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Accurate prediction of water quality parameters is critical for the effective
management and sustainability of aquaponics systems. This study evaluates
the performance of four deep learning architectures: Long Short-Term
Memory (LSTM), Gated Recurrent Unit (GRU), Simple Recurrent Neural
Network (SimpleRNN), and Dense Neural Network (DenseNN) for
forecasting key water quality parameters, including temperature, turbidity,
dissolved oxygen, pH, ammonia, and nitrate. A significant research gap is
addressed by analyzing how these models perform on noisy and minimally
preprocessed datasets, advancing prior studies that lack robust preprocessing
techniques tailored for aquaponics systems. A ten-fold cross-validation
framework was employed to rigorously assess the models, with Mean Squared
Error (MSE) and Mean Absolute Error (MAE) as evaluation metrics. The
results demonstrate that LSTM and GRU models outperform other
architectures, achieving average validation losses of 0.0028 and 0.0028,
respectively, and mean absolute errors of 0.0473 and 0.0478. These models
effectively capture the temporal dependencies inherent in time-series data,
making them highly suitable for the complex dynamics of aquaponics systems.
Unlike previous studies, this research highlights the trade-offs between
computational efficiency and predictive accuracy in these models. In contrast,
the SimpleRNN model exhibited higher error rates due to its inability to model
long-term dependencies, while the DenseNN model, lacking temporal
processing mechanisms, showed the lowest performance with an average
validation loss of 0.0075 and MAE of 0.0797. This study underscores the
importance of selecting appropriate model architectures for time-series
forecasting tasks and provides a foundation for deploying predictive systems
to optimize aquaponics operations. Future work includes exploring hybrid
models with attention mechanisms and real-time data integration for enhanced
operational efficiency.
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1. INTRODUCTION

Aquaponics, a symbiotic system combining aquaculture and hydroponics, has emerged as a sustainable
agricultural approach that offers efficient resource utilization and environmental benefits [1]-[3]. However,
the effective management of aquaponics systems depends heavily on maintaining optimal water quality
parameters such as pH, ammonia, nitrate, and dissolved oxygen [4]-[6]. These parameters are critical for
ensuring the health of aquatic organisms and the overall productivity of the system [7]. Deviations from optimal
conditions can lead to adverse outcomes, including fish mortality, reduced plant growth, and system imbalances
[8]. Despite the increasing adoption of aquaponics systems globally, maintaining the delicate balance of these
parameters remains a significant challenge due to the dynamic and interdependent nature of the system
[51,[9],[10]. The complexity of monitoring and predicting water quality in aquaponics systems is further
compounded by external factors such as environmental variations, sensor inaccuracies, and system-specific
characteristics [11]-[13]. Research into real-time predictive models for water quality has gained momentum,
but existing studies often lack comprehensive evaluations across multiple architectures or fail to address the
variability and noise inherent in aquaponics datasets. Traditional methods for monitoring rely on manual
observation or rule-based systems, which are often inadequate for real-time or predictive decision-making [14].
As a result, researchers have turned to advanced machine learning and deep learning techniques to address
these challenges. Deep learning models, in particular, have shown immense potential in capturing non-linear
relationships and temporal dependencies within complex datasets, making them suitable for forecasting water
quality in aquaponics systems [14]-[16].

Several studies have highlighted the applicability of machine learning in environmental monitoring and
time-series forecasting. For instance, [17] demonstrated the use of LSTM networks for predicting water quality
in fish ponds, achieving notable accuracy in forecasting dissolved oxygen levels. Similarly, [18] utilized GRU
models to analyze the impact of temperature and ammonia on aquaculture systems, showcasing the model's
ability to handle sequential dependencies effectively. However, these studies often focus on isolated models
and overlook comparative performance under rigorous preprocessing and evaluation frameworks. Another
study by [19][20] compared traditional statistical methods with neural network-based approaches for pH level
prediction in hydroponics, concluding that deep learning models significantly outperformed conventional
methods in terms of precision and adaptability. Despite these advancements, there remains a gap in the
literature regarding the comparative performance of various deep learning architectures for aquaponics water
quality prediction, particularly when dealing with noisy and minimally processed datasets [21]—[23]. Moreover,
few studies have explored the integration of preprocessing pipelines tailored specifically for aquaponics
datasets to enhance model robustness and generalizability [15],[24][25]. Addressing these gaps is crucial for
developing practical and scalable solutions that can be deployed in real-world aquaponics systems.

This study aims to bridge these gaps by systematically evaluating the performance of four state-of-the-art
deep learning models: Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Simple Recurrent
Neural Network (SimpleRNN), and Dense Neural Network (DenseNN) for forecasting key water quality
parameters in aquaponics systems. A rigorous preprocessing pipeline is developed to handle noise, missing
values, and feature scaling, ensuring that the models are trained on clean and reliable data. The models are
evaluated using a ten-fold cross-validation approach to ensure comprehensive performance assessment and
generalizability. The primary contributions of this research are threefold. First, it provides a comparative
analysis of advanced deep learning models for forecasting water quality in aquaponics systems under realistic
conditions. Second, it introduces a robust and reproducible preprocessing framework tailored for noisy
aquaponics datasets, addressing challenges related to data inconsistencies and feature alignment. Third, it
delivers actionable insights into the trade-offs among different model architectures, equipping practitioners
with the knowledge to make informed decisions when implementing predictive models in aquaponics systems.
The remainder of this paper is organized as follows. Section 2 details the materials and methods, including the
preprocessing pipeline and model architectures. Section 3 presents the experimental results, followed by a
discussion of the findings. Finally, Section 4 concludes the study and outlines potential directions for future
research.

2. METHODS

This section elaborates on the comprehensive methodology utilized in this study, encompassing dataset
preparation, data preprocessing, model development, cross-validation, and performance evaluation as
presented in Figure 1. The methodology emphasizes reproducibility and robustness to address the challenges
posed by noisy datasets.
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Figure 1. Research methodology

2.1. Dataset Preparation

The dataset used in this research was sourced from [26], containing time-series data collected through
sensors installed in aquaponics fish ponds. The dataset includes key water quality parameters such as
temperature ((T)), turbidity ((Tu)), dissolved oxygen ((D0)), pH ((pH)), ammonia ((NH5)), and nitrate
((N03)). Formally, the dataset can be expressed as a collection of pairs:

D= {(xp yl)' (x2' yZ)! ey (xn' yn)}'

where (x; € R%) represents the (d)-dimensional feature vector for observation (i), and (y; € R)
represents the target variable for prediction. The dataset, composed of multiple CSV files, was unified into a
single structured file to facilitate analysis. Exploratory Data Analysis (EDA) was conducted to inspect the
dataset for inconsistencies such as missing values, outliers, and feature correlations. Statistical summaries and
visualization techniques were employed to understand the distribution and interdependencies of the variables.

2.2. Data Preprocessing

Data preprocessing was critical due to the noisy and minimally cleaned nature of the dataset. The
following steps were meticulously carried out to prepare the data for model training. Firstly, feature selection
and alignment, in this stage, we create a subset of features relevant to aquaponics water quality monitoring was
selected based on domain knowledge. These features were aligned to ensure consistency between expected
variables and the actual dataset. Let the selected features be represented as (1).

:Fsefected = {T' Tu,DO, pH,NH3,NO3} (1)

An algorithm was implemented to match the selected features against the dataset's actual columns,
correcting discrepancies where necessary. Second, handling missing and invalid data, in this state, rows with
missing or invalid values were identified and handled. Specifically, infinite values ((+o0)) were replaced with
NaN and subsequently removed by following rule as presented in (2).

Deiean = {(x;,¥1) | x; contains no NaN or + o} )

Third is Normalization, in this stage, feature scaling was performed to normalize the dataset into the range
([0,1]) using the Min-Max Scaling formula as presented in (3).

Xij— min(xj)

4 —
Xij max(xj) - min(xj)

)
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where (x; ;) is the value of feature (j) in observation (i), and (min(xj)), (max(x]-)) are the minimum
and maximum values of feature (j) across all observations. Lastly we use Time-Series Sequence Creation
method in order to capture temporal dependencies, sequences of historical observations were constructed using
a sliding window approach as presented in (4).

Xe = {Xecws+1 Xemwar =0 Xeh Ve = Xeg1 “4)

where (w) is the window size, (X;) is the sequence of (w) historical data points, and (y;) is the target
value for time (t). This transformation converts the dataset into sequences suitable for time-series forecasting
models.

2.3. Model Development

Four deep learning architectures were developed to predict water quality parameters: Long Short-Term
Memory (LSTM), Gated Recurrent Unit (GRU), Simple Recurrent Neural Network (SimpleRNN), and Dense
Neural Network (DenseNN). Each model architecture was tailored to leverage unique characteristics of the
data. The LSTM model utilizes gating mechanisms to retain long-term dependencies in sequential data. The
update equations for the LSTM gates are presented in (5) to (10).

fi = (W - [he—y, x] + bf), )
ip = o(W; - [heey, xe] + by), (6)
& = tanh(W, - [he_y, %] + b,), @)
=01+ O, ®)

or = (W, - [he—1,xc] + bo), ©)
he = 0, © tanh(c,), (10)

where (f, i;, 0;) represent the forget, input, and output gates, respectively, and (c;, h;) represent the cell
and hidden states. The GRU simplifies these operations by directly updating the hidden state (h;). The
SimpleRNN model updates its hidden state iteratively as (11).

ht=O-(W'ht_1+U'xt+b) (11)

The DenseNN, a feedforward network, is expressed as y = a(W,, - a(W; - x + by) + b,), where (W;, W,)
and (b4, b,) represent weights and biases of the layers, and (o) is the activation function.

2.4. Cross-Validation
A ten-fold cross-validation strategy was employed to assess model performance. The dataset was
partitioned into ten subsets. For each fold (k), one subset served as the validation set ((D,’(’al)), and the

remaining nine subsets formed the training set ((D,irai")). Model evaluation metrics for each fold were
calculated as (12) and (13).
MSE) = i —9)% (12)

val

Dval
L P

lyi = %1, (13)

(xpypeDP

where (3,) is the predicted value. After that, in order to do performance evaluation, the models were evaluated
using Mean Squared Error (MSE) and Mean Absolute Error (MAE), averaged across folds: MSEg,, =

1 1
;z}{‘;l MSEy and MAE g5 = — W2 MAE,.

2.5. Implementation Framework

The entire workflow was implemented in Python, utilizing TensorFlow for deep learning, Scikit-learn for
preprocessing and evaluation, and Matplotlib for visualization. GPU-enabled environments were employed to
accelerate computations. This comprehensive methodology provides a robust framework for exploring the

Buletin Ilmiah Sarjana Teknik Elektro, Vol. 7, No. 1, March 2025, pp. 1-8



5 Buletin [lmiah Sarjana Teknik Elektro ISSN: 2685-9572

effectiveness of advanced deep learning models in forecasting water quality parameters in aquaponics systems,
addressing the unique challenges posed by noisy and minimally preprocessed datasets.

3.  RESULT AND DISCUSSION

The results of this study provide an in-depth evaluation of four advanced deep learning models: LSTM,
GRU, SimpleRNN, and DenseNN for forecasting water quality parameters in aquaponics systems as presented
in the Table 1 to Table 5. These models were assessed using a rigorous ten-fold cross-validation approach, with
Mean Squared Error (MSE) and Mean Absolute Error (MAE) serving as the primary metrics. This section
elaborates on the performance of each model, discusses observed trends, and interprets the implications of
these findings in detail. The LSTM model demonstrated robust performance across all folds, with an average
validation loss of 0.0028 and an average MAE of 0.0473. The model achieved its best performance in Fold 3,
where the MAE was as low as 0.0101. This exceptional accuracy indicates the model's capability to capture
and generalize patterns in the data under favorable conditions. However, there were folds where performance
varied slightly, with the MAE reaching 0.0723 in Fold 9. Such variability reflects the sensitivity of LSTM to
data distribution and partitioning, particularly when dealing with noisy and imbalanced subsets. The ability of
LSTM to retain long-term dependencies through its gating mechanisms contributes significantly to its
performance in modeling the temporal dynamics of water quality parameters. This makes it particularly
effective for datasets characterized by complex sequential relationships.

The GRU model achieved results comparable to LSTM, with an average validation loss of 0.0028 and an
average MAE of 0.0478. Similar to LSTM, GRU displayed variability in performance across folds, with its
best MAE recorded at 0.0198 in Fold 7 and its worst at 0.0748 in Fold 3. The variability suggests that while
GRU is efficient and computationally lighter than LSTM due to its simpler architecture, it may struggle slightly
more with certain subsets of the data. The GRU model's strength lies in its ability to maintain performance
while reducing computational overhead, making it an attractive choice for scenarios where resource constraints
exist. Despite these advantages, the results indicate that GRU's simplified architecture may occasionally fall
short in capturing finer temporal details present in highly dynamic datasets.

The SimpleRNN model, with an average validation loss of 0.0037 and an average MAE of 0.0553,
performed less effectively compared to LSTM and GRU. The model exhibited pronounced variability, with its
best MAE recorded at 0.0363 in Fold 2 and its worst at 0.0801 in Fold 6. This wide range of performance
highlights the limitations of SimpleRNN, which lacks the sophisticated gating mechanisms of LSTM and GRU.
As a result, it is more prone to issues like vanishing gradients, particularly in tasks requiring the modeling of
long-term dependencies. The relatively higher errors suggest that SimpleRNN struggled to capture the intricate
temporal patterns in the aquaponics dataset. This makes it less suitable for applications involving time-series
forecasting, where temporal dependencies are critical for accurate predictions. The DenseNN model, which
uses a feedforward architecture, exhibited the lowest overall performance, with an average validation loss of
0.0075 and an average MAE of 0.0797. Although the model showed reasonable accuracy in some folds, such
as Fold 1 where the MAE was 0.0382, it struggled significantly in others, with the MAE reaching 0.1008 in
Fold 5. The lack of recurrent connections in DenseNN renders it incapable of modeling sequential
dependencies, which are essential for forecasting tasks involving time-series data. Instead, DenseNN relies
solely on the static relationships among features, limiting its effectiveness in scenarios where temporal
dynamics play a crucial role. The higher error rates observed for DenseNN underscore the importance of using
architectures specifically designed for time-series data when addressing problems such as water quality
prediction.

A comparative analysis of the models reveals that LSTM and GRU outperformed SimpleRNN and
DenseNN in both accuracy and generalizability. The results demonstrate the critical importance of recurrent
architectures in capturing the temporal characteristics of the dataset. The strong performance of LSTM, coupled
with its slightly lower variability across folds compared to GRU, suggests that it is the most robust model for
this application. However, GRU remains a competitive alternative, particularly in scenarios where
computational efficiency is a priority. The findings highlight the need for models that are well-aligned with the
nature of the data being analyzed. The stark contrast between the performance of DenseNN and the recurrent
models reinforces the importance of leveraging temporal dependencies in time-series forecasting. Additionally,
the variability observed across folds for all models underscores the significance of robust data preprocessing
and augmentation techniques to mitigate the impact of noise and ensure consistent performance. Future studies
could explore advanced techniques such as domain-specific data augmentation, denoising, and feature
engineering to further enhance model robustness and accuracy.

The superior performance of LSTM and GRU models underscores their potential for real-world
deployment in aquaponics systems. These models can provide accurate and timely predictions of water quality
parameters, enabling proactive interventions to maintain optimal conditions. The scalability and adaptability
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of these models make them suitable for integration into automated monitoring systems, supporting sustainable
aquaponics practices. In conclusion, the results of this study emphasize the effectiveness of LSTM and GRU
models for forecasting water quality in aquaponics systems. The ability of these models to handle complex
temporal dynamics positions them as valuable tools for predictive analytics in environmental monitoring. This
research provides a strong foundation for future investigations aimed at refining these methodologies and
exploring their applicability across diverse domains. The insights gained from this study contribute to
advancing the state of the art in time-series forecasting and its applications in sustainable agriculture.

Table 1. Results for LSTM Table 2. Results for GRU

Fold Validation MAE Fold Validation MAE
Loss Loss

1 0.0039 0.0588 1 0.0019 0.0428

2 0.0028 0.0511 2 0.0027 0.0509

3 0.0002 0.0101 3 0.0064 0.0748

4 0.0024 0.0470 4 0.0018 0.0418

5 0.0012 0.0339 5 0.0039 0.0610

6 0.0049 0.0652 6 0.0024 0.0475

7 0.0025 0.0477 7 0.0006 0.0198

8 0.0021 0.0438 8 0.0027 0.0505

9 0.0060 0.0723 9 0.0045 0.0621

10 0.0021 0.0435 10 0.0008 0.0267

Table 3. Results for SimpleRNN Table 4. Results for DenseNN

Fold Validation MAE Fold Validation MAE
Loss Loss

1 0.0042 0.0601 1 0.0015 0.0382

2 0.0014 0.0363 2 0.0104 0.0970

3 0.0037 0.0579 3 0.0078 0.0830

4 0.0042 0.0602 4 0.0083 0.0855

5 0.0034 0.0559 5 0.0111 0.1008

6 0.0073 0.0801 6 0.0066 0.0769

7 0.0045 0.0621 7 0.0055 0.0696

8 0.0016 0.0393 8 0.0102 0.0959

9 0.0046 0.0633 9 0.0036 0.0566

10 0.0015 0.0376 10 0.0097 0.0935

Table 5. Performance Results

Av_erage Average
Model Validation MAE
Loss
LSTM 0.0028 0.0473
GRU 0.0028 0.0478
RNN 0.0037 0.0553

DenseNet 0.0075 0.0797

4. CONCLUSIONS

This study comprehensively evaluated the performance of four deep learning architectures: LSTM, GRU,
SimpleRNN, and DenseNN for forecasting water quality parameters in aquaponics systems. The models were
rigorously tested using a ten-fold cross-validation framework, with Mean Squared Error (MSE) and Mean
Absolute Error (MAE) as the primary metrics. The results demonstrate that recurrent architectures, particularly
LSTM and GRU, outperformed other models, underscoring their effectiveness in capturing temporal
dependencies inherent in time-series data. The LSTM model exhibited the most consistent performance,
achieving an average validation loss of 0.0028 and an average MAE of 0.0473. Its robust architecture and
ability to retain long-term dependencies make it highly suitable for complex and noisy datasets like those used
in this study. Similarly, the GRU model, with an average validation loss of 0.0028 and an average MAE of
0.0478, provided comparable results, offering a computationally efficient alternative to LSTM. The
SimpleRNN model, while simpler, showed limitations in handling long-term dependencies, resulting in higher
error rates with an average validation loss of 0.0037 and an average MAE of 0.0553. The DenseNN model,
which lacks a mechanism to process temporal patterns, demonstrated the lowest accuracy, with an average
validation loss of 0.0075 and an average MAE of 0.0797, highlighting the importance of recurrent structures
for time-series forecasting tasks.
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The findings of this study emphasize the critical role of model architecture in addressing the unique
challenges of forecasting water quality parameters in aquaponics systems. Recurrent models, particularly
LSTM and GRU, are shown to be effective in capturing the complex dynamics of such systems, providing
actionable insights for maintaining optimal water conditions. Furthermore, the results underscore the
importance of robust preprocessing techniques to address data noise and ensure reliable predictions. This
research provides a foundation for future studies aimed at optimizing predictive models for aquaponics
systems. Future work could explore advanced ensemble techniques, hybrid architectures, and domain-specific
data augmentation methods to further improve model accuracy and generalizability. Additionally, integrating
real-time sensor data with predictive systems could enhance the operational efficiency of aquaponics systems,
supporting sustainable agricultural practices. Through this study, the potential of deep learning in transforming
aquaponics monitoring and management has been demonstrated, paving the way for more sophisticated and
impactful applications in the field.
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