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The significant increase in the use of electric vehicles (EVs) demands the
development of fast charging systems that are not only efficient but also
maintain battery integrity. One of the primary challenges in direct current
(DC) charging is balancing speed with minimizing degradation caused by
thermal stress. This study proposes a charging optimization model based on
the Thunderstorm Optimization Algorithm (TA) for CHAdeMO-based DC
systems. A lithium-ion equivalent circuit battery model was used to simulate
electrochemical and thermal dynamics. The model introduces an adaptive
charging current profile designed with a dynamic boundary configuration,
defined here as the iterative adjustment of current limits according to real-
time thermal and health constraints. Compared to conventional constant
current—constant voltage (CC—CV) methods, TA considers maximum
temperature, State of Health (SoH), and target State of Charge (SoC)
simultaneously. The simulation (180 minutes, passive cooling, Python-
based) showed that TA reduced SoH degradation to 1.3% and battery life
usage to 18.4%—the latter defined as cumulative stress energy normalized to
initial capacity—compared to 2.9% and 22.5% for CC—CV. Additionally, TA
achieved a higher average charging power (26.1 kW vs. 24.8 kW) without
exceeding 50 °C. Although the algorithm requires more computational effort
than CC-CV, its moderate complexity suggests feasibility for real-time
integration in battery management systems. These findings highlight TA as a
promising adaptive and sustainability-oriented charging strategy.
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1. INTRODUCTION

The rapid growth in the use of electric vehicles (EVs) has driven an increase in the need for efficient, fast,
and safe charging systems [1]. One of the charging technologies that is widely adopted is the direct current
(DC) charging system with the CHAdeMO protocol [2], which supports high-power charging in a short time.
However, conventional charging methods such as constant current (CC) and constant voltage (CV), while
simple and widely [3] used, often pose technical challenges, including increased battery temperature and
decreased battery health (SoH), which directly affect safety and lifespan [4]. Moreover, these strategies fail to
adapt to dynamic thermal and electrochemical conditions, often leading to higher degradation rates [5]. These
limitations highlight the need for adaptive optimization approaches that can dynamically adjust charging
profiles. One potential candidate is the Thunderstorm Optimization Algorithm (TA), a metaheuristic inspired
by the collective behavior of thunderstorm clouds. The research contribution is the development of a TA-based
charging model for CHAdeMO systems that simultaneously addresses charging speed, thermal management,
and long-term health degradation.

In the fast charging process, the battery temperature can increase significantly due to the high inlet power,
which, if not managed properly, will accelerate electrochemical degradation, permanently reduce battery
capacity, and shorten battery life [5]. Therefore, a charging strategy is needed that is able to balance charging
speed, safe limits of operating temperature, and the preservation of battery conditions [6]. This is where the
role of optimization methods becomes very important [7]. Several previous studies have raised this issue from
various perspectives. Zentani et al. [8] explained that fast charging without good thermal management can
accelerate the decline in battery capacity and pose a safety risk. Ravindran et al. [9] emphasise the importance
of integrating active thermal management strategies to maintain battery performance in DC fast charging. In
addition, Shaker ef al. [10] reviewed charging protocols and found that static approaches, such as constant
current and constant voltage, are limited in addressing temperature and internal resistance dynamics.

As technology has evolved, various optimization algorithms based on metaheuristics and natural
phenomena have been used in the control of complex and dynamic systems, including battery charging systems
[11]-[13]. The research developed a Deep Bayesian Optimization method based on Recurrent Neural Network
(RNN) to intelligently formulate a lithium-ion battery charging strategy in a simulated environment [14][15].
This approach considers battery temperature and degradation as constraints, and shows positive results in
extending battery life [16]. However, this approach focuses on sequential data-driven learning and does not
directly shape the charging current profile in actual fast charging protocols such as CHAdeMO.

Wu et. al designed a Dynamic Programming (DP)-based thermal management strategy that can reduce
cooling energy consumption and degradation rate through LiFeP O, battery simulation [17]. Wu's approach
emphasizes more on temperature control from the cooling system side, rather than from the adjustment of the
charge current profile, and does not evaluate the simultaneous effects on SoH and charging speed [18]. Taking
into account the advantages and limitations of previous studies, it can be concluded that there is still a need to
develop simulation-based fast charging strategies that can dynamically optimize the charging current profile,
taking into account three key aspects simultaneously: charging speed, temperature management, and long-term
battery health (SoH). For this reason, this study proposes an optimization model based on the Thunderstorm
Algorithm (TA) on DC charging systems with the CHAdeMO protocol, as an alternative solution to
conventional methods that are still limited to the fixed current approach.

The Thundestorm Algorithm (TA) mimics the collective behavior and movement of thunderstorm clouds
in adaptively exploration exploring solution spaces [19]. It has been successfully applied in several electrical
power optimization problems [20][21] and is capable of efficiently handling multiple parameters and
constraints simultaneously. In this study, the main problem to be addressed is how to optimize the fast charging
process in the DC CHAdeMO system so that charging speed can be accelerated without exceeding the battery
thermal management while minimizing long-term degradation [22][23]. This reflects the need to design an
intelligent and dynamic charging current profile. A formal description of the TA procedure, including
pseudocode and a flowchart, is presented in Section 2 to clarify its operational steps and its adaptation to the
EV fast-charging context.

Based on the background and formulation of the problem, the purpose of this study is to develop and
evaluate a fast charging optimization model based on the Thunderstorm Algorithm (TA) on DC charging
systems with the CHAdeMO protocol [24][25]. The model is designed to produce an optimal charging current
profile, which considers three key aspects: charging speed, battery temperature management, and long-term
battery health (SoH) [26]. The effectiveness of the model is tested through simulations and compared with
conventional methods to assess its performance and efficiency improvements [27]-[30]. One of the key
indicators used in the evaluation is the State of Charge (SoC), which shows how quickly the battery reaches
100% SoC condition [31]-[33]. A more efficient algorithm should be able to optimize charging in less time,
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without sacrificing system stability [34][35]. In addition, the State of Health (SoH) is analyzed to measure
battery degradation during the charging process [36]. This degradation is affected by factors such as the
operating temperature and the charging current applied [37]-[39].

2. METHODS
2.1. Conventional Charging Model

The conventional charging model assumes that the charging current remains constant at its maximum
allowable value until the battery reaches either full capacity or the maximum time limit.

(Inormal(t) = [max: fOT' t< tmax (1)

where [,,,, is the maximum allowable current, and t,,,, is the time limit of the charging process.
The absorbed power is calculated as:

Pnormal (t) = Vcharging X Inormal(t) (2)

where: Viparging 18 the charging voltage.
The State of Charge (SoC) and State of Health (SoH) are updated based on cumulative current and degradation
factors, while temperature is modeled as:

Tnormal (t) = Tinitial +a X Pnormal (t) - :8 (3)

where « is the heating constant (°C/kW), and f8 is the cooling rate of the battery.
Degradation in the conventional method is expressed as

SoHyormai(t) = SoHiitiar = ¥ X Pnormar(t) 4)
where y is the degradation factor of the battery.

2.2. Thunderstorm Optimization Based Charging Model

The TA optimization method uses an adaptive strategy in determining the charging current profile so that
it can maximize the charging speed without exceeding the temperature limit and minimize battery degradation
[19]. The TA introduces an adaptive control of charging current to maximize charging speed without violating
thermal and health constraints. Unlike the simple random perturbation presented earlier, TA is based on the
collective behavior of thunderstorm clouds. Each cloud represents a candidate charging current profile.
Lightning strikes simulate exploration by generating new candidate solutions, while cloud movements
represent exploitation, gradually converging towards regions of higher solution quality. This mechanism
ensures that the current profile adapts to minimize degradation and maintain safe thermal limits, while still
achieving rapid SoC growth.

2.2.1. Current Regulation
The charging current in T4 is defined as

Ira () = Ligrmar (©) x (1 + 6;) (5)
were:
o = kxrand (—0.2,0.2) (6)
with k being a scaling factor and rand (—0.2, 0.2) a random number controlling variability.

Here, the random factor is not purely stochastic but guided by the TA’s collective updating rule, ensuring
convergence across the population of candidate solutions.

PTA(t) = Vcharging X [TA(t) (7)
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with currents that have been modified by the TA algorithm

2.2.2. Temperature Regulation
Battery temperature is updated similarly to the conventional model:

Tra(t) = Tinitia + @ X PTA(t) — B ®)
If Tra(t) > Tpnax, the current is adaptively reduced:

Ira(t) = Ipa(t) X 0.8 ©

This step functions as a built-in safety constraint rather than a separate rule, since temperature is explicitly
integrated into the optimization fitness function

2.2.3. Degradation Model

Unlike in the earlier draft, the parameter y is not altered by the algorithm. Instead, TA reduces the effective
degradation by dynamically limiting power surges and thermal stress, thereby slowing the cumulative SoH
decline.

SoHra(t) = SoHumitiar — ¥ X PTA(t) (10)

2.2.4. Distinction Between SoH and Battery Life Usage
Two degradation indicators are used in this study:

e  State of Health (SoH): the percentage of battery capacity remaining, directly reflecting instantaneous
degradation.

e  Battery Life Usage: the cumulative percentage of estimated cycle life consumed, calculated as an integral
of degradation stress over time.

This distinction ensures that short-term degradation (SoH) and long-term cumulative wear (Battery Life Usage)

are both captured. A flowchart is introduced (Figure 1) to clarify the TA procedure:

2.3. Simulation Framework and Parameters

The simulation was conducted to evaluate the performance of the fast charging strategy using
conventional approaches and TA based approaches. All simulations are run in a Python-based programmatic
environment, with a maximum load duration of 180 minutes and a discrete time resolution of 1 minute per
cycle. The simulation does not use direct experimental data, but is based on mathematical modeling that
represents the physical dynamics of lithium-ion batteries in the CHAdeMO charging system.

The technical parameters of the system are adjusted to the characteristics of the CHAdeMO protocol,
including a battery capacity of 71.4 kWh, a maximum current limit of 125 A, and a charging voltage varying
between 50 to 500 V. The charging voltage is calculated linearly based on the State of Charge (SoC), while the
battery temperature is dynamically updated using a simple thermal model that takes into account the incoming
power and cooling efficiency. The degradation of the State of Health (SoH) and the estimated battery life are
calculated as a function of the accumulated power and the duration of the charge.

The two simulation approaches were applied separately for comparison purposes. In the first approach,
the conventional method is applied by maintaining the charging current at a constant value (125 A) throughout
the duration of the simulation, without considering the operating temperature limit or the state of health of the
battery. Instead, the second approach applies an optimization strategy based on the Thunderstorm Algorithm
(TA), in which the charging current profile is adjusted adaptively at each time interval. The current adjustment
in the TA method takes into account three main constraints simultaneously, namely the maximum temperature
of the battery, the SoC achievement target of 100%, and the minimization of SoH degradation during the
charging process. The evaluation is carried out based on six main parameters that are continuously monitored
during the filling process. The evaluation metrics are summarized in Table 1: charging current, voltage, SoC,
SoH, battery life usage, and power. All results are based solely on simulation without experimental validation.

The results presented in this paper are derived entirely from numerical simulations. No experimental or
field validation has yet been conducted. As such, the results should be interpreted with caution until verified
by physical experiments. The simulation was carried out by applying both scenarios independently. The
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simulation output data in the form of a time series for each parameter is then analyzed visually. Graphs are used
to illustrate the difference in dynamics between the TA method and the conventional method. The evaluation
not only includes the achievement of the final SoC, but also considers current stability, power efficiency, and
conservation of battery health during the charging process.

Initialize population of clouds
(candidate current profile)

v

Evaluate fitness
(Soc growth, SoH degradation, temperature limit)

v

Exploitation: generate new solution
(lighting strikes)

v

Exploitation: update cloud positions
(interactions)

v

Check constraints
(Soh, thermal limits,
SoC target)

Convergence reache
or max iteration

Output optimal charging current profile

Figure 1. Flowchart of TA-Based Charging Model

Table 1. Evaluation Parameters and Description

Parameter Unit Description
Charging Current A Actual current values applied at each simulation time
Charging Voltage v Battery voltage calculated based on the linear function of the SoC
State of Charge (SoC) % The percentage of energy stored relative to maximum capacity
State of Health (SoH) % An indicator of battery capacity degradation during the charging process
Battery Life % Cumulative degradation estimates based on accumulated power
Charging Power kW Power delivered to the battery in each minute of simulation

3.  RESULT AND DISCUSSION

The simulation was conducted to evaluate the performance of the electric vehicle fast charging system by
comparing two approaches: the conventional method and the optimization-based method using the
Thunderstorm Optimization Algorithm (TA). The simulation was carried out in a discrete time environment
with a resolution of 1 minute, for a maximum duration of 180 minutes, and was run separately for each method.
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The technical parameters of the charging system follow the specifications of the CHAdeMO protocol and the
characteristics of lithium-ion batteries. Table 2 summarizes the main parameters used in the simulation process,
including battery capacity, charging current and voltage limits, and operating temperature limits. In addition,
parameters for the TA algorithm, such as population size and maximum number of iterations, are also listed as
part of the experiment configuration.

Both simulation approaches were applied independently. In the conventional method, the charging current
is set at a fixed maximum value (125 A), without considering the effects of temperature or battery degradation.
In contrast, the TA-based approach dynamically optimises the charging current by considering three main
constraints simultaneously: the maximum temperature limit of the battery (thermal constraint), achieving 100%
State of Charge (SoC), and minimising battery health degradation (SoH). The simulation produces output in the
form of a time series for six main parameters: charging current, charging voltage, State of Charge (SoC), State
of Health (SoH), battery life usage, and actual charging power. In addition to being visually analyzed through
graphs, the final results of each method are summarized in Table 3 for quantitative comparison purposes.

Table 2. Simulation Parameters

No Parameter Name Symbols / Variables Value Unit

1 Battery Capacity battery capacity 71,4 kWh

2 Maximum Charging Current max current 125 A

3 Minimum Charging Voltage charging voltage min 50 \%

4 Maximum Charging Voltage charging voltage max 500 \%

5 Initial Voltage initial voltage 400 \%

6 Maximum Charging Time max charging time 180 minute
7 Battery Initial Temperature - 30 °C

8  Maximum Operating Temperature of the Battery max temperature 50 °C

9 Minimum Operating Temperature Battery min temperature 30 °C

10 Thermal Constant thermal constant 0,05 °C per kW
11 Cooling Rate thermal dissipation rate 0,15 °C per minute
12 Initial State of Health initial SoH 1 (scale 0—1)
13 TA Population Size population_size 30 individuals
14 TA Maximum Iterations max_iterations 500 Iterations
15 Simulation Time per Step dt 1 minute
16 SoH degradation per unit of power 0.00001 x power 0.00001 x power per kW
17 Battery Life Degradation 0.000005 x power 0.000005 x power % per kW

Table 3. Simulation Results

Method Conventional Thunderstorm Algorithm
Total Energy Stored (kWh) 69.5 70.8
Final SoC (%) 97.3 99.2
Final SoH (%) 97.1 98.7
Average Temperature (°C) 47.5 44.2
Average Power (kW) 24.8 26.1
Used Battery Life (%) 2.25 1.84

3.1. Charging Current and Voltage Behaviour

Figure 2 shows the current and voltage profiles of the charge to time for the two compared charging
methods: the conventional method and the TA based optimization method. Both show fundamental differences
in both the current regulation pattern and the voltage response of the battery during the charging process.

Charging Current vs Time Charging Voltage vs Time
wod A H — TA (Optimized) — TA (Optimized) A
| === Conventional 300 7 -~~~ conventional P
100 4 [
d I 1 | 250 4
i
M I I e 200 1
g 601 | il 8
= G} ]
© 40 S 150
20 100 4
0 T T T T T T T T 30 1
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(a) (b)

Figure 2. (a) Current profile and (b) Voltage Profile
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In conventional methods, the charging current starts at a fixed value of 125 A, then decreases to about 90
A after a certain point in time—indicating a transition from the constant current (CC) to constant voltage (CV)
stage, which is a common approach in fast charging systems. The charging voltage in this method increases
sharply and exponentially, as the SoC increases, until it is close to the maximum voltage limit (500 V). This
increase in voltage signifies that the system continues to impose high currents even as the battery's internal
resistance increases, potentially leading to uncontrollable temperature increases as well as accelerated cell
degradation. In contrast, in the TA method, the current profile is dynamic and fluctuates throughout the
charging process. This current variation is the result of an iterative optimization process that simultaneously
considers operational temperatures, SoC achievement rates, and SoH degradation rates. With a more flexible
current setting, the charging voltage in the TA method increases more moderately and linearly. This shows that
TA not only avoids excessive current surges, but is also able to maintain the stability of the system by regulating
the rate of voltage increase to stay within the safe zone.

These findings reinforce that optimization approaches such as TA can produce a more grid-friendly and
battery-friendly charging profile than conventional methods. Intelligent current regulation has a direct impact
on voltage, which in turn contributes to the reduction of thermal stress and the long-term efficiency of the
battery system. This relationship between current control and voltage response is an important cornerstone in
designing a charging strategy between current control and voltage response, this is an important foundation in
designing an adaptive charging strategy in modern DC fast charging systems. The ‘conventional method’ in
this study follows a CC—CV profile: constant current at 125 A until voltage reaches the upper limit (500 V),
followed by constant voltage with a natural tapering current.

3.2. Battery State Evolution (SoC and SoH)

Figure 3 shows the evolution of the State of Charge (SoC) and State of Health (SoH) during the charging
process for the two simulation approaches. The graph on the left shows that the conventional method can
upgrade the SoC at a much higher speed than the TA method, whereby At the end of 180 minutes, both methods
achieved near full charge, with final SoC values of 97.3% for the conventional method and 99.2% for TA. The
earlier description of ‘60% vs. 30%’ was incorrect and has been corrected here. This is due to the use of
maximum constant current on the conventional approach, which aggressively encourages the rate of energy
charge without considering the internal conditions of the battery.

State of Charge vs Time
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Figure 3. (a) Evolution State of Charge and (b) Evolution State of Health

However, the high charging speed of conventional methods has negative consequences for battery health,
as seen in the SoH graph (right). The decline in SoH in conventional methods is much sharper than that of TA.
During the simulation duration, conventional methods experienced SoH degradation of around 2.9%, while TA
only experienced a decrease of about 1.3%. This difference suggests that although TA sacrifices some charging
speed, this method is significantly more effective in maintaining the chemical stability and internal structure
of the battery cell. The TA strategy explicitly regulates the current based on the health level and temperature
of the battery. When the system detects an increase in power that has the potential to accelerate degradation,
the algorithm will respond by reducing the current, thereby slowing down the decline in SoH. In contrast,
conventional approaches lack adaptive mechanisms, so they continue to push the battery under conditions of
high thermal and chemical stress.

These findings underscore the importance of optimization-based current control in the fast charging
process. In the long-term context, maintaining SoH is essential to extend battery life, reduce replacement costs,
and ensure optimal electric vehicle performance. Therefore, the TA approach can be considered not only safer
but also more sustainable than conventional strategies. Similar observations were reported by Zhang [14] and
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Tomaszewska [15], who demonstrated that adaptive current strategies are more effective in reducing
degradation rates compared to fixed CC—CV methods.

3.3. Estimated Battery Lifetime Usage

Figure 4 shows the estimated battery lifetime usage during the charging process for conventional methods
and TA based methods. This parameter is calculated cumulatively based on the energy entering the battery and
is used as an indicator of the accumulation of electrothermal stress against the battery cells. The simulation
results show that conventional methods cause a much higher rate of battery life degradation than TA. At the
end of the charging duration (180 minutes), the conventional method recorded a battery life usage of close to
34%, while the TA method was only about 18%. This difference reflects the significant impact of charging
strategies on the long-term durability of batteries.

This condition is consistent with the characteristics of conventional methods that use the maximum
current constantly in the early stages of charging, resulting in a large accumulation of incoming power in a
short period of time. This accumulation accelerates the chemical aging process of the battery due to increased
internal resistance and high operating temperatures. In contrast, the TA method manages the current adaptively
based on real-time inputs to temperature and SoH, thus keeping the incoming power level within safe limits
and avoiding adverse energy spikes. The slowdown in the degradation rate shown by TA indicates that the
adaptive charging strategy not only impacts short-term performance, but also directly affects the battery life
cycle. In the context of practical implementation, this approach has the potential to lower the frequency of
battery replacement and the overall operational costs of electric vehicles.

Estimated Battery Lifetime Usage

—— TA (Optimized) R
-—- Conventional s
30 -
g
v 20 A
£
2
g
10 A
0 -

T T T U
0 25 50 75 100 125 150 175
Time (minutes)
Figure 4. Estimated Battery Lifetime

3.4. Charging Power Profile

Figure 5 shows the charging power profile over the simulation duration for the two methods compared.
Charging power is calculated as the result of times between current and voltage in each time cycle, so it reflects
the actual energy load that goes into the battery. This graph illustrates the fundamental difference between
conventional charging strategies that are deterministic and TA methods that are adaptive in nature.

Conventional methods show an exponentially increasing power curve, especially in the second half of the
charging process. This increase is due to the voltage continuing to increase (close to the maximum limit) while
the charging current is still in the high range. This phenomenon creates a surge in incoming power that not
only accelerates charging but also increases thermal and electrochemical risks that can accelerate battery cell
degradation. In addition, the sudden change at the 60th minute shows a transition from a constant current to a
constant voltage strategy that still forces a high power input in the final phase.

In contrast, the power profile in the TA method shows a fluctuating but controlled pattern. These
fluctuations come from the iterative results of an optimization process that dynamically adjusts the current
based on real-time conditions such as temperature and SoH. Although the average power of the TA is below
the conventional method at the beginning of the charge, it tends to be more stable and more evenly distributed
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throughout the simulation time. This reflects the TA's approach that does not aggressively maximize inbound
power, but prioritizes long-term energy stability and efficiency.

Charging Power vs Time
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Figure 5. Charging Power Profile

3.5. Overall Performance Comparison

Table 3 and visualization of the simulation results show that the Thunderstorm Optimization Algorithm
(TA)-based method provides significant advantages in terms of battery durability and long-term energy
efficiency. At the end of the simulation duration, the TA method recorded a decrease in SoH by 1.3%, compared
to 2.9% in the conventional method. In addition, the accumulated battery life degradation (lifetime usage) only
reached 18.4% in TA, much lower than 22.5% in the conventional approach. On the other hand, TA also shows
higher performance in terms of energy efficiency. Although TA operates with fluctuating and generally lower
currents compared to the conventional method, the voltage profile under TA increased more linearly and stably.
As a result, the average power delivered reached 26.1 kW, slightly higher than the 24.8 kW of the CC—CV
method. This indicates that voltage dynamics, rather than current magnitude alone, play a dominant role in
determining effective charging power, and highlights the advantage of TA in distributing energy more
efficiently within safe thermal limits.

Nevertheless, the TA approach is not yet fully optimal in terms of charging speed. The final SoC value
achieved at the same time is 99.2% for TA and 97.3% for conventional. Although this difference is relatively
small, the time it takes to reach the maximum SoC in TA tends to be longer due to a conservative current
adjustment strategy in response to thermal limits and degradation. Significant current fluctuations in TAs can
also require more complex and responsive control systems in real implementation. This implies that the
implementation of TA in future fast charging systems needs to be balanced with hardware infrastructure and
control systems that are adaptive to rapid changes in the flow profile. Taking into account all performance
parameters, TA shows potential as a fast charging strategy that not only pays attention to charging time, but
also actively maintains battery health and life. This approach can be a strategic solution in the development of
electric vehicle charging systems that are oriented towards efficiency and sustainability.

4. CONCLUSIONS

This study proposes and evaluates a fast charging optimization model based on the Thunderstorm
Algorithm for DC charging systems with the CHAdeMO protocol. The simulation results showed that TA was
able to reduce the SoH decrease to 1.3%, as well as reduce battery life usage by 18.4%, compared to 2.9% and
22.5% in conventional methods. In addition, the average charging power increased to 26.1 kW, without
exceeding the operating temperature limit. The final SoC achieved with TA (99.2%) was slightly higher than
that of the conventional method (97.3%), while simultaneously reducing SoH degradation (1.3% vs. 2.9%) and
lifetime usage (18.4% vs. 22.5%). The main limitation of this work is that results are based solely on simulation
using simplified thermal and degradation models, without experimental validation. Further research should
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focus on integrating TA with active cooling, real-time BMS control, and extending the approach to
bidirectional Vehicle-to-Grid (V2G) scenarios.
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