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This research addresses the challenge of feature selection in high dimensional
medical datasets, where unnecessary or duplicated information can hide patterns
and negatively impact model performance. The aim is to develop an efficient
feature selection strategy using Fine-tuning Fusion Graph Convolutional Networks
(GCNs) to enhance model accuracy and interpretability. The objectives include
improving the medical data selection process, increasing generalization, and
assisting healthcare professionals in making educated clinical decisions based on
the most relevant factors. The study employs Joint Fine-Tuning Fusion Graph
Convolutional Networks (GCNs) for feature selection in medical datasets. This
approach entails creating several graphs to illustrate feature interrelations,
amalgamating them into a cohesive representation, and optimizing the model to
emphasize pertinent aspects. The L2-norm of the final embeddings dictates feature
significance, directing the choice of the most critical features for enhanced
predictive accuracy. The study's findings indicate that GCN-based feature selection
improves classification accuracy, especially for the PIDD dataset, enhancing
accuracy, precision, recall, and Fl-score from 0.74 to 0.75. The Kidney Failure
dataset exhibited near-perfect accuracy (0.99) prior to selection, whereas the heart
disease dataset had a minor reduction in performance (from 0.81 to 0.80),
highlighting the dataset-specific effects of feature selection. GCN-based feature
selection improved classification performance, increasing the PIDD dataset's
accuracy from 0.74 to 0.75, with no significant effect on the Kidney Failure dataset.
Nonetheless, it somewhat diminished performance for the heart disease dataset.
Subsequent study ought to enhance feature selection techniques by integrating
dataset-specific optimizations and domain expertise to augment model precision
and overall generalizability.
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1. INTRODUCTION

The rapidly changing realm of healthcare data analysis requires creative methods to tackle the intrinsic
complexity and extensive quantities of medical information [1]-[4]. With the emergence of electronic health
records, wearable health devices, and sophisticated imaging techniques, healthcare organizations produce an
abundance of data every day [5]-[9]. This surge of information has significant promises for improving patient
care, optimizing clinical processes, and guiding evidence-based medical choices [10]-[14]. The issue resides
not only in the substantial amount of data but also in its complexity, including varied formats, inconsistent data
quality, and deep interrelationships across elements [15]-[18]. Consequently, there is an urgent need for new
strategies capable of efficiently extracting relevant insights from this data, especially via complex feature
selection procedures [19]-[22].

Feature selection is an essential phase in the data pretreatment pipeline, particularly for medical datasets
marked by high dimensionality [23]-[26]. Conventional machine learning methods sometimes encounter
difficulties with datasets that include an excessive amount of characteristics, many of which may be extraneous
or superfluous [5],[15],[27][28]. The existence of such characteristics may mask significant patterns,
complicate model training, and ultimately result in inferior prediction performance. Furthermore, the likelihood
of overfitting escalates with a growth in the number of features, leading to models that do not generalize well
to novel, unexplored data. This highlights the need to identify and choose the most relevant elements that
substantially influence the goal results [20],[29]-[31].

This paper provides a unique method using Fine-tuning Fusion Graph Convolutional Networks (GCNs)
for feature selection in medical data to address these problems [32]. This technique utilizes the distinctive
characteristics of GCNs to improve the feature selection process, ensuring that only the most relevant features
are preserved for model training. Graph Convolutional Networks (GCNs) are especially adept at modeling
relationships among elements within a graph framework [33]-[36]. In the realm of medical data, this entails
depicting characteristics and patient interactions as nodes and edges in a graph, enabling the model to include
both the individual importance of each feature and the contextual meaning derived from their interrelations
[37][38].

This study is primarily motivated by the increasing need for precise and interpretable prediction models
in healthcare [39]. As healthcare practitioners increasingly depend on data-driven decision-making, the need
for openness in model projections becomes essential [40]. Healthcare practitioners must comprehend and rely
on the elements affecting forecasts to make educated clinical judgments [41]. Conventional black-box models,
while theoretically precise, sometimes lack the requisite interpretability for clinical use [42]. This study seeks
to improve model interpretability by including feature selection into the GCN framework, enabling
practitioners to discern the most significant factors influencing the model's predictions. This congruence with
clinical requirements enhances the model's applicability in actual environments and promotes increased
acceptability of machine learning methods among healthcare practitioners.

The objectives of this study are diverse. Initially, it aims to provide an efficient feature selection process
specifically designed for the distinct attributes of high-dimensional medical datasets. This entails the design
and construction of a Fine-tuning Fusion GCN that may adaptively modify to the distinct characteristics of the
data, enhancing the selection process according to the context of the medical application. The study seeks to
improve the interpretability of model predictions, offering healthcare professionals clear insights into the most
significant elements for clinical decision-making. This work aims to illustrate the practical applicability of the
suggested strategy via extensive experiments using real-world medical information, highlighting its potential
to enhance patient outcomes and facilitate evidence-based practices.

This study is distinguished by its use of Fine-tuning Fusion approaches inside the GCN framework,
differentiating it from conventional feature selection methods. Although much research has investigated GCNs
for many applications, the concentrated emphasis on feature selection in medical data signifies a notable
progression in the domain. The suggested technique utilizes a fine-tuning process to adjust the model to various
medical datasets, enhancing the comprehension of feature significance according to the distinct context of each
dataset. This adaptive modification improves the model's capacity to comprehend the intricacies of medical
data, yielding more precise and relevant feature choices.

Furthermore, the suggested Fine-tuning Fusion GCN methodology tackles the computational efficiency
of handling extensive medical data, a vital factor in the contemporary healthcare landscape [43]. As healthcare
organizations progressively embrace data-driven approaches, the need for real-time analysis and decision-
making is increasing [44]. This study seeks to integrate the advantages of GCNs with fine-tuning
methodologies to provide a system that harmonizes computing efficiency and accuracy in feature selection.
This capacity is especially significant in clinical environments as prompt insights may directly influence patient
care, allowing healthcare practitioners to make educated choices based on the most relevant data.
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This research presents significant advancements in medical data analysis, including:

1. A novel methodology that integrates Fine-tuning and Fusion techniques within Graph Convolutional

Networks (GCNs) to improve feature selection, establishing a robust framework for medical data analysis.
2. Enhanced model performance by efficient feature selection, minimizing overfitting, and improving

generalization to novel data.

3. Enhanced interpretability of model results, promoting improved clinical decision-making by pinpointing
the most important elements for healthcare professionals.

4.  Empirical insights derived from actual medical data applications illustrate the efficacy of the suggested
methodology in enhancing patient outcomes.

This study is motivated by the urgent need for efficient feature selection techniques specifically designed
for medical data to address the issues of high dimensionality and inter-feature correlations. This research
proposes an innovative technique that increases feature selection procedures by using Fine-tuning Fusion
Graph Convolutional Networks, resulting in enhanced model performance and more informed clinical
judgments. The next parts of this study will outline the utilized methodology, the performed experiments, and
the acquired results, concluding with a discussion on the relevance of these findings for future research on the
subject.

2. LITERATURE REVIEW

The rapid development of artificial intelligence (Al), graph-based learning, and multimodal data
integration has significantly advanced computational methods in healthcare and medical informatics [45]-[48].
Recent research demonstrates that graph-based models are particularly effective for capturing relational
structures that traditional statistical or deep learning approaches often overlook. These models support the
representation of complex interactions, whether among herbs in Traditional Chinese Medicine (TCM), salient
features in imaging tasks, or multimodal patient information. As a result, graph-based learning increasingly
contributes to improvements in predictive accuracy and clinical interpretability.

In the context of TCM, herbal prescription formulation is grounded in centuries of accumulated
knowledge. However, many computational models used in earlier studies relied on simplified statistical
representations such as bag-of-words, which fail to capture the nuanced relationships between herbs and
symptoms. To address this issue, Yang et al. introduced a graph convolutional network (GCN) equipped with
multi-layer information fusion that incorporates herb knowledge graphs into the learning process [49]. Their
approach enriches feature representation, reduces noise, and improves predictive performance. The model
achieved higher Precision (an increase of 6.2 percent), Recall (an increase of 16.0 percent), and F1-score (an
increase of 12.0 percent) compared with baseline methods. These results highlight the growing potential of Al-
driven tools to support prescription analysis and clinical decision-making in TCM.

Graph-based learning has also contributed to advancements in computer vision tasks such as co-saliency
detection, where the objective is to identify shared salient regions across multiple images. Traditional methods
often struggle to capture higher-level semantic consistencies. Hu et al. addressed this limitation by proposing
a multi-scale graph fusion framework that integrates VGG-16-based feature extraction with GCN-based
refinement [34]. Their method segments images into semantic superpixels and aggregates shared and scale-
specific information to enhance discriminative capability. Evaluations on three benchmark datasets show that
the model consistently outperforms leading approaches in all major metrics, demonstrating improved
robustness and accuracy.

Graph Convolutional Networks have further proven useful in clinical prediction models, particularly in
domains where datasets exhibit substantial variability. In coronary heart disease (CHD) prediction, existing
GNN-based models often lack generalizability across datasets due to domain-specific characteristics. Lin et al.
introduced a domain-adaptive multichannel GCN (DAMGCN) to overcome these challenges [50]. The
framework combines dual-channel graph convolution, attention-guided node representation, and domain
adversarial learning to align the feature distributions of source and target datasets. Through the joint
optimization of several loss functions, the model successfully transfers knowledge between CHD datasets with
differing properties. Experimental results confirm that DAMGCN performs significantly better than previous
models, with additional improvements observed when graph-based transfer learning is incorporated.

Multimodal disease prediction represents another important application of graph-based reasoning.
Traditional convolutional neural networks (CNNs) excel at processing imaging data but face challenges when
integrating heterogeneous data sources. To address this, Huang and Chung proposed an edge-variational GCN
that constructs dynamic population graphs and optimizes their structure simultaneously with spectral GCN
layers [51]. The model also employs Monte-Carlo edge dropouts to enhance uncertainty estimation.
Evaluations across four multimodal datasets related to conditions such as autism spectrum disorder and
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Alzheimer’s disease demonstrate notable accuracy improvements over earlier methods. Comprehensive
ablation analysis further validates the importance of each architectural component.

In oncology, accurate survival prediction relies heavily on multimodal information that includes clinical,
pathological, and genetic data. However, missing modalities are common and can severely reduce model
reliability. Hou et al. developed a Hybrid Graph Convolutional Network (HGCN) to address this challenge
[52]. The framework integrates GCNs with hypergraph convolutional networks (HCNs) and incorporates an
online masked autoencoder to reconstruct missing hyperedges. This approach enables more effective modeling
of intra- and inter-modal relationships. Experiments conducted on six cancer cohorts from The Cancer Genome
Atlas (TCGA) reveal that HGCN significantly surpasses state-of-the-art methods, both in complete and
incomplete modality scenarios, underscoring its practical utility in precision oncology.

Overall, the reviewed studies illustrate how graph-based learning methods continue to transform medical
data analysis. From herb recommendation systems in TCM to visual saliency detection, cross-domain clinical
prediction, multimodal disease modeling, and cancer survival analysis, recent research highlights the capacity
of graph-centered approaches to generate more accurate, robust, and clinically meaningful insights.

3. JOINT FINE-TUNING FUSION GRAPH CONVOLUTIONAL NETWORK

The joint fine-tuning fusion of Graph Convolutional Networks (GCNs) generally denotes a procedure in
which several components of the model, or numerous models, are concurrently refined to enhance performance.
This may include the concurrent optimization of several components of a GCN for tasks such as node
classification, graph classification, or feature selection. The objective is to enable the GCN to acquire an
improved representation by concurrently optimizing the architecture and characteristics of various components
of the network, often while incorporating numerous sources of information or graphs. The Joint Fine-Tuning
Fusion Graph Convolutional Network (GCN) for feature selection seeks to integrate information from several
graphs that depict distinct connections among features while optimizing the model via fine-tuning fusion. This
method integrates these connections inside the GCN framework to prioritize characteristics according to their
significance in forecasting the target variable

The process begins with the construction of multiple graphs G; = (V, E;), where V represents the feature
nodes and E; represents edges that encode relationships between the features. Each graph corresponds to a
different type of feature relationship. For instance, a correlation graph would have edges weighted by the
Pearson correlation coefficient, p;;, between two features X; and X;. Similarly, a mutual information graph
would have edges weighted by the mutual information I(X;, X;) between features.

The adjacency matrix for each graph G; is represented by A;, and the feature matrix A represents the
feature values across all samples, where X € R™ ¢, with n being the number of samples and d the number of
features.

In the GCN, each layer propagates information between connected nodes (features) in a graph. This
process is described by the following equation:

1 1
HOD =¢ (B‘EKB‘EH(DWD) (1)

where H® is the feature representation at layer [, A = A + I is the adhacency matrix with added self-loops to
include each feature’s own information, D is the degree matrix derived from D, W® is the weight matrix at
layer [, and o () is an activation function.

This formula aggregates information from a feature's neighbors in the graph at each layer, allowing the
model to learn more complex relationships.

To integrate information from multiple graphs, a fusion mechanism is employed. The node
representations (features) obtained from each graph G; after applying (1) are fused into a unified representation.
The fusion is typically a weighted sum of the individual graph representations:

k
Hfusion = Z a;H; (2)
i=1
where H; is the node representation from the i-th graph, «; is a learnable weight parameter representing the
importance of the i-th graph, and k is the number of graphs.

The weighted sum ensures that the most informative graphs contribute more to the final feature
representation.
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After constructing the fused representation, the model undergoes fine-tuning. This process adjusts the
weights «; for each graph to prioritize the most important graph structures. The loss function for joint fine-
tuning consists of two terms:

k
L= Lgen + 7\2 a; |[H; 13 3)

i=1

where Ly is the GCN loss, A is the regularization parameter, and the second term is a regularization on the
graph fusion weights «;, which prevents overfitting by controlling the influence of each graph.

This joint optimization process ensures that the GCN not only learns to predict the target variable but also
identifies the most important graph structures for feature selection.

Once the GCN is fine-tuned, feature importance is calculated based on the final node embeddings Hy;on.-
The importance of each feature is determined by the L2-norm of its embedding in the final fused graph
representation:

H(X]) = ”Hfusion[j' :]”2 (4)

This score measures the influence of each feature in the context of all the graph structures. Features with
higher importance scores are considered more relevant for predicting the target variable.

Utilizing the feature importance scores from (4), the top m features may be identified by ranking them in
decreasing order of significance. This last selection phase guarantees that only the most relevant attributes are
used for subsequent classification assignments.

The Joint Fine-Tuning Fusion Graph Convolutional Network for feature selection integrates the
advantages of numerous graphs, each representing distinct connections among features. The GCN consolidates
data from these graphs (as defined in (1)), integrates the graph representations (as shown in (2)), and refines
the model to enhance the feature ranking procedure (as described in (3)). The L2-norm of the final node
embeddings (obtained from (4)) is used to compute feature significance, facilitating a reliable and precise
identification of the most significant features.

4. EXPERIMENTAL RESULTS AND DISCUSSIONS

All datasets and algorithms in this study were conducted on a single laptop, specifically the MacBook Pro
2020 M1, utilizing the Python computational platform to ensure equitable comparisons. This work uses feature
selection techniques to enhance classification accuracy by obtaining kernel feature subsets. The Support Vector
Machine (SVM) is utilized as the classification method to assess the subsets derived from feature selection.
The quantity of features chosen for classification is contingent upon the classification's accuracy. Numerous
established or extensively utilized feature selection approaches are available for comparison. Table 1 details
the data that we used in this research.

Table 1. Data Information

Dataset # Features # Classes # Instances
PIDD 9 2 768
Kidney Failure 26 2 400
Heart Disease 14 2 1,025

Figure 1 illustrates a consolidated graph of attributes from the Pima Indians Diabetes Dataset (PIDD),
with each node representing a characteristic and the edges denoting the links or connections among these
features. This visualization is crucial to the feature selection process of a Graph Convolutional Network (GCN).
In this context, the GCN examines the graph structure to discern and assess the significance of features based
on their interconnections. Essential attributes like BMI, Glucose, Blood Pressure, Insulin, and Diabetes
Pedigree Function are pivotal in the graph, demonstrating their significant correlations with other variables
such as Skin Thickness, Age, and Outcome. GCN utilizes these linkages to assess the significance of each
feature for categorization objectives. By analyzing the interrelatedness of features, the GCN can ascertain
which features should be preserved and which may be superfluous or less informative.

In feature selection, the GCN identifies patterns in feature connectivity. If specific variables exhibit high
centrality or are interconnected with several others, they are likely to convey significant information for
predicting the result (diabetes). Conversely, traits with limited or weaker connections may be deemed less
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pertinent and could be recommended for elimination. The model of GCN optimizes the selection of informative
features, diminishes dimensionality, and enhances the performance of the SVM model, as demonstrated by the
marginal improvement in measures like accuracy, precision, recall, and F1-score following feature selection
for the PIDD dataset.

Fused Graph of Features

SkinThickness.
\ DxatetesPedigrasfunchicn
g . -
NN ,
0"
\.
‘.l *,
by i
*, Fa
" /
\ , i
naalin N T,
— v
‘l'\ Y i/\ .
i N v
SN
,'- /- - Gucose
o, / .
ey - s,
&4
7 LR
..-"/
ElpodPressure

Figure 1. Graph Visualization from Diabetes Dataset (PIDD)

Figure 2 presents a consolidated graph of features for a kidney failure dataset, where feature selection
utilizing a Graph Convolutional Network (GCN) entails the identification and retention of the most pertinent
characteristics that substantially influence the classification process. Every node in the graph signifies a distinct
feature pertinent to kidney health, including age, blood pressure, and blood urea, among others, and the edges
connecting the nodes denote interactions or correlations among these features. The core node designated
"classification" signifies the goal variable, indicating the presence or absence of renal failure. The GCN
analyzes the graph by doing convolution operations on the nodes, wherein each node consolidates information
from its adjacent nodes. This recurrent procedure enables the GCN to refine feature representations, thereby
capturing significant patterns and dependencies among the features. The GCN discerns the importance of each
feature concerning the classification task through various layers of convolution and aggregation. Features that
demonstrate stronger associations or proximity to the primary classification node are often regarded as more
significant. The concluding phase of feature selection entails preserving features with elevated learned
importance scores, essential for precise classification while eliminating less significant features to diminish
model complexity and improve interpretability. Key factors found for predicting kidney failure may encompass
blood pressure, blood urea, serum creatinine, age, diabetes mellitus, and hemoglobin levels. The GCN
accentuates these features because of their significant impact on the target variable, therefore enhancing the
overall efficacy and dependability of the classification model.

Figure 3 illustrates a consolidated graph of attributes for the heart disease dataset. This graph depicts
nodes representing features (e.g., cp, thal, trestbps, target), with edges indicating the interconnections among
these features, demonstrating their interactions. This depiction is integral to the feature selection process
utilizing GCN, which aids in identifying the most significant features for predicting heart disease. Crucial
attributes such as cp (chest pain), thal (thalassemia), trestbps (resting blood pressure), and ca (number of main
vessels) exhibit a substantial level of interconnection, signifying their importance in influencing the outcome
or target variable. The center node target presumably signifies the classification result (presence or absence of
heart disease), and its numerous connections indicate that several features directly influence the prediction
process.

In the realm of feature selection, the GCN examines these interactions to determine the most essential
features for model correctness and those that are superfluous. Attributes having robust and many
interconnections to others, such as thalach (highest heart rate achieved), chol (cholesterol level), and oldpeak
(ST depression induced by exercise), may possess considerable predictive capability. Conversely, attributes
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having limited or weaker associations, such as sex and fbs (fasting blood sugar), may be regarded as less
essential for the categorization task. Employing GCNs for feature selection enables the reduction of dataset
dimensionality without compromising model performance, facilitating a more efficient and precise
categorization of heart disease. This technique improves the model's generalizability by emphasizing the most
useful traits and eliminating those that contribute minimally to the overall prediction.

Fused Graph of Features
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Figure 2. Graph Visualization from Kidney Failure Dataset

Fused Graph of Features

Figure 3. Graph Visualization from Heart Disease

The assessment of the SVM classifier's efficacy before and after feature selection via a Graph
Convolutional Network (GCN) across three datasets—PIDD, Kidney Failure, and Heart Disease—yields
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significant insights into the influence of feature selection on model performance shows in Table 2 and
illustrated in Figure 4. Utilizing GCN-based feature selection for the PIDD (Pima Indians Diabetes Dataset)
resulted in a significant enhancement in all assessment measures. The accuracy rose from 0.74 to 0.75, while
precision, recall, and F1-score improved from 0.72 to 0.74 and 0.75, respectively. This indicates that feature
selection successfully diminished noise and eliminated extraneous features, enabling the model to concentrate
on more pertinent features. Consequently, the SVM classifier's capacity to differentiate between classes
improved marginally, suggesting that the feature selection method augmented the overall quality of the input
data.

In the Kidney Failure dataset, the SVM classifier exhibited consistently good performance, achieving
accuracy, precision, recall, and Fl-score of 0.99 both before and during feature selection. This outcome
signifies that the initial feature collection was already significantly pertinent and informative for this specific
classification job, exhibiting minimal noise or extraneous features. The feature selection approach did not
significantly impact the model's performance, and the classifier achieved nearly flawless results. This indicates
that in specific datasets with clearly defined features, feature selection may not produce substantial
enhancements, yet it also does not impair performance.

Table 2. Evaluation Metrics from each Dataset
Evaluation Metrics

Dataset Comparison —
Accuracy Precision Recall F1-Score
Before 0.74 0.72 0.72 0.72
PIDD

After 0.75 0.74 0.75 0.74
Kidnev Fail Before 0.99 0.99 0.99 0.99

1dn 1ur
ey rarire After 0.99 0.99 099 099
. Before 0.81 0.82 0.81 0.81

Heart Disease
After 0.8 0.8 0.8 0.8
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Figure 4. Visualization from Evaluation Metrics for each Dataset

The performance of the SVM classifier somewhat diminished following feature selection in the heart
disease dataset. The accuracy declined from 0.81 to 0.80, accompanied by reductions in precision, recall, and
F1-score from 0.81 and 0.82 to 0.80. The minor decline in performance indicates that the GCN-based feature
selection may have omitted certain pertinent features crucial for the classifier. This result underscores the
inherent risk in feature selection techniques: excessive removal of features or the exclusion of essential
elements may result in diminished model performance. Consequently, it emphasizes the necessity of
meticulous selection and calibration of feature selection techniques to guarantee the elimination of only
genuinely redundant or uninformative characteristics. GCN-based feature selection exhibits varied effects
contingent upon the dataset. In datasets such as PIDD, feature selection enhances model performance by
minimizing noise and emphasizing more informative characteristics. Nonetheless, for datasets with clearly
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delineated feature sets, such as Kidney Failure, feature selection may have minimal to no impact. Conversely,
in instances such as the heart disease dataset, improper feature selection may result in a marginal decline in
performance, underscoring the necessity for dataset-specific optimization of the feature selection process. This
analysis highlights the context-dependent characteristics of feature selection and the necessity for
comprehensive examination before its use across various datasets.

5. CONCLUSIONS

This research illustrates the differential efficacy of GCN-based feature selection across several medical
datasets. In the Pima Indians Diabetes Dataset (PIDD), the application of GCN for feature selection markedly
enhanced the efficacy of the Support Vector Machine (SVM) classifier. The accuracy rose from 0.74 to 0.75,
while precision, recall, and F1-score enhanced from 0.72 to 0.74 and 0.75, respectively. This enhancement
demonstrates that GCN-based feature selection efficiently diminished noise and eliminated extraneous
features, enabling the model to concentrate on more pertinent variables such as BMI, Glucose, Blood Pressure,
and Insulin. This indicates that GCN is especially advantageous for datasets characterized by significant
interconnection among characteristics, hence enhancing classification accuracy by prioritizing the most
essential variables. Conversely, the feature selection method had minimal to no effect on the Kidney Failure
dataset. The SVM classifier attained nearly flawless results both prior to and after to feature selection,
sustaining accuracy, precision, recall, and F1-score of 0.99. This suggests that the initial feature set was already
highly appropriate for classification, with negligible noise or redundant features. Consequently, the feature
selection did not markedly improve performance, indicating that for datasets with a well-defined and pertinent
feature space, further feature selection may be superfluous.

Nonetheless, in the instance of the heart disease dataset, a marginal decline in performance was noted
following feature selection. The accuracy decreased from 0.81 to 0.80, accompanied by minor declines in
precision, recall, and Fl-score. This reduction indicates that the GCN-based selection procedure may have
unintentionally eliminated vital features necessary for the classification task, resulting in diminished model
performance. This result highlights the possible dangers of excessive filtering and the necessity for meticulous
optimization and validation of feature selection methods to prevent the omission of relevant features. Future
research should investigate more sophisticated fine-tuning methodologies for GCN-based feature selection,
emphasizing the equilibrium between eliminating redundant characteristics and preserving useful ones.
Furthermore, the creation of hybrid models that integrate GCN-based feature selection with alternative machine
learning methodologies, such as ensemble techniques, may yield a more resilient framework for managing
varied datasets. Future study should explore the efficacy of GCN-based feature selection on larger and more
intricate datasets, possibly including multi-class classification tasks or time-series data, to enhance
understanding of its generalizability. Furthermore, investigating the incorporation of domain expertise,
especially within medical datasets, may facilitate the feature selection process, guaranteeing the retention of
critical features informed by expert knowledge. Future research should focus on optimizing and adapting GCN-
based feature selection for diverse applications, enhancing classification accuracy and model robustness across
a broader spectrum of datasets.
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