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Accurate prediction of water quality parameters is critical for the effective 

management and sustainability of aquaponics systems. This study evaluates 

the performance of four deep learning architectures: Long Short-Term 

Memory (LSTM), Gated Recurrent Unit (GRU), Simple Recurrent Neural 

Network (SimpleRNN), and Dense Neural Network (DenseNN) for 

forecasting key water quality parameters, including temperature, turbidity, 

dissolved oxygen, pH, ammonia, and nitrate. A significant research gap is 

addressed by analyzing how these models perform on noisy and minimally 

preprocessed datasets, advancing prior studies that lack robust preprocessing 

techniques tailored for aquaponics systems. A ten-fold cross-validation 

framework was employed to rigorously assess the models, with Mean Squared 

Error (MSE) and Mean Absolute Error (MAE) as evaluation metrics. The 

results demonstrate that LSTM and GRU models outperform other 

architectures, achieving average validation losses of 0.0028 and 0.0028, 

respectively, and mean absolute errors of 0.0473 and 0.0478. These models 

effectively capture the temporal dependencies inherent in time-series data, 

making them highly suitable for the complex dynamics of aquaponics systems. 

Unlike previous studies, this research highlights the trade-offs between 

computational efficiency and predictive accuracy in these models. In contrast, 

the SimpleRNN model exhibited higher error rates due to its inability to model 

long-term dependencies, while the DenseNN model, lacking temporal 

processing mechanisms, showed the lowest performance with an average 

validation loss of 0.0075 and MAE of 0.0797. This study underscores the 

importance of selecting appropriate model architectures for time-series 

forecasting tasks and provides a foundation for deploying predictive systems 

to optimize aquaponics operations. Future work includes exploring hybrid 

models with attention mechanisms and real-time data integration for enhanced 

operational efficiency. 
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1. INTRODUCTION 

Aquaponics, a symbiotic system combining aquaculture and hydroponics, has emerged as a sustainable 

agricultural approach that offers efficient resource utilization and environmental benefits [1]–[3]. However, 

the effective management of aquaponics systems depends heavily on maintaining optimal water quality 

parameters such as pH, ammonia, nitrate, and dissolved oxygen [4]–[6]. These parameters are critical for 

ensuring the health of aquatic organisms and the overall productivity of the system [7]. Deviations from optimal 

conditions can lead to adverse outcomes, including fish mortality, reduced plant growth, and system imbalances 

[8]. Despite the increasing adoption of aquaponics systems globally, maintaining the delicate balance of these 

parameters remains a significant challenge due to the dynamic and interdependent nature of the system 

[5],[9],[10]. The complexity of monitoring and predicting water quality in aquaponics systems is further 

compounded by external factors such as environmental variations, sensor inaccuracies, and system-specific 

characteristics [11]–[13]. Research into real-time predictive models for water quality has gained momentum, 

but existing studies often lack comprehensive evaluations across multiple architectures or fail to address the 

variability and noise inherent in aquaponics datasets. Traditional methods for monitoring rely on manual 

observation or rule-based systems, which are often inadequate for real-time or predictive decision-making [14]. 

As a result, researchers have turned to advanced machine learning and deep learning techniques to address 

these challenges. Deep learning models, in particular, have shown immense potential in capturing non-linear 

relationships and temporal dependencies within complex datasets, making them suitable for forecasting water 

quality in aquaponics systems [14]–[16]. 

Several studies have highlighted the applicability of machine learning in environmental monitoring and 

time-series forecasting. For instance, [17] demonstrated the use of LSTM networks for predicting water quality 

in fish ponds, achieving notable accuracy in forecasting dissolved oxygen levels. Similarly, [18] utilized GRU 

models to analyze the impact of temperature and ammonia on aquaculture systems, showcasing the model's 

ability to handle sequential dependencies effectively. However, these studies often focus on isolated models 

and overlook comparative performance under rigorous preprocessing and evaluation frameworks. Another 

study by [19][20] compared traditional statistical methods with neural network-based approaches for pH level 

prediction in hydroponics, concluding that deep learning models significantly outperformed conventional 

methods in terms of precision and adaptability. Despite these advancements, there remains a gap in the 

literature regarding the comparative performance of various deep learning architectures for aquaponics water 

quality prediction, particularly when dealing with noisy and minimally processed datasets [21]–[23]. Moreover, 

few studies have explored the integration of preprocessing pipelines tailored specifically for aquaponics 

datasets to enhance model robustness and generalizability [15],[24][25]. Addressing these gaps is crucial for 

developing practical and scalable solutions that can be deployed in real-world aquaponics systems.  

This study aims to bridge these gaps by systematically evaluating the performance of four state-of-the-art 

deep learning models: Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Simple Recurrent 

Neural Network (SimpleRNN), and Dense Neural Network (DenseNN) for forecasting key water quality 

parameters in aquaponics systems. A rigorous preprocessing pipeline is developed to handle noise, missing 

values, and feature scaling, ensuring that the models are trained on clean and reliable data. The models are 

evaluated using a ten-fold cross-validation approach to ensure comprehensive performance assessment and 

generalizability. The primary contributions of this research are threefold. First, it provides a comparative 

analysis of advanced deep learning models for forecasting water quality in aquaponics systems under realistic 

conditions. Second, it introduces a robust and reproducible preprocessing framework tailored for noisy 

aquaponics datasets, addressing challenges related to data inconsistencies and feature alignment. Third, it 

delivers actionable insights into the trade-offs among different model architectures, equipping practitioners 

with the knowledge to make informed decisions when implementing predictive models in aquaponics systems. 

The remainder of this paper is organized as follows. Section 2 details the materials and methods, including the 

preprocessing pipeline and model architectures. Section 3 presents the experimental results, followed by a 

discussion of the findings. Finally, Section 4 concludes the study and outlines potential directions for future 

research. 

 

2. METHODS 

This section elaborates on the comprehensive methodology utilized in this study, encompassing dataset 

preparation, data preprocessing, model development, cross-validation, and performance evaluation as 

presented in Figure 1. The methodology emphasizes reproducibility and robustness to address the challenges 

posed by noisy datasets. 
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Figure 1. Research methodology 

 

2.1. Dataset Preparation 

The dataset used in this research was sourced from [26], containing time-series data collected through 

sensors installed in aquaponics fish ponds. The dataset includes key water quality parameters such as 

temperature ((𝑇)), turbidity ((𝑇𝑢)), dissolved oxygen ((𝐷𝑂)), pH ((𝑝𝐻)), ammonia ((𝑁𝐻3)), and nitrate 

((𝑁𝑂3)). Formally, the dataset can be expressed as a collection of pairs: 

 𝐷 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛 , 𝑦𝑛)},  

where (𝑥𝑖 ∈ 𝑅𝑑) represents the (𝑑)-dimensional feature vector for observation (𝑖), and (𝑦𝑖 ∈ 𝑅) 

represents the target variable for prediction. The dataset, composed of multiple CSV files, was unified into a 

single structured file to facilitate analysis. Exploratory Data Analysis (EDA) was conducted to inspect the 

dataset for inconsistencies such as missing values, outliers, and feature correlations. Statistical summaries and 

visualization techniques were employed to understand the distribution and interdependencies of the variables. 

 

2.2. Data Preprocessing 

Data preprocessing was critical due to the noisy and minimally cleaned nature of the dataset. The 

following steps were meticulously carried out to prepare the data for model training. Firstly, feature selection 

and alignment, in this stage, we create a subset of features relevant to aquaponics water quality monitoring was 

selected based on domain knowledge. These features were aligned to ensure consistency between expected 

variables and the actual dataset. Let the selected features be represented as (1). 

 ℱ𝓈ℯℓℯ𝒸𝓉ℯ𝒹 = {𝑇, 𝑇𝑢, 𝐷𝑂, 𝑝𝐻, 𝑁𝐻3, 𝑁𝑂3} (1) 

An algorithm was implemented to match the selected features against the dataset's actual columns, 

correcting discrepancies where necessary. Second, handling missing and invalid data, in this state, rows with 

missing or invalid values were identified and handled. Specifically, infinite values ((±∞)) were replaced with 

NaN and subsequently removed by following rule as presented in (2). 

 𝐷𝑐𝑙𝑒𝑎𝑛 = {(𝑥𝑖 , 𝑦𝑖) ∣ 𝑥𝑖  contains no NaN or ± ∞} (2) 

Third is Normalization, in this stage, feature scaling was performed to normalize the dataset into the range 

([0,1]) using the Min-Max Scaling formula as presented in (3). 

 
𝑥𝑖,𝑗

′ =
𝑥𝑖,𝑗 − 𝑚𝑖𝑛(𝑥𝑗)

𝑚𝑎𝑥(𝑥𝑗) − 𝑚𝑖𝑛(𝑥𝑗)
 (3) 
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where (𝑥𝑖,𝑗) is the value of feature (𝑗) in observation (𝑖), and (min(𝑥𝑗)), (max(𝑥𝑗)) are the minimum 

and maximum values of feature (𝑗) across all observations. Lastly we use Time-Series Sequence Creation 

method in order to capture temporal dependencies, sequences of historical observations were constructed using 

a sliding window approach as presented in (4). 

 𝑋𝑡 = {𝑥𝑡−𝑤+1, 𝑥𝑡−𝑤+2, … , 𝑥𝑡},  𝑦𝑡 = 𝑥𝑡+1 (4) 

where (𝑤) is the window size, (𝑋𝑡) is the sequence of (𝑤) historical data points, and (𝑦𝑡) is the target 

value for time (𝑡). This transformation converts the dataset into sequences suitable for time-series forecasting 

models. 

 

2.3. Model Development 

Four deep learning architectures were developed to predict water quality parameters: Long Short-Term 

Memory (LSTM), Gated Recurrent Unit (GRU), Simple Recurrent Neural Network (SimpleRNN), and Dense 

Neural Network (DenseNN). Each model architecture was tailored to leverage unique characteristics of the 

data.  The LSTM model utilizes gating mechanisms to retain long-term dependencies in sequential data. The 

update equations for the LSTM gates are presented in (5) to (10). 

 𝑓𝑡 = σ(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓), (5) 

 𝑖𝑡 = σ(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖), (6) 

 𝑐𝑡̃ = tanh(𝑊𝑐 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐), (7) 

 𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐𝑡̃ , (8) 

 𝑜𝑡 = σ(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜), (9) 

 ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝑐𝑡), (10) 

where (𝑓𝑡 , 𝑖𝑡 , 𝑜𝑡) represent the forget, input, and output gates, respectively, and (𝑐𝑡 , ℎ𝑡) represent the cell 

and hidden states. The GRU simplifies these operations by directly updating the hidden state (ℎ𝑡). The 

SimpleRNN model updates its hidden state iteratively as (11). 

 ℎ𝑡 = σ(𝑊 ⋅ ℎ𝑡−1 + 𝑈 ⋅ 𝑥𝑡 + 𝑏) (11) 

The DenseNN, a feedforward network, is expressed as 𝑦 = σ(𝑊2 ⋅ σ(𝑊1 ⋅ 𝑥 + 𝑏1) + 𝑏2), where (𝑊1, 𝑊2) 

and (𝑏1, 𝑏2) represent weights and biases of the layers, and (σ) is the activation function. 

 

2.4. Cross-Validation 

A ten-fold cross-validation strategy was employed to assess model performance. The dataset was 

partitioned into ten subsets. For each fold (𝑘), one subset served as the validation set ((𝐷𝑘
𝑣𝑎𝑙)), and the 

remaining nine subsets formed the training set ((𝐷𝑘
𝑡𝑟𝑎𝑖𝑛)). Model evaluation metrics for each fold were 

calculated as (12) and (13). 

 
𝑀𝑆𝐸𝑘 =

1

|𝐷𝑘
𝑣𝑎𝑙|

∑ (𝑦𝑖 − 𝑦𝑖̂)
2

(𝑥𝑖,𝑦𝑖)∈𝐷𝑘
𝑣𝑎𝑙

, (12) 

 
𝑀𝐴𝐸𝑘 =

1

|𝐷𝑘
𝑣𝑎𝑙|

∑ |𝑦𝑖 − 𝑦𝑖̂|

(𝑥𝑖,𝑦𝑖)∈𝐷𝑘
𝑣𝑎𝑙

, (13) 

where (𝑦𝑖̂) is the predicted value. After that, in order to do performance evaluation, the models were evaluated 

using Mean Squared Error (MSE) and Mean Absolute Error (MAE), averaged across folds: 𝑀𝑆𝐸𝑎𝑣𝑔 =
1

𝑘
∑ 𝑀𝑆𝐸𝑘

10
𝑘=1  and 𝑀𝐴𝐸𝑎𝑣𝑔 =

1

𝑘
∑ 𝑀𝐴𝐸𝑘

10
𝑘=1 . 

 

2.5. Implementation Framework 

The entire workflow was implemented in Python, utilizing TensorFlow for deep learning, Scikit-learn for 

preprocessing and evaluation, and Matplotlib for visualization. GPU-enabled environments were employed to 

accelerate computations. This comprehensive methodology provides a robust framework for exploring the 
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effectiveness of advanced deep learning models in forecasting water quality parameters in aquaponics systems, 

addressing the unique challenges posed by noisy and minimally preprocessed datasets. 

 

3. RESULT AND DISCUSSION 

The results of this study provide an in-depth evaluation of four advanced deep learning models: LSTM, 

GRU, SimpleRNN, and DenseNN for forecasting water quality parameters in aquaponics systems as presented 

in the Table 1 to Table 5. These models were assessed using a rigorous ten-fold cross-validation approach, with 

Mean Squared Error (MSE) and Mean Absolute Error (MAE) serving as the primary metrics. This section 

elaborates on the performance of each model, discusses observed trends, and interprets the implications of 

these findings in detail. The LSTM model demonstrated robust performance across all folds, with an average 

validation loss of 0.0028 and an average MAE of 0.0473. The model achieved its best performance in Fold 3, 

where the MAE was as low as 0.0101. This exceptional accuracy indicates the model's capability to capture 

and generalize patterns in the data under favorable conditions. However, there were folds where performance 

varied slightly, with the MAE reaching 0.0723 in Fold 9. Such variability reflects the sensitivity of LSTM to 

data distribution and partitioning, particularly when dealing with noisy and imbalanced subsets. The ability of 

LSTM to retain long-term dependencies through its gating mechanisms contributes significantly to its 

performance in modeling the temporal dynamics of water quality parameters. This makes it particularly 

effective for datasets characterized by complex sequential relationships. 

The GRU model achieved results comparable to LSTM, with an average validation loss of 0.0028 and an 

average MAE of 0.0478. Similar to LSTM, GRU displayed variability in performance across folds, with its 

best MAE recorded at 0.0198 in Fold 7 and its worst at 0.0748 in Fold 3. The variability suggests that while 

GRU is efficient and computationally lighter than LSTM due to its simpler architecture, it may struggle slightly 

more with certain subsets of the data. The GRU model's strength lies in its ability to maintain performance 

while reducing computational overhead, making it an attractive choice for scenarios where resource constraints 

exist. Despite these advantages, the results indicate that GRU's simplified architecture may occasionally fall 

short in capturing finer temporal details present in highly dynamic datasets. 

The SimpleRNN model, with an average validation loss of 0.0037 and an average MAE of 0.0553, 

performed less effectively compared to LSTM and GRU. The model exhibited pronounced variability, with its 

best MAE recorded at 0.0363 in Fold 2 and its worst at 0.0801 in Fold 6. This wide range of performance 

highlights the limitations of SimpleRNN, which lacks the sophisticated gating mechanisms of LSTM and GRU. 

As a result, it is more prone to issues like vanishing gradients, particularly in tasks requiring the modeling of 

long-term dependencies. The relatively higher errors suggest that SimpleRNN struggled to capture the intricate 

temporal patterns in the aquaponics dataset. This makes it less suitable for applications involving time-series 

forecasting, where temporal dependencies are critical for accurate predictions. The DenseNN model, which 

uses a feedforward architecture, exhibited the lowest overall performance, with an average validation loss of 

0.0075 and an average MAE of 0.0797. Although the model showed reasonable accuracy in some folds, such 

as Fold 1 where the MAE was 0.0382, it struggled significantly in others, with the MAE reaching 0.1008 in 

Fold 5. The lack of recurrent connections in DenseNN renders it incapable of modeling sequential 

dependencies, which are essential for forecasting tasks involving time-series data. Instead, DenseNN relies 

solely on the static relationships among features, limiting its effectiveness in scenarios where temporal 

dynamics play a crucial role. The higher error rates observed for DenseNN underscore the importance of using 

architectures specifically designed for time-series data when addressing problems such as water quality 

prediction. 

A comparative analysis of the models reveals that LSTM and GRU outperformed SimpleRNN and 

DenseNN in both accuracy and generalizability. The results demonstrate the critical importance of recurrent 

architectures in capturing the temporal characteristics of the dataset. The strong performance of LSTM, coupled 

with its slightly lower variability across folds compared to GRU, suggests that it is the most robust model for 

this application. However, GRU remains a competitive alternative, particularly in scenarios where 

computational efficiency is a priority. The findings highlight the need for models that are well-aligned with the 

nature of the data being analyzed. The stark contrast between the performance of DenseNN and the recurrent 

models reinforces the importance of leveraging temporal dependencies in time-series forecasting. Additionally, 

the variability observed across folds for all models underscores the significance of robust data preprocessing 

and augmentation techniques to mitigate the impact of noise and ensure consistent performance. Future studies 

could explore advanced techniques such as domain-specific data augmentation, denoising, and feature 

engineering to further enhance model robustness and accuracy. 

The superior performance of LSTM and GRU models underscores their potential for real-world 

deployment in aquaponics systems. These models can provide accurate and timely predictions of water quality 

parameters, enabling proactive interventions to maintain optimal conditions. The scalability and adaptability 
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of these models make them suitable for integration into automated monitoring systems, supporting sustainable 

aquaponics practices. In conclusion, the results of this study emphasize the effectiveness of LSTM and GRU 

models for forecasting water quality in aquaponics systems. The ability of these models to handle complex 

temporal dynamics positions them as valuable tools for predictive analytics in environmental monitoring. This 

research provides a strong foundation for future investigations aimed at refining these methodologies and 

exploring their applicability across diverse domains. The insights gained from this study contribute to 

advancing the state of the art in time-series forecasting and its applications in sustainable agriculture. 

 

Table 1. Results for LSTM 

Fold 
Validation 

Loss 
MAE 

1 0.0039 0.0588 

2 0.0028 0.0511 

3 0.0002 0.0101 

4 0.0024 0.0470 

5 0.0012 0.0339 

6 0.0049 0.0652 

7 0.0025 0.0477 

8 0.0021 0.0438 

9 0.0060 0.0723 

10 0.0021 0.0435 
 

Table 2. Results for GRU 

Fold 
Validation 

Loss 
MAE 

1 0.0019 0.0428 

2 0.0027 0.0509 

3 0.0064 0.0748 

4 0.0018 0.0418 

5 0.0039 0.0610 

6 0.0024 0.0475 

7 0.0006 0.0198 

8 0.0027 0.0505 

9 0.0045 0.0621 

10 0.0008 0.0267 
 

  

Table 3. Results for SimpleRNN 

Fold 
Validation 

Loss 
MAE 

1 0.0042 0.0601 

2 0.0014 0.0363 

3 0.0037 0.0579 

4 0.0042 0.0602 

5 0.0034 0.0559 

6 0.0073 0.0801 

7 0.0045 0.0621 

8 0.0016 0.0393 

9 0.0046 0.0633 

10 0.0015 0.0376 
 

Table 4. Results for DenseNN 

Fold 
Validation 

Loss 
MAE 

1 0.0015 0.0382 

2 0.0104 0.0970 

3 0.0078 0.0830 

4 0.0083 0.0855 

5 0.0111 0.1008 

6 0.0066 0.0769 

7 0.0055 0.0696 

8 0.0102 0.0959 

9 0.0036 0.0566 

10 0.0097 0.0935 
 

 

Table 5. Performance Results 

Model 

Average 

Validation 

Loss 

Average 

MAE 

LSTM 0.0028 0.0473 

GRU 0.0028 0.0478 

RNN 0.0037 0.0553 

DenseNet 0.0075 0.0797 

 

4. CONCLUSIONS 

This study comprehensively evaluated the performance of four deep learning architectures: LSTM, GRU, 

SimpleRNN, and DenseNN for forecasting water quality parameters in aquaponics systems. The models were 

rigorously tested using a ten-fold cross-validation framework, with Mean Squared Error (MSE) and Mean 

Absolute Error (MAE) as the primary metrics. The results demonstrate that recurrent architectures, particularly 

LSTM and GRU, outperformed other models, underscoring their effectiveness in capturing temporal 

dependencies inherent in time-series data. The LSTM model exhibited the most consistent performance, 

achieving an average validation loss of 0.0028 and an average MAE of 0.0473. Its robust architecture and 

ability to retain long-term dependencies make it highly suitable for complex and noisy datasets like those used 

in this study. Similarly, the GRU model, with an average validation loss of 0.0028 and an average MAE of 

0.0478, provided comparable results, offering a computationally efficient alternative to LSTM. The 

SimpleRNN model, while simpler, showed limitations in handling long-term dependencies, resulting in higher 

error rates with an average validation loss of 0.0037 and an average MAE of 0.0553. The DenseNN model, 

which lacks a mechanism to process temporal patterns, demonstrated the lowest accuracy, with an average 

validation loss of 0.0075 and an average MAE of 0.0797, highlighting the importance of recurrent structures 

for time-series forecasting tasks. 
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The findings of this study emphasize the critical role of model architecture in addressing the unique 

challenges of forecasting water quality parameters in aquaponics systems. Recurrent models, particularly 

LSTM and GRU, are shown to be effective in capturing the complex dynamics of such systems, providing 

actionable insights for maintaining optimal water conditions. Furthermore, the results underscore the 

importance of robust preprocessing techniques to address data noise and ensure reliable predictions. This 

research provides a foundation for future studies aimed at optimizing predictive models for aquaponics 

systems. Future work could explore advanced ensemble techniques, hybrid architectures, and domain-specific 

data augmentation methods to further improve model accuracy and generalizability. Additionally, integrating 

real-time sensor data with predictive systems could enhance the operational efficiency of aquaponics systems, 

supporting sustainable agricultural practices. Through this study, the potential of deep learning in transforming 

aquaponics monitoring and management has been demonstrated, paving the way for more sophisticated and 

impactful applications in the field. 
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