning Models [19] Moderate High High 92-97
Hybrid Al-IoT Frameworks [62] Moderate Very High 94 -98

3.2. Comparison with Other Studies

The findings of the present synthesis are broadly consistent with, yet more focused explicitly than, several
prior reviews on oil spill detection and environmental sensing. Keramea et al. [7] and Yekeen and Balogun
[13] surveyed marine oil spill modelling and remote sensing and concluded that SAR and multispectral
imagery, combined with machine-learning classifiers, can achieve high detection accuracies in offshore
conditions. The accuracy ranges reported in those studies, typically on the order of 88-97 %, are in agreement
with the performance ranges summarized for SAR and deep learning-based approaches in the current review.
However, the assembled riverine evidence indicates that these methods are less reliable in narrow, turbid rivers,
where increased surface clutter, limited image footprint, bank proximity, and rapid hydrodynamic transport
lead to higher false-positive rates and more frequent missed detections [5],[8][9]. This discrepancy is consistent
with the distinct hydrodynamic regime illustrated in Figure 3 and quantified through the parameter ranges
reported in Table 1.

Al-Ruzouq ef al. [22] reviewed sensing technologies and machine learning for oil spill monitoring and
emphasized the value of combining multiple modalities. The present synthesis corroborates that conclusion but
adds a river-specific perspective by showing that, in turbid freshwater systems, the combined use of in-situ
sensors (chemical, optical, and water-level instruments) and Al-enhanced remote sensing is crucial for robust
detection. Studies on intelligent water monitoring and [oT sensor networks [19],[21],[33][34],[54] demonstrate
that Al-enabled infrastructures can provide continuous anomaly detection and rapid alerts. Building on this
literature, the present work extends the analysis by jointly considering performance, latency, and cost (Table
2, Table 4, and Table 5) and by highlighting the roles of edge computing and federated learning as key enablers
of real-time operation and privacy-preserving model adaptation in riverine applications [25],[28],[35].
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With respect to Al model performance, environmental remote sensing studies report that advanced
convolutional architectures and transformer-based models can reach accuracies up to approximately 96-98 %
on benchmark datasets [17],[48],[53]. The ranges collated in Table 4 are consistent with these figures but
emphasize that, under realistic edge-computing constraints, lightweight convolutional networks and YOLO-
based detectors such as ResNet-50 and YOLOv8-nano are more suitable for deployment along rivers. These
models typically maintain accuracies in the range of 94-96 % while achieving markedly lower latency and
energy demand than larger transformer-based counterparts [42],[45]. This resource-constrained perspective,
which explicitly links model choice to edge deployment feasibility, has received comparatively limited
attention in earlier general reviews.

Comparative technology matrices that classify monitoring approaches by qualitative performance
dimensions have appeared in broader environmental sensing surveys [63],[16], but these efforts rarely focus
on riverine oil spills. The present review organizes technologies along four axes: detection accuracy, decision
latency, cost, and environmental adaptability explicitly within the context of river hydrodynamics and turbidity
(Table 5). This framing clarifies why hybrid Al-IoT strategies, integrating multiple sensing modalities with
adaptive, edge-enabled analytics, are the most promising approach for achieving near-real-time detection in
dynamic rivers. The conclusion is consistent with previous high-level overviews [7],[13],[22], while providing
a more targeted, river-focused assessment that links hydrodynamic complexity, sensing architecture, and
computational design choices within a unified comparative framework.

3.3. Implication and Explanation of Findings

The integrated findings have several implications for both research and operational practice. A first
implication concerns the hydrodynamic complexity of rivers, as illustrated in Figure 3 and Table 1. Tools
developed for offshore conditions tend to underperform inland because SAR algorithms that assume relatively
homogeneous sea states encounter substantial backscatter variability from banks, submerged structures,
vegetation, and sediment plumes [8],[9], while optical methods struggle when oil is submerged as oil particle
aggregates (OPA) or partially obscured by turbidity and vegetation [4],[7],[11]. The wide parameter ranges in
Table 1 indicate that such misclassification is a predictable outcome of unmodelled heterogeneity rather than
an exception. This points to the need for context-aware detection schemes that explicitly incorporate
hydrological variables (flow rate, turbidity, sediment concentration) into models or thresholding strategies,
rather than relying solely on image texture and tone.

A second implication arises from the performance patterns in Table 2 and Table 5, which show that no
single technology is sufficient under all river conditions. Traditional methods remain essential as sources of
ground truth for calibration and validation, but cannot provide the temporal resolution required for early
warning. High-end remote sensing, including hyperspectral and UAV-based systems, offers detailed spatial
and spectral information but is too costly for continuous deployment. AI-IoT networks close this gap by
enabling local, high-frequency monitoring. Taken together, these results support a layered architecture in which
wide-area satellite or UAV surveillance provides broad coverage. At the same time, dense networks of low-
cost IoT nodes are placed at hydrodynamically critical locations identified by models similar to those in Figure
3. Such layering balances cost and coverage while exploiting the complementary strengths of each modality.

A third implication concerns resource constraints. The trade-offs documented in Table 4 and Figure 5
indicate that edge-oriented system design must give at least as much weight to latency and energy as to peak
accuracy. In river reaches with limited power and connectivity, low-power devices running lightweight models
such as MobileNet-V3 or YOLOv8-nano are often preferable, even when nominal accuracies are a few
percentage points below those of transformer-based architectures. System-level performance, as reflected
qualitatively in Table 5, can be higher because compact models can be deployed more densely and operated
continuously, achieving redundancy and spatial coverage. The latency decomposition in (7) further shows that
reducing the network component T, .y0r Via edge computing, can be more decisive for real-time response
than marginal accuracy gains from centralized, computationally intensive models.

A fourth implication is that data remains the main bottleneck. The accuracy range for Al models
(approximately 90-98 %) depends strongly on dataset size, diversity, and reality. High accuracies often stem
from clean, well-labelled datasets that do not fully represent the variability of operational rivers, whereas
studies using field data from turbid or structurally complex reaches typically report lower and more variable
performance [13],[43]. This discrepancy underscores the need for standardized, openly available riverine oil-
spill datasets and harmonized evaluation protocols. Without such resources, cross-study comparisons will
remain approximate, and models may fail when exposed to unseen conditions.

The final implication concerns operational integration. The analysis indicates that the main barrier to
large-scale adoption is not only technical performance but also the degree of integration with hydrological
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networks, emergency-response procedures, and regulatory frameworks. High-performing AI-IoT systems will
only be effective if responsible authorities trust the alerts, understand associated uncertainty, and have clear
verification and response protocols. Future work should therefore address not only sensing and algorithms but
also how monitoring systems are embedded in decision-making processes, data-governance arrangements, and
cross-agency coordination, so that technical advances translate into tangible improvements in spill response
and environmental protection.

3.4. Strengths and Limitations

Several strengths of the present review can be identified. First, a structured narrative approach with
elements of a scoping review was adopted, synthesizing 47 eligible articles selected through a transparent
PRISMA-style identification, screening, and inclusion process (Figure 2). This procedure supports a balanced
appraisal of heterogeneous technologies, traditional monitoring methods, satellite- and UAV-based remote
sensing, [oT sensor networks, and Al-based algorithms rather than privileging a single modality. Second, the
analysis is explicitly river-focused, systematically interpreting reported results through the lens of riverine
hydrodynamics and turbidity, which remain underrepresented in a predominantly marine-oriented literature.
Third, the organization of results into comparative tables (Table 2, Table 4, and Table 5), and their explicit
linkage to hydrodynamic context (Figure 3, Table 1) and computational considerations (Figure 5, Equations
(7) to Equation (8)), provides an integrated performance matrix spanning accuracy, latency, cost, and
adaptability. Finally, the review deliberately distinguishes between literature-derived findings in Section 3 and
the conceptual adaptive AI-IoT framework presented in Section 4, thereby addressing the concern of conflating
empirical evidence with design preferences.

Several limitations should also be acknowledged. The compiled accuracy and latency ranges are
descriptive rather than meta-analytic. The underlying studies employ different performance metrics (including
accuracy, Fl-score, mean average precision, and Intersection-over-Union), thresholds, class definitions, and
test protocols, which precluded computation of pooled effect sizes and formal sensitivity analyses. Instead,
ranges are reported, and outliers are handled qualitatively, introducing an element of interpretive judgement.
The empirical evidence base for riverine environments remains relatively small and uneven: many of the
highest reported AI performances originate from marine or laboratory-scale experiments, and their
transferability to dynamic, turbid rivers is often argued qualitatively rather than demonstrated through
dedicated validation campaigns. Moreover, several advanced techniques highlighted in this review, such as
federated learning and GAN-based augmentation, are at an early stage of application in environmental
monitoring and have frequently been evaluated on synthetic, limited, or non-public datasets; their robustness
under large-scale, real-world deployment has not yet been established. The scope of the review is further
constrained by the 2020-2025 publication window and by the databases and search strings employed, so that
relevant grey literature, proprietary reports, and unpublished field trials may not be fully captured.

In summary, the review provides an integrated assessment of current riverine oil spill detection
technologies, including their comparative strengths, limitations, and systemic implications. The assembled
evidence indicates that hybrid Al-IoT and edge-enabled architectures constitute the most promising direction
for achieving accurate, low-latency, and adaptable detection in hydrodynamically complex rivers. On this basis,
Section 4 introduces an adaptive Al-IoT framework as a hydrodynamics-aware conceptual design that
operationalizes the patterns and gaps identified in Section 3, while remaining analytically distinct from the
empirical results synthesized in the preceding subsections.

3.5. Proposed Framework for Future Trends

To overcome recurring constraints in existing riverine oil spill detection systems, this research presents
an adaptive, cost-effective, and energy-efficient AI-IoT framework for real-time environmental monitoring.
The architecture mixes artificial intelligence (Al), Internet of Things (IoT) sensor networks, edge computing,
and hydrodynamic modelling to enable precise, low-latency detection in dynamic freshwater environments.
The proposed system, as shown in Figure 6, comprises a distributed network of solar-powered IoT sensor nodes
strategically positioned at key sites, such as bridges, riverbanks, and anchored buoys. Each node regularly
monitors important ecological parameters, including turbidity, temperature, hydrocarbon content, and flow
velocity, using ultrasonic sensors, optical, and chemical sensors. These nodes are supported by lightweight Al
modules that perform on-site anomaly detection, reducing the need for high-bandwidth cloud transmission and
minimizing reaction time.

To enhance communication efficiency, sensor nodes are coupled by low-power wide-area networks
(LPWANS) such as NB-IoT and LoraWAN, which provide reliable long-range data exchange with minimal
energy utilization. Local edge gateways combine data from adjacent nodes and make more complicated
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inferences using models such as MobileNet or EfficientNet, which offer a balanced trade-off between accuracy
and computing cost. The processed outputs are then communicated to a cloud platform for long-term storage,
hydrodynamic modelling, and predictive analytics, enabling early warning and visualization of oil dispersion
patterns at the regional scale. A web-based dashboard provides a centralized interface for environmental
authorities, providing live sensor data, geographical warnings, and historical trends. Integration with
emergency response systems ensures that identified spills automatically trigger notifications and containment
recommendations. The design offers flexible scaling, and additional sensors or edge nodes can be integrated
without affecting the system architecture.

By adding edge intelligence, renewable power sources, and federated learning for decentralized model
updates, the architecture drastically decreases operational costs while retaining data security and adaptability.
This integration of Al, IoT, and hydrodynamic modelling establishes a sustainable framework for continuous
environmental surveillance, especially adapted to the unique challenges of narrow, turbulent, and sediment-
rich riverine environments. The ensuing part examines the implementation considerations required to adapt
this suggested framework into real-world deployments, addressing concerns such as sensor durability,
connectivity optimization, interoperability, and large-scale scalability.
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Figure 6. Adaptive AI-IOT Framework for Riverine Oil Spill Detection

3.6. Implementation Considerations in Riverine Environments

The Effective deployment of the proposed adaptive AI-IoT framework in riverine environments requires
addressing significant practical aspects that assure operational reliability, data integrity, and long-term
sustainability. While the conceptual design exhibits tremendous potential for real-time oil spill detection, its
effectiveness in field applications hinges on optimizing the implementation technique.

First, sensor deployment and maintenance must account for the demanding conditions in aquatic
environments, including changing flow rates, sedimentation, and biological fouling. IoT sensor nodes should
consequently adopt ruggedized enclosures, anti-corrosion materials, and biofouling-resistant coatings,
supported by remote calibration and diagnostics to avoid human maintenance. Power autonomy can be
extended through solar energy collection and low-power hardware setups.

Second, network stability is a significant barrier in remote or infrastructure-limited places. To counter
frequent connectivity disruptions, the architecture combines edge computing for local data processing and
temporary storage, enabling continued monitoring even when cloud access is unavailable. For data
transmission, low-power wide-area networks (LPWAN) such as NB-IoT and LoRaWAN [20],[34] allow
consistent, long-range communication with minimal energy usage.

Third, system interoperability and scalability are needed for real-world adoption. The modular structure
of the proposed framework permits connection with existing national hydrological and environmental
monitoring systems. Data communication through standardized APIs and MQTT protocols enables
compatibility with emergency response platforms, enabling rapid coordination among ecological authorities.

Shireen M. AL-Khafaji (Artificial Intelligence and IoT for Riverine Oil Spill Detection: A Focused Review
and Proposed Adaptive Edge Framework)



236 Buletin Ilmiah Sarjana Teknik Elektro ISSN: 2685-9572
Vol. 8, No. 1, February 2026, pp. 222-240

Finally, the scalability and cost-effectiveness of implementation rely on the utilization of off-the-shelf
components, open-source software, and lightweight Al models suited for embedded edge devices. Together,
these considerations ensure that the framework remains practical, durable, and economically viable for large-
scale riverine oil spill surveillance, especially in resource-constrained settings.

4. CONCLUSIONS

This review examined riverine oil spill detection from a hydrodynamics-aware and technology-agnostic
perspective, synthesizing 47 studies published between 2020 and 2025. The rivers constitute a fundamentally
different detection environment from the open sea: strongly varying flow, turbidity, and sediment regimes
create spatially and temporally heterogeneous backscatter and radiometric signatures, as evidenced by the data
collected. Under these conditions, methods that perform well in marine or laboratory settings, particularly SAR,
satellite images, and deep learning-based classifiers, often exhibit degraded performance in narrow, turbid
channels, leading to elevated false-positive and missed-detection rates. In contrast, the comparative analysis
reveals that hybrid AI-IoT architectures, supported by edge computing and adaptive updates, better align with
the combined requirements of accuracy, latency, and environmental adaptability in dynamic riverine
environments.

According to the above, several contributions emerge from this synthesis. First, developed a river-focused
perspective that explicitly links detection performance to physical drivers through hydrodynamic parameters
(Figure 3, Table 1) and their impact on sensing performance (Table 2, Table 4, and Table 5). Second,
constructed a comparative performance matrix that positions traditional monitoring, remote sensing, [oT sensor
networks, and Al-based models along four axes: detection accuracy, decision latency, cost, and environmental
adaptability, clarifying the operational niches in which each approach is most appropriate. Third, articulated a
conceptual adaptive Al-IoT framework in the main body of the paper as a hydrodynamics-aware design that
integrates multi-sensor fusion, edge and federated learning, and iterative model refinement, thereby formalizing
how disparate findings from the literature can be combined into a coherent design logic for riverine monitoring
systems. Fourth, the analysis frames riverine oil spill detection as a socio-technical challenge, highlighting that
sensing and computation must be aligned with institutional workflows, regulatory constraints, and response
capabilities.

The conclusions drawn from this review should be interpreted in light of several methodological
limitations and sources of uncertainty. The performance ranges reported for different technologies are
descriptive rather than meta-analytic because the underlying studies employ heterogeneous metrics (accuracy,
F1-score, mean average precision, Intersection-over-Union), thresholds, class definitions, and test protocols.
Pooled effect sizes and formal sensitivity analyses were therefore not feasible, and the ranges in Table 4 and
Table 5 are best viewed as indicative envelopes rather than precise benchmarks. In addition, the empirical
evidence base focused specifically on riverine conditions remains limited and uneven: many of the highest
reported accuracies originate from marine, laboratory, or synthetic datasets, and their transferability to fully
dynamic, cluttered rivers is often argued qualitatively rather than demonstrated through systematic field
validation. Advanced techniques highlighted in this review, such as federated learning and GAN-based
augmentation, have so far been applied only in early-stage or small-scale settings, and their robustness in large,
operational river networks has yet to be established. Finally, the review is confined to a 2020-2025 publication
window and to the selected databases and search strings; therefore, relevant grey literature and unpublished
field deployments may not be fully represented.

Within these constraints, the overall conclusion is that hybrid AI-IoT and edge-enabled architectures,
designed with explicit attention to river hydrodynamics, data limitations, and resource constraints, offer the
most credible pathway toward accurate, low-latency, and adaptable oil spill detection in riverine environments,
while also providing a structured basis for future experimental validation and system deployment.

5. FUTURE WORK

Future work should first address the limited and uneven empirical base for riverine oil spill detection.
This involves developing standardized, openly accessible river datasets that include multi-season imagery, in
situ sensor streams, and agreed evaluation protocols. With these, accuracy, latency, and robustness can be
compared fairly across methods. Once such benchmarks are established, multi-site field trials of the proposed
hydrodynamics-aware AI-IoT architectures are needed. These should occur in rivers with contrasting flow
regimes, turbidity, infrastructure, and pollution profiles. Systematic reporting should cover false alarms, missed
detections, end-to-end response times, and life-cycle cost. To overcome resource and connectivity constraints,
future research should also explore resource-aware model design and deployment strategies. These should
jointly optimize architecture size, FLOPs, communication patterns, and on-node learning schemes such as
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federated and continual learning under realistic energy and bandwidth budgets. In parallel, there is a need to
advance GAN-based augmentation and other data-synthesis techniques. These should move from small-scale
experiments toward rigorously evaluated pipelines that demonstrably improve generalisation in cluttered,
dynamic rivers. Finally, deeper integration of Al-IoT sensing with hydrological and transport models,
regulatory frameworks, and civil protection workflows is essential. This includes work on data governance,
alert validation, human Al interaction, and institutional trust. Such efforts ensure that technically promising
systems can translate into operational tools for riverine environmental protection and emergency response.
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