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An efficient power management technique of a grid-connected 

renewable source proficiently coordinates the various controllable 

units necessary in the power system operation. It is achieved by 

responding to the dynamic load demand through efficient 

communication and advanced control structures. This paper presents a 

decentralized multiagent power management technique for a grid-

connected photovoltaic/energy storage system using the optimized 

network parameters from the Butterworth inertial weight particle 

swarm optimization method. The power network is coordinated by 

intelligent agents and structured into a zonal generation and load 

multiagent system to update the load and power injected at different 

network buses. However, Butterworth inertial weighting function 

particle swarm optimization determines the optimized network 

parameters and the capacity of the connected energy sources fed into 

the multiagent system. The inertial weight of the optimization 

technique is patterned along the Butterworth filtering curve for holistic 

space search and improved convergence. Hence, the proposed 

technique solves the problem of inefficient optimization methods and 

provides a robust control and management system with agents capable 

of reorganizing and coping with the system's dynamic changes. The 

performance analysis of the IEEE 33-Bus distribution system shows 

an improved network coordinating method. The power loss reduction 

appreciated significantly from 65.42% to 68.58%, while the voltage 

deviation improved from 88.19% to 89.95% by integrating a 

renewable battery system. The voltage is maintained within the 

operational constraints of daily simulations. The method is targeted at 

efficient operation of distribution networks. 

Keywords: 

Multiagent; 

Energy Storage System; 

Photovoltaic; 

Butterworth; 

Optimization 

Corresponding Author: 

Oladepo Olatunde, 

Osun State University, 

Electrical and Electronic 

Engineering Department, 

Osogbo, Nigeria. 

Email: 

oladepo.olatunde@uniosun.edu

.ng 

This work is licensed under a Creative 

Commons Attribution-Share Alike 4.0 

 

 

Document Citation: 

O. Olatunde, U. F. Okoro, and A. T. Tola, “Multiagent based Power Management for Grid-connected 

Photovoltaic Source Using the Optimized Network Parameters From Butterworth Inertia Weight Particle 

Swarm Optimization,” Buletin Ilmiah Sarjana Teknik Elektro, vol. 6, no. 4, pp. 366-380, 2024, DOI: 

10.12928/biste.v6i4.11391. 

  

https://doi.org/10.12928/biste.v6i4.11391
http://journal2.uad.ac.id/index.php/biste/
http://journal2.uad.ac.id/index.php/biste/
mailto:biste@ee.uad.ac.id
mailto:oladepo.olatunde@uniosun.edu.ng
mailto:oladepo.olatunde@uniosun.edu.ng
https://creativecommons.org/licenses/by-sa/4.0/deed.id
https://creativecommons.org/licenses/by-sa/4.0/deed.id
https://creativecommons.org/licenses/by-sa/4.0/deed.id
http://journal2.uad.ac.id/index.php/biste/article/view/xxx
http://journal2.uad.ac.id/index.php/biste/article/view/xxx
http://journal2.uad.ac.id/index.php/biste/article/view/11391


367 Buletin Ilmiah Sarjana Teknik Elektro  ISSN: 2685-9572 

 

 

Multiagent based Power Management for Grid-connected Photovoltaic Source Using the Optimized Network 

Parameters From Butterworth Inertia Weight Particle Swarm Optimization (Oladepo Olatunde) 

1. INTRODUCTION 

The aging power network infrastructure, coupled with the general increment in the load demand, 

culminated in significant concerns about electric users' safety, power supply quality and network operation 

within statutory limits [1]. It calls for network modernization, development and significant investment by 

various government agencies in power networks. However, the global emphasis is on low-carbon power 

sources [2]. In view of the aforementioned, this research focuses on a decentralized multiagent power 

management technique for a grid-connected photovoltaic/energy storage system using the optimized network 

parameters from the Butterworth inertial weight particle swarm optimization method.  It solves the load flow 

analysis to reveal the bus voltage and line current. It also formulates technique targeted at reducing the network 

power loss and the bus voltage deviation. Power intermittency, voltage instability, and the requirement to meet 

load demand are considered factors in achieving network security. Inefficient coordinating techniques in 

optimizing and quantifying renewable energy's capacity and location are considered for optimal power 

performance.  

Renewable energy sources (RES) are used extensively in coordinating and efficiently managing power 

networks for voltage improvement and loss reduction. Despite bundles of benefits accrued to the usage of RES, 

significant operational challenges must be technically handled to fulfill network operational constraints. It 

includes renewable energy intermittency, uncertainty and bi-directional flow of power [3]-[5]. Therefore, a 

robust power management technique must be implemented to determine the energy source units, their optimal 

power dispatch, voltage regulation and efficient operation planning.  

Grid-connected renewable sources can be structured into controllable units and managed by intelligent 

agents. Each agent type possesses intelligence to achieve targeted goals [6]. Hence, the distributed multiagent 

system (MAS) concept presents a viable solution in the power network energy coordinating technique. MAS 

can be defined as a system of intelligent agents that provides artificial intelligence based on mathematical tools 

to determine network optimal actions [7]. Pro-activities, reactivity and social capabilities characterize 

individual agent. Recognizing any environmental changes with the corresponding appropriate reaction to 

achieve a set goal is known as reactivity. Proactiveness connotes an agent's ability to take initiative and develop 

goal-oriented behaviors to meet the design objectives. Lastly, its social behavior lies in interacting smartly with 

other environmental agents. It is a distributed system of multiple layers of software agents [8]. The multiagent 

system can be instrumental in controlling the distributed energy resources in a grid-connected hybrid system 

while achieving all the other objectives of the grid.  

The coordination of multiagent-based power systems is usually implemented in a centralized and 

decentralized architecture. In a centralized technique, the central management agent makes network intelligent 

control decisions while the control response initiated is sent to the remote devices for network regulation [9]. 

It receives the network energy resources and parameters such as technical specifications, operation mode, and 

system renewable data (solar irradiation, wind speed, load demand, peak and off-peak period) from load, 

generator, and zonal agents to take the best network management decision. The significant benefit of the 

method is that it enhances the optimal decision of all the coordinating agents at different parts of the network 

[10]. However, the centralized technique can result in a single point of failure due to failure in the leading 

central coordinating agent [11]. In a decentralized system, the network is structured into controllable zones that 

intelligent zonal agents manage. The distribution network is divided into sub-networks in which a sub-unit 

agent manages the network performance indicators in its jurisdiction. The sub-unit agent determines its control 

decision based on local measurement and algorithm. However, optimal global is not guaranteed in contrast to 

the centralized system [12]. 

The MAS power management of the distribution network, optimal power flow (OPF) in controlling power 

generation and demand imbalance in a typical microgrid were studied in [13]. The MAS approach enhances 

dynamic adjustment of the power output of renewable distributed generation due to rapid weather and power 

demand changes. Leo Raju et al. In [14], the author studied multiagent microgrid power outage management, 

considering a dynamic model for intermittent nature in load consumption and distributed energy resources 

(DER). However, the dynamic model is developed for two agents: solar PV source and load. The centralized 

model never permits communication between the PV generation and load agents. In [15], the authors evaluate 

the performance of a standalone microgrid using a cooperative multiagent system. The distributed multiagent 

architecture employed learns and controls the microgrid components. Rahman et al. [16] presented a reactive 

power management scheme using distributed multiagents in a renewable source-based power distribution 

network. In synergy with MAS, the PI controller is applied to achieve improved voltage stability. The results 

show an improved performance. However, the coordinated combination of RES for complementary 

intermittency mitigation and intelligent EV system was not investigated. A multiple DG placement on the 

distribution network, controlled in MAS architecture, was presented in [17]. An agent is designated to represent 

the DG outputs while the individual network device represents the monitoring agent. The moderator agent 
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coordinates the activities of the agents to accomplish the operation limit. The operator used the reactive power 

margin to evaluate the control contribution from each DG. An adaptive-healing MAS design was presented in 

[18][19]. The cooperative communicating agents are feeder, switch and DG agents zoned on different locations 

on the network. The agents work together to supply out-of-service customers. The results show the efficiency 

in the MAS architecture. However, DG generation scheduling is based on prediction.  

In [20], the author presented a MAS-based decentralized EV charging scheduling algorithm. The EV and 

DG are equipped with the aggregator agent to maximize operational efficiency. The performance evaluation 

shows adaptive behaviour in the network charging system. However, the load demand and generation model 

is based on forecasting and not evaluated on the standard distribution network. In [21], the authors presented a 

three-level multiagent DG-connected distribution network voltage regulating scheme. The distributed, 

cooperative and central agents were incorporated. Network dynamic characteristics were coordinated for 

voltage regulation using real-time information exchange between agents. However, network parameters and 

sizing of network equipment fed into the MAS in previous works were not optimized network parameters. 

Different optimization methods have been used for grid-connected renewable power systems to improve 

performance [22]-[25]. However, they exhibit some limitations, such as local minima solution trapping. 

Various metaheuristic techniques and strategies have been restructured to overcome the limitations by 

achieving the balance between the exploration and exploitation properties of the optimization algorithms. In 

[26], the author investigated the particle swarm optimization (PSO) controlled backstepping strategy in hybrid 

wind and photovoltaic configuration. Lyapunov function was applied to ensure system stability. An improved 

current injection with minor harmonic distortion is ensured despite fluctuating weather conditions. Load 

consumption, energy storage system and network demand response is modeled and optimized using a 

gravitational search algorithm (GSA), and results show an improved sizing capacity with different DG types 

[27]. Hybrid optimization methods have also been applied to renewable-based distribution networks. PSOGA 

is presented in [28], to determine the size and location of renewable resources on a distribution network. 

Various optimizations of RESs on the distribution network have been exploited for maximum utilization and 

good power quality performance. However, despite their effective performance, they are susceptible to solution 

trapping at the local/global minima due to the lack of efficient balancing of their exploration and exploitation 

modes. The commonly used method involved hybrid PSO with other algorithms. However, modifying PSO 

inertia weight to maintain balance between exploration and exploitation phase is still open to annexing better 

results. The inertial weight of the optimization technique is patterned along the Butterworth filtering curve for 

holistic space search and improved convergence. The results show an improved performance compared to 

standalone techniques. Most of the literature reviewed either lack efficient optimization techniques and/or does 

not have a robust control and management system with agents capable of reorganizing and adapting to the 

network changes.  

This study considers a decentralized multiagent power coordinating technique for a grid-connected 

photovoltaic/energy storage system using the optimized network parameters from the Butterworth inertial 

weight particle swarm optimization method. It has the advantage of achieving power balance between 

generated power and load demand, thereby reducing power loss while maintaining the voltage profile within 

the statutory operational limits. 

The research contributions are stated as follows: 

• Developing a Butterworth inertial weight particle swarm optimization techniques for grid-connected 

photovoltaic/energy storage system. 

• Developing a decentralized zonal-based MAS power management technique for grid-connected 

photovoltaic/energy storage system using optimized electrical parameters Butterworth PSO algorithm for 

improved network performance and actions. 

The paper is structured into the following sections: Section 2 explains the modeling of photovoltaic power 

source, energy storage system, decentralized zonal-based MAS, the modeling of load agent, generator agent, 

and the energy coordination procedure. The model simulation results are detailed in Section 3, and the 

conclusion is presented in Section 4. 

 

2. METHODS 

This study's proposed grid-connected renewable source and energy storage system (ESS) consists of the 

PV and ESS, as presented in Figure 1. Solar PV injects power support on the grid to shoulder the network 

power demand. However, the ESS is a power reserve that compensates smartly for intermittency and load 

fluctuations. 
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Figure 1. Grid-connected multiagent renewable power system 

 

2.1. Butterworth Inertia Weight Particle Swarm Optimization (BIWPSO) 

PSO is a random population, swarm-inspired optimizing method that models the rules guiding the birds' 

flocking and swarm of fish. A swarm agent stands for a solution that can be described in terms of its positional 

change with velocity. The agent’s position and velocity changes from the previous to the present are updated 

accordingly. An individual agent is associated with its best value (pbest) and its best value in the pbests group 

(gbest). The mathematical expression for velocity and position is as [29]: 

 𝑣𝑖𝑗
𝑘+1 = 𝑤𝑣𝑖𝑗

𝑘 + 𝑐1𝑟𝑎𝑛𝑑1 × (𝑝𝑏𝑒𝑠𝑡𝑖𝑗 − 𝑥𝑖𝑗
𝑘 ) + 𝑐2𝑟𝑎𝑛𝑑2 × (𝑔𝑏𝑒𝑠𝑡𝑖𝑗 − 𝑥𝑖𝑗

𝑘 ) (1) 

Where 𝑣𝑖𝑗
𝑘+1 denotes updated velocity at iteration k+1 for agents i and j, 𝑤𝑣𝑖𝑗

𝑘  is the current velocity at 

iteration k for agents i and j, w is the inertia weight, 𝑐1and 𝑐2 are acceleration coefficients, The 𝑟𝑎𝑛𝑑1 and  are 

𝑟𝑎𝑛𝑑2 are the random numbers 1 and 2 respectively, 𝑥𝑖𝑗
𝑘   is iteration k current position for agent i and j 

respectively, agents i and j personal best position is 𝑝𝑏𝑒𝑠𝑡𝑖𝑗   and the gbest of the group is 𝑔𝑏𝑒𝑠𝑡𝑖𝑗 . The 

positional update is expressed as follows: 

 𝑥𝑖𝑗
𝑘+1 = 𝑥𝑖𝑗

𝑘 + 𝑣𝑖𝑗
𝑘+1 (2) 

The inertia weight function is:  

 
𝑤 = 𝑤𝑚𝑎𝑥 −

𝐼𝑡𝑟𝑒(𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛)

𝐼𝑡𝑟𝑒𝑚𝑎𝑥

 (3) 

Where 𝑤𝑚𝑎𝑥  is the maximum weight and 𝑤𝑚𝑖𝑛is the minimum weight, 𝐼𝑡𝑟𝑒𝑚𝑎𝑥 is maximum iteration, 

and 𝐼𝑡𝑟𝑒denotes the current iteration. The effective handling of the problem of exploitation and the need to 

strike a balance between the exploration and exploitation phases of PSO in reducing the trapping at the local 

minima, demands the application of the Butterworth filter response equation, which produces a good balance 

between the upper and lower threshold is adopted to determine the inertia weight sequence. The Butterworth 

filter response equation is expressed as [30]: 

 
|
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛

|
2

=
1

1 + (
𝑓
𝑓𝑐

)
2𝑛 

(4) 

Where f is the calculation frequency, fc  is the cut-off frequency, and Vin denotes the input voltage, Vout 

denotes the output voltage, n denotes the number of filter’s elements. The inertia equation is modified to capture 

the characteristics function of the filter equation and expressed as: 

 
𝑤(𝑡) = 𝑤

1

1 + (
𝑡

𝑃1
)

𝑃2

𝑚𝑖𝑛𝑚𝑎𝑥

 
(5) 

𝑃1 is set to be one-third of the maximum number of iterations, 𝑃2 is 10, 𝑤𝑚𝑎𝑥 is 0.5, while 𝑤𝑚𝑖𝑛 is 0.4 
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2.2. Modeling of photovoltaic and ESS   

The decentralized zonal allocation of the PV/ESS system is modeled on the distribution network to 

minimize the network voltage deviation and power loss. PV/ESS injects its power into the distribution network 

and stores excess energy during the off-peak condition. The AC/DC and DC/DC power converters connect 

both AC and DC buses for power injection to the load. 

 

2.2.1. Photovoltaic System 

The PV-generated power is expressed as [31] : 

 
𝑃𝑃𝑉(𝑡) = 𝑃𝑃𝑉(𝑅𝑎𝑡𝑒𝑑) ∗

𝐺

𝐺𝑟𝑒𝑓

∗ (1 + 𝐾𝑇(𝑇𝐶 − 𝑇𝑟𝑒𝑓)) (6) 

Where PV surface irradiance is G measured in (W/m2), The PV nominal power is 𝑃𝑃𝑉(𝑅𝑎𝑡𝑒𝑑) with standard 

radiation rated as 1000W/m2, 𝐾𝑇 is the PV module temperature coefficient,  𝑇𝐶  is the cell temperature and 𝑇𝑟𝑒𝑓  

is the reference temperature. 

 

2.2.2. Battery modeling 

The power deficit of the grid-connected system due to the demand variation and fluctuation in renewable 

photovoltaic sources is managed using the ESS. In considering the random behavior of the PV source, the 

battery is constantly in charging mode in the system except when delivering power during deficiency. The state 

of charge (SOC) is defined on the following modes: 

i The charging mode, when the grid injects power plus the power from the PV (Network power), is greater 

than the network load demand. It is assumed that the efficiency of the inverter is 0.95. The charged state 

of the battery is expressed as: 

 𝑃𝐵𝑎𝑡𝑡(𝑡) = 𝑃𝐵𝑎𝑡𝑡(𝑡 − 1) + (𝑃𝑁𝑒𝑡(𝑡) − 𝑃𝑁𝑒𝑡−𝑙𝑜𝑎𝑑(𝑡)) ∗ 0.95 (7) 

 Where, 𝑃𝐵𝑎𝑡𝑡(𝑡) and 𝑃𝐵𝑎𝑡𝑡(𝑡 − 1) are the battery power at time 𝑡 and 𝑡 − 1. 𝑃𝑁𝑒𝑡(𝑡)is the network power 

and 𝑃𝑁𝑒𝑡−𝑙𝑜𝑎𝑑(𝑡) is the network load demand. 

ii The discharging mode is when the network load demand exceeds the grid-injected power plus the power 

from the PV (Network power). It is assumed that the efficiency of the inverter is 0.95. The charged state 

of the battery is expressed as: 

 𝑃𝐵𝑎𝑡𝑡(𝑡) = 𝑃𝐵𝑎𝑡𝑡(𝑡 − 1) + (−(𝑃𝑁𝑒𝑡−𝑙𝑜𝑎𝑑(𝑡) − 𝑃𝑁𝑒𝑡(𝑡))) ∗ 0.95 (8) 

 Where, 𝑃𝐵𝑎𝑡𝑡(𝑡) and 𝑃𝐵𝑎𝑡𝑡(𝑡 − 1) are the battery power at time 𝑡 and 𝑡 − 1. 𝑃𝑁𝑒𝑡(𝑡)stands for network 

power and 𝑃𝑁𝑒𝑡−𝑙𝑜𝑎𝑑(𝑡)denotes network load demand. 

 

2.3. Problem Formulation 

This study considered minimizing the voltage deviation and the power loss as the objective functions. 

The sizing and location of the PV/ESS are the decision variables. The optimized variables were fed into the 

decentralized multiagent system for the holistic distribution power management system. The two objective 

functions of the study are presented. 

 

2.3.1. Power loss 

The power loss minimization is defined and calculated as [32]: 

 
𝑃𝑙𝑜𝑠𝑠_𝑖𝑘 =

𝑅𝑖𝑘(𝑃𝑘
2 + 𝑄𝐾

2 )

(𝑉)2
 (9) 

Where the resistance between node 𝑖 and 𝑘 is 𝑅𝑖𝑘, 𝑃𝑘and 𝑄𝐾are the branch active and reactive power, and 𝑉 

denotes the terminal voltage.  

 

2.3.2. Voltage deviation 

Any improvement in the voltage profile consequently results in better voltage deviation on network buses. 

The voltage deviation and the second objective function are expressed and calculated as [33][34]: 
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𝑉𝐷 = √(
1

𝑁𝑏𝑢𝑠

× ∑ (𝑣𝑖 − 𝑣𝑝)

𝑁𝑏𝑢𝑠

𝑖=1

2

) (10) 

 

𝑣𝑝 =
1

𝑁𝑏𝑢𝑠

× ∑ 𝑣𝑖

𝑁𝑏𝑢𝑠

𝑖=1

 

(11) 

Where 𝑣𝑖is the voltage at 𝑖𝑡ℎ bus, 𝑣𝑝is the buses average voltage and 𝑁𝑏𝑢𝑠is the number of the buses. 

 

2.3.3. Constraint 

The following constraints are considered in work: the power equations are balanced, fulfilled, and 

expressed as follows: 

 

𝑃𝐺𝑛𝑖 − 𝑃𝐷𝑛𝑖 − 𝑉 ∑ 𝑉𝑛𝑗

𝑁

𝑗−1

𝑌𝑛𝑗 𝑐𝑜𝑠(𝛿𝑛𝑖 − 𝛿𝑛𝑗 − 𝜃𝑛𝑗) = 0 (12) 

 

𝑄𝐺𝑛𝑖 − 𝑄𝐷𝑛𝑖 − 𝑉 ∑ 𝑉𝑛𝑗

𝑁

𝑗=1

𝑌𝑛𝑗 𝑐𝑜𝑠(𝛿𝑛𝑖 − 𝛿𝑛𝑗 − 𝜃𝑛𝑗) = 0 

(13) 

Where 𝑛𝑖 = 1,2,…,𝑛𝑛. The voltage at each bus and the generator bus is maintained within the statutory limit. 

The adopted value ranges between 0.95 and 1.05: 

 𝑉
𝑛𝑖

𝑚𝑖𝑛𝑛𝑖𝑛𝑖
𝑚𝑎𝑥

 (14) 

The capacity of the renewable generation is also maintained between the maximum and the minimum: 

 
𝑃

𝐺𝑛𝑖

𝑚𝑖𝑛𝐺𝑛𝑖𝐺𝑛𝑖
𝑚𝑎𝑥

 (15) 

 

2.4. Implementation procedure for Butterworth inertia weight particle swarm optimization 

The implementation procedures for BIWPSO for siting and sizing the PV/ESS system and optimizing the 

network parameters for the MAS system are presented as follows: 

Step 1: Initialize the problem statement: 

The objective function(s), decision variables, and constraints of the optimization problem are defined, 

which is the minimization of power loss and voltage deviation. The sizing and location of the PV/ESS system 

are the decision variables; all constraints are well-defined. 

Step 2: Initialize the BIWPSO parameters: 

The maximum iterations (max_iter) is fixed at 200, the population size (pop_size) is 100, the cognitive 

and social learning factors (C1, C2) are set to 2, and the maximum and minimum inertia weight values (w_max, 

w_min) are set to 0.5 and 0.4, respectively, based on the BIWPSO Equation (5).  

Step 3: Initial population is generated: 

The initial population of random solutions for the decision variables within the feasible range is generated. 

Step 4: Evaluate the population fitness function: 

The fitness of each solution in the population using the backward/forward sweep load flow method is 

evaluated using the objective function defined in Step 1. 

Step 5: Initialize the personal best and global best positions: 

The personal best positions of each particle as the initial solutions, and the global best position as the 

solution with the highest fitness value set 

Step 6: Main loop: 

Repeat steps 7-11 until the stopping criteria are met. 

Step 7: The personal best and global best positions are updated: 

Update the personal best positions of each particle based on the fitness value of the current solution. 

Update the global best position based on the fitness value of all solutions in the population. Then, the best 

performance indicators of the system are finally discovered. 

Step 8: The velocity and position of each particle are updated 
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Each particle's velocity is updated based on the current velocity, the cognitive and social learning factors, 

and the distance to the personal best and global best positions. The position of each particle is updated based 

on the current position and the velocity. Ensure the updated position is within the feasible range. 

Step 9: Evaluate the fitness of the new population: 

Evaluate the fitness of each solution in the new population using the backward/forward sweep load flow 

method using the objective function defined in Step 1. 

Step 10: Check the stopping criteria: 

Exit the loop if the convergence threshold has been met, meaning no better convergence achieved within  

the last highest iteration number. 

Step 11: Output the optimal solution: 

Output the optimal solution and its fitness value based on the global best position. Using BIWPSO, the 

output optimal solution would include the sizing and location of PV/ESS and minimize power loss and voltage 

deviation while satisfying the power balance equation and constraints. 

 

2.5. Multiagent Power Management Strategy 

The proposed MAS structure consists of a zone agent (𝑍𝐴), load agent (𝐿𝐴) and generation agent (𝐺𝐴). 

The 𝑍𝐴 represents the central agent of the delineated zone and can exchange information with other agents, 

such as the zonal generation and load agents and other zonal agents. The ZA directs the decision to preserve 

the zonal disparity in load and power generation as determined by the power flow analysis. The major task of 

GA is the monitoring and adjustment of the power output of its distributed generation (DG) to match demand 

within its 𝑍𝐴. Its task also involves updating the 𝑍𝐴 whenever generation changes occur due to weather 

variations or alterations in DG connection status. The load agent updates the 𝑍𝐴with changes in the buses 

connected with load demands. 

The zones are produced by a partitioning approach using the line current. This is targeted at electrically 

grouping the buses closest to each other to a specific DG, and the zonal buses are assigned based on the line 

current. Individual zone is created using the following assumptions: a zone must consist of at least one DG, the 

location of DGs are optimized using the proposed butterworth Inertial weight PSO, and the zones are created 

for a system once, according to line current and the optimized placement of the DGs. As power flow is executed 

and updated, the MAS manages the power output of the DGs until the power mismatch in generation and 

demand in the zone is matched. The proposed MAS power management structure for grid-connected 

photovoltaic/ESS is shown in Figure 2. 

Once the DGs powers are sent during the power flow analysis, 𝑍𝐴 monitors the variation in the generation 

and demand occurrence within its zone. In the occurrence of changes, the zonal power is adjusted to absorb the 

change automatically. The process persists until MAS takes the necessary action to preserve the variation 

between the generation and demand in the zone to match the value obtained from the power flow calculation. 

 

 
Figure 2. The proposed MAS power management structure for grid-tied PV/ESS system 

The operation sequence for the agents is detailed as follows: let the variation between generation and 

demand within zone 𝑖 as a result of variation in load demand at bus 𝑗, be ∆𝐿𝑗. Then,  

1. 𝐿𝐴𝑗  sends an information to 𝑍𝐴𝑖 , which includes the value of variation in demand, 
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2. 𝑍𝐴𝑖 requests from 𝐺𝐴𝑖  to change its DG generation, 

3. 𝐺𝐴𝑖  determines whether to increase or decrease generation and determines the size of 𝐷𝐺𝑖  to handle the 

change effectively, 𝐷𝐺𝑖  is capable of taking up the variation if power generated does not violate the 

network constraints outside its statutory limits. The effects of power-generated variation on voltage is 

then evaluated,  

4. 𝐺𝐴𝑖  replies to 𝑍𝐴𝑖 with one of the following messages: 
i. Agree response, which includes the estimated power that 𝐷𝐺𝑖  is capable of taking up based on ∆Lj 

ii. Inform response, that includes the estimated power that 𝐷𝐺𝑖  can take up within the network 

constraints. 

iii. Reject response when 𝐺𝐴𝑖  refuses the request due to 𝐷𝐺𝑖  operating at its upper limit. 

5. 𝑍𝐴𝑖 obtains a response from 𝐺𝐴𝑖 , and if the response is Agree, the process is terminated. Otherwise, the 

process goes to the next step. 

6. The neighboring zonal DGs are called upon to take part in accommodating the load demand change in 

Zone 𝑖. The closest zones to ith zone are firstly selected to minimize power loss. 𝑍𝐴𝑖 put up a proposal 

signal to neighboring zones agents (NZAs). If NZA can accommodate the demand, then the network 

accommodates the change, and the sequence will be terminated. Else, 𝑁𝑍𝐴s ask DGs agents (NGAs) to 

determine their individual strength in handling the required power. The NGAs determine the capacity of 

their DGs to take up the change by following the conditions stated in step (3) to step (4) and the reply 

finally sent to their 𝑍𝐴𝑠. 

7. A reply proposal from NZAs is sent to 𝑍𝐴𝑖. 

8. 𝑍𝐴𝑖 ranks the received information proposals based on closest neighbors to proceeds as follows: 

i. 𝑍𝐴𝑖 conveys an acceptance proposal to the closest 𝑁𝑍𝐴 , then terminates the operation if it is 

determined that closest 𝑁𝑍𝐴 is able to accommodate the required power demand. 

ii. 𝑍𝐴𝑖  sends an acceptance proposal to the closest 𝑁𝑍𝐴 , it also checks the subsequent proposal if it shows 

that the closest 𝑁𝑍𝐴 is able accommodate only a part needed power. The closest neighboring zone 

supplies remaining power demand; then the operation is terminated. Otherwise, 𝑍𝐴𝑖  monitors the 

subsequent proposal till the 𝑍𝐴𝑖 request is satisfied. 

iii. 𝑍𝐴𝑖 looks for power needed in the subsequent 𝑁𝑍𝐴 , if it is shown that the closest 𝑁𝑍𝐴 is unable to 

contribute to the operation. 

The flowchart for the proposed MAS power management structure for grid-tied PV/EES system is shown 

in Figure 3. The optimized distribution network parameters are fed into the multiagent system to achieve the 

best performance of MAS. It is achieved by modifying inertial weight in particle swarm optimization, to follow 

a Butterworth filtering curve for holistic space search and improved convergence. 
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Figure 3. The flowchart for the proposed MAS power management structure for grid-connected PV/EES 

 

3. RESULTS AND DISCUSSION 

Simulation and analysis of the proposed model were implemented to confirm the validity of the research 

work's effectiveness using IEEE 33-bus distribution. The network information of the thirty-three-bus network 

is shown in Figure 4. The network real power is 3.72 MW and reactive power is 2.3MVAr. The substation base 

power is 100MVA at 12.66kV [35]. 

 

 
Figure 4. IEEE 33 – Bus distribution system 
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The results are analyzed and presented using BIWPSO algorithms to determine the voltage magnitude of 

each bus, power loss, size, and location of RES for optimality. The results of BIWPSO at full load with RES 

injection are shown in Table 1. The effects of only PV and PV with BESS are investigated. 

 

Table 1. Results of voltage and loss for IEEE 33 – bus distribution 

Item Without RES 
With RES 

PV PV/BESS 

Power loss (kW) 243.60 123.96 76.53 

Loss reduction (%) -- 49.11 68.58 

Min. voltage 0.9131 0.9307 0.9315 

Max. voltage 0.9965 0.9970 1.0090 

Node no -- 6 29 

Power Factor -- Unity Unity 

Size(kW) -- 2046 2551 

Feeder voltage deviation (pu) 1.7009 0.1709 0.2389 

Voltage Improvement. (%) -- 85.95 89.95 

 

The optimal location and capacity using BWIPSO are evaluated. The optimal location for the PV 

installation is on bus 6, with an estimated capacity of 2046kW. Power loss was reduced by 49.11%, from 

243.60 kW to 123.96 kW. Bus 18, with the lowest voltage value increased to 0.9307 p.u from its initial value 

of 0.9131 p.u.. The voltage magnitude of different installations of RES is demonstrated as shown in Figure 5. 

The figure visualizes the impact of one PV installation and PV/BESS on the network. 

 

 
Figure 5. IEEE 33-Bus distribution system voltage magnitude with PV, PV and BESS 

 

A comparison of results obtained with ordinary PSO with what is obtainable using BIWPSO is shown in 

Table 2. The BIWPSO reflects an improved performance in network voltage and power loss. 

 

Table 2. Results comparison for PV/BESS placement on IEEE 33-Bus system 
Item Initial PSO BIWPSO 

Power loss (kW) 243.60 84.23 76.53 

Loss reduction (%) -- 65.42 68.58 

Min. voltage 0.9131 0.9635 0.9315 

Max. voltage 0.9965 1.0021 1.0090 

Node no -- 30 29 

Power Factor -- Unity Unity 

Size(kW) -- 2555 2551 

Feeder voltage deviation (pu) 1.7009 0.2008 0.2389 

Voltage Improvement. (%) -- 88.19 89.95 

 

The convergence characteristics of the proposed technique is compared with the conventional PSO, as 

demonstrated in Figure 6. The BIWPSO approach shows less convergence tolerance and faster convergence, 

which implies the method is efficient in obtaining the best network performance within a shorter duration. 
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        Figure 6. Convergence curve on IEEE 33-Bus distribution system 

 

The multiagent system distribution management technique is employed on the IEEE 33-Bus radial 

distribution network with optimal parameters through the BIWPSO. The possible generation and load 

variations scenarios as interactions in their different zones were simulated. The hourly output power profile of 

the photovoltaic renewable source is shown in Figure 7. The network renewable source and ESS harmoniously 

respond to network demand based on the agent interaction to achieve a daily voltage profile within the statutory 

limit, as shown in Figure 8. 

 

 
Figure 7. The hourly output power profile of the photovoltaic power generation 

 

The PV renewable generation and the battery energy storage system capacities, already evaluated through 

an optimization procedure, are now enhanced for improved performance through the MAS coordinating 

technique. It considers a time series over a daily simulation period of 24 hours. There is an improvement in the 

voltage with the distribution agent's interaction compared to the case without distribution agents, as shown in 

Figure 8. The capacity and location of the generation agents 𝐺𝐴1 and 𝐺𝐴2 components are detailed in Table 3. 

The percentage of voltage improvement is 86.52, and that of power loss reduction is 68.43. 

 

 
Figure 8. The daily voltage profile with the integration of two-generation agents 
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Table 3. Results for integration of two-generation agents on IEEE 33 – bus distribution system 

Item 
Without Generation agents  

(𝑮𝑨𝟏 and 𝑮𝑨𝟐) 

With Generation agents 

(𝑮𝑨𝟏 and 𝑮𝑨𝟐) 

𝐺𝐴1  PV 

Size(KVA)/PF  2585/1 

Bus no  6 

𝐺𝐴2  BESS 

Size(KVA)  2593/1 

Bus no  27 

Total losses (kW) 4587.72 1448.34 

Loss reduction (%) … 68.43 

Min. voltage 0.8765 0.9710 

Max. voltage 1.0000 1.0230 

Feeder voltage deviation (pu) 1.4548 0.1961 

Voltage Improvement. (%) … 86.52 

 
The BESS in generation agent 2 (𝐺𝐴2) backs up the network grid when the PV in generation agent 1 

cannot meet the load demand from the load agents on the network during the day. It occurs when the load 

current (𝐼𝐿) is more significant than (𝐼𝑃𝑉). Figure 9 shows the BESS power injection to the grid at 03.00 hour 

with a discharging SOC from 200kA to 181kA. The network charging current returned positive from 04.00 

hour; the PV then assumes power injection, and BESS continues being charged up. Another battery discharge 

occurred at 20.00 hour. Figure 10 shows the charging and discharging current of the BESS for the day. 

 

 
Figure 9. The battery state of charge for 𝐺𝐴1 and 𝐺𝐴2 

 

 
Figure 10. The charging and discharging current of the ESS 

 

A comparison of results obtained from the MAS distribution coordinating technique with the proposed 

BIWPSO shows that the MAS technique is a way of achieving further network performance improvement after 

the use of metaheuristic methods, as shown in Table 4. 
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Table 4. Results comparison for MAS approach and BIWPSO on IEEE 33 – bus distribution system 
Item Without MAS and BIWPSO With MAS With only BIWPSO 

GA1  PV PV 

Size(KVA)/PF  2585/1 2585/1 

Bus no  6 6 

GA2  BESS  

Size(KVA)  2593/1 2593/1 

Bus no  27 27 

Total losses (kW) 4587.72 1448.34 1533.2 

Loss reduction (%) … 68.43 66.58 

Min. voltage 0.8765 0.9710 0.9653 

Max. voltage 1.0000 1.0230 1.0159 

Feeder voltage deviation (pu) 1.4548 0.1961 0.2084 

Voltage Improvement. (%) … 86.52 85.67 

 

4. CONCLUSION 

This paper presented PV/Battery ESS system grid-connected network to reduce the deviation in voltage 

and power loss. The Butterworth inertial weight PSO determines the installation of the PV/ESS system at the 

optimal location and size, along with other network parameters. The inertial weight of the optimization 

technique is patterned along the Butterworth filtering curve for holistic space search and improved 

convergence. The results show superiority when compared to traditional PSO. The power loss reduction of 

68.58% and improvement in voltage deviation of 89.95% are achieved with the BIWPSO compared to 65.42% 

power loss reduction and 88.19% voltage deviation improvement achieved in traditional PSO. The proposed 

technique had a faster convergence in less than 40 iterations. Intelligent agents then coordinate the grid-

connected network. It is structured into a zone, generation and load agents for updating the load and power 

injection at different network buses. This is achieved over a daily multi-period network simulation. The 

proposed technique is applied to the IEEE 33- Bus distribution network, the network analysis and parameters 

assumes a balance system of power network. The results show the impact of the renewable battery system on 

power loss, network voltage, voltage deviation, and voltage profile over 24 hours. The simulation shows that 

installing the PV/ESS system leads to achieving the least voltage deviation and loss on the network. The 

decentralized multiagent coordination technique achieves voltage within the statutory limit over a daily 

simulation period despite load demand and generation variations. The deployment of the developed power 

management strategy will help the utilities to control the voltage and minimize excessive losses inherent in 

active distribution systems. Therefore, the network operator is enhanced with logical methods for decision-

making in innovative modern power networks. This research is recommended to utility companies in electric 

power system operations and planning, such as national transmission and distribution companies. Future work 

could consider the cost implications of power loss reduction and energy saving using the proposed method and 

unbalanced network analysis.  
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