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This study presents a comprehensive evaluation of three ensemble models 

designed to handle imbalanced datasets. Each model incorporates the hybrid 

nature-inspired imbalance handling algorithm (HNIHA) with matthews 

correlation coefficient and synthetic minority oversampling technique in 

conjunction with different base classifiers: support vector machine, random 

forest, and LightGBM. Our focus is to address the challenges posed by 

imbalanced datasets, emphasizing the balance between sensitivity and 

specificity. The HNIHA algorithm-guided support vector machine ensemble 

demonstrated superior performance, achieving an impressive matthews 

correlation coefficient of 0.8739, showcasing its robustness in balancing true 

positives and true negatives. The f1-score, precision, and recall metrics further 

validated its accuracy, precision, and sensitivity, attaining values of 0.9767, 

0.9545, and 1.0, respectively. The ensemble demonstrated its ability to 

minimize prediction errors by minimizing the mean squared error and root 

mean squared error to 0.0384 and 0.1961, respectively. The HNIHA-guided 

random forest ensemble and HNIHA-guided LightGBM ensemble also 

exhibited strong performances. 
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1. INTRODUCTION 

In the field of classification, constructing effective models depends on finding the right balance between 

available training data and the model's predictive ability [1]. Imbalanced datasets can significantly impact 

model performance in classification tasks, where the primary objective is to assign predefined labels to 

instances [2]-[6]. Imbalance, which is characterized by an uneven distribution of instances among classes, can 

introduce challenges that hinder the model's ability to generalize accurately [7][8]. Classifiers trained on 

imbalanced data may exhibit a bias towards the majority class, resulting in suboptimal accuracy and sensitivity, 

particularly for minority classes [9][10]. 

This paper addresses the challenge of imbalanced datasets by introducing the Hybrid nature-inspired 

imbalance handling algorithm (HNIHA). HNIHA integrates optimization techniques, leveraging the flower 

pollination algorithm (FPA), with strategic undersampling and oversampling strategies guided by the Matthews 

Correlation Coefficient (MCC) [11]. The use of the MCC is essential in optimizing fitness evaluations during 

the undersampling process [12]. This ensures that instances are strategically removed to enhance the model's 

generalization capabilities. 

Optimizing models within imbalanced datasets presents a primary challenge due to the biased nature of 

the training process [13]. Traditional optimization algorithms may prioritize the majority class, as their 

objective functions do not account for the imbalance [14]. This results in classifiers that struggle to discern 

patterns within the minority class, leading to diminished sensitivity and overall model performance. In 

scenarios where the imbalance ratio fluctuates, a dynamic and adaptive optimization approach is necessary to 

achieve a balance between exploration and exploitation in the solution space [15]-[17]. 

Additionally, the optimization process encounters complexities when handling imbalanced datasets that 

undergo concept drift. Concept drift is the phenomenon where the statistical properties of the target variable 

change over time. This poses a challenge for traditional optimization algorithms that assume a static 

environment [18]-[20]. To address this challenge, the HNIHA incorporates dynamic adaptation mechanisms. 

HNIHA's adaptability is crucial in navigating the changing landscape of imbalanced datasets to ensure the 

optimization process remains effective. 

The high dimensionality of feature spaces in many real-world datasets also presents computational 

challenges for optimization algorithms, in addition to biased training and concept drift. Traditional optimization 

techniques may face challenges in efficiently exploring and exploiting the solution space, resulting in increased 

computational costs and suboptimal convergence [21]-[24]. To mitigate these issues, FPA is strategically 

employed within HNIHA. FPA's adaptability and efficiency in handling high-dimensional spaces make it a 

suitable candidate for optimizing imbalanced datasets [25][26]. 

To emphasize the importance of balancing datasets, it is crucial to consider the impact of imbalanced data 

on classification outcomes [27][28]. Imbalance can cause classifiers to be biased towards the majority class, 

resulting in models that struggle to accurately predict minority class instances [4]. This bias induced by 

imbalance can be harmful in scenarios where minority class instances carry critical information, such as in the 

medical diagnoses [29][30]. Achieving a balanced dataset is crucial for models that aim to provide fair, 

accurate, and inclusive predictions across all class [31]. 

Empirical evidence from classification processes demonstrates the necessity of balanced datasets. A 

classifier trained on imbalanced data may appear to have high accuracy, but this metric can be misleading 

[5],[32]. The accuracy of the model may be largely attributed to the majority class, while its ability to correctly 

predict instances from the minority class remains compromised. This phenomenon is particularly problematic 

when the minority class holds significant importance, and misclassifying instances from this class can have 

severe consequences [5],[33][34]. 

The use of the MCC in HNIHA reinforces the importance of balanced datasets. MCC considers true 

positives, true negatives, false positives, and false negatives, providing a more comprehensive evaluation 

metric that balances sensitivity and specificity [35]. HNIHA incorporates MCC into the fitness evaluation when 

undersampling to guide the removal of instances and enhance the model's predictive capabilities across all 

classes. The synthetic minority over-sampling technique (SMOTE) is a pivotal component of HNIHA's 

oversampling strategy [33],[36]. Imbalanced datasets frequently lack sufficient instances of the minority class 

for the model to learn its patterns effectively [37][38]. SMOTE addresses the challenge of class imbalance by 

generating synthetic instances for the minority class. This augments the dataset and provides the model with 

more diverse examples to learn from [39]-[42].  

The integration of SMOTE ensures that HNIHA not only rectifies the imbalance but also empowers the 

model to make more accurate predictions for minority class instances. HNIHA provides a comprehensive 

solution to the challenges posed by imbalanced datasets in classification tasks. HNIHA incorporates the FPA, 

MCC, and SMOTE, making it a novel approach in the evolving landscape of imbalanced learning. HNIHA 

aims to redefine classification paradigms by offering accurate, inclusive, and fair models for all classes. The 
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company achieves this through dynamic adaptability and optimization prowess while committing to a balanced 

dataset. 

One important aspect concerns the diagnosis of anemia in the human body [43]. Although blood tests are 

crucial for detecting anemia, they can be quite expensive. Therefore, there is a need for more cost-effective 

alternative haematological tests to predict the level of anemia, especially for individuals with anemia, those 

showing indications of anemia, and individuals dealing with cancer. Several tests can be used to measure 

different aspects of blood, including haemoglobin (Hb), haematocrit (HCT), red blood cells (RBC), mean 

corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), mean corpuscular haemoglobin 

concentration (MCHC), and red blood cell distribution width (RDW). 

Building upon these facts, the objective of this research is to employ the HNIHA model for addressing 

classification challenges associated with imbalanced datasets. This study makes significant contributions in 

three key aspects, namely: 

1) The HNIHA model was used to create a new classification model by combining machine learning and 

nature-inspired algorithms, resulting in a set of HNIHAs. 

2) The factors considered important in the classification process were retained, even if they had a minor 

impact on the dataset. 

3) Offering an alternative classification model that includes multiple independent variables while 

maintaining a manageable dataset size and accounting for imbalanced data characteristics. 

This paper is divided into five sections. Part 1 serves as an introduction, providing an overview of the 

problem's background, outlining objectives, and detailing research contributions. Section 2 covers related 

works derived from an extensive literature review. Section 3 is dedicated to the materials and methods 

employed in the study. Section 4 explains the research results, and discusses also supports the findings through 

a comparative analysis with other studies. Finally, Section 5 summarizes the conclusions and provides 

recommendations for future research. 

 

2. RELATED WORKS 

2.1. Flower Pollination Algorithm 

The Flower Pollination Algorithm (FPA) is a metaheuristic optimization algorithm inspired by the 

pollination process of flowering plants. It was introduced by Xin-She Yang in 2012 and is designed for 

numerical optimization problems [44]. FPA initializes potential solutions, referred to as 'flowers,' randomly. 

The algorithm evaluates the fitness of each solution based on the given objective function. The essence of FPA 

is in simulating pollination, where flowers with higher fitness share information with less fit neighbours. FPA 

involves several mathematical formulas to represent its key steps, such as initialization, objective function, 

local pollination, and global pollination [45][46]. For initialization denoted as  

 𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝛼 × (𝑋𝑏𝑒𝑠𝑡
𝑡 − 𝑋𝑡

𝑡) + 𝛽 × (𝑋𝑗
𝑡 − 𝑋𝑖

𝑡) (1) 

where 𝑋𝑖
𝑡+1 update the position of the current flower, 𝑋𝑖

𝑡 is the position of 𝑖-th flower in the population at 

iteration 𝑡. 𝑋𝑏𝑒𝑠𝑡
𝑡  is the position of the global best flower in the population at iteration 𝑡. 𝑋𝑗

𝑡 is the position of a 

randomly selected flower (neighbor) in the population at iteration 𝑡. 𝛼 and 𝛽 are scaling factors that control the 

influence of global and local pollination, respectively.   

The exchange of information occurs through both local and global pollination processes, facilitating the 

dissemination of valuable knowledge throughout the population [47]. Local pollination updates less fit 

solutions using information from their fitter neighbours, while global pollination enables the entire population 

to be influenced by the best solutions found thus far [48]. The iterative process of pollination and updating 

continues until a termination criterion is met [49]. The FPA aims to strike a balance between exploration and 

exploitation, making it suitable for solving a variety of optimization problems in engineering [50], science [51], 

and other domains [52]. 

 

2.2. Synthetic Minority Over-sampling Technique 

SMOTE is a method utilized in machine learning and data mining to tackle the class imbalance problem 

[53]. This problem arises when the number of instances of one class, usually the minority class, is significantly 

lower than the number of instances of the other class, the majority class [54]. This imbalance can result in 

biased models that perform poorly on the minority class [55]. The main formula of SMOTE denoted as 

 𝑥𝑛𝑒𝑤 = 𝑥𝑖 + 𝜆 × (𝑥𝑧𝑖 − 𝑥𝑖),  (2) 

where 𝑥𝑖 is an instance from the minority class, 𝑥𝑧𝑖 is one of the k-nearest neighbor of 𝑥𝑖, 𝑥𝑛𝑒𝑤  is the synthetic 

instance generated between 𝑥𝑖 and 𝑥𝑧𝑖, and 𝜆 is a random number between 0 and 1. 
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This formula essentially performs a linear interpolation between the minority instance 𝑥𝑖  and one of its 

k-nearest neighbors 𝑥𝑧𝑖. The random parameter 𝜆 controls the position of the synthetic instance along the line 

connecting 𝑥𝑖 and 𝑥𝑧𝑖. By varying 𝜆, multiple synthetic instances can be generated. The process is repeated for 

each instance in the minority class, creating a set of synthetic instances that can be added to the original dataset 

to balance the class distribution. The goal is to provide the machine learning algorithm with a more balanced 

training set, which can improve the performance of the model, especially in cases where the class distribution 

is severely skewed. 

 

2.3. Matthews Correlation Coefficient 

The Matthews Correlation Coefficient (MCC) is a metric used in binary classification to evaluate how a 

classifier performs [56]. It provides a balanced measure of a model's performance, taking into account true 

positives (𝑇𝑃), true negatives (𝑇𝑁), false positives (𝐹𝑃), and false negatives (𝐹𝑁). 

 
𝑀𝐶𝐶 =

𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 . (3) 

TP represents the number of true positives, which are instances that were correctly predicted as positive. 

TN represents the number of true negatives, which are instances that were correctly predicted as negative. FP 

represents the number of false positives, which are instances that were predicted as positive but are negative. 

FN represents the number of false negatives, which are instances that were predicted as negative but are 

positive. 

This formula provides a single metric that evaluates the performance of binary classification models by 

combining positive and negative predictions. The resulting MCC value ranges from −1 to +1, where +1 

indicates perfect prediction, 0 indicates random prediction, and −1 indicates total disagreement between 

prediction and observation [12],[57]. 

 

3. MATERIALS AND METHODS 

This section will elucidate the dataset utilized, detail the proposed model, and delineate the model testing 

process. To establish the reliability of the proposed model, a comparative analysis will be conducted employing 

support vector machine (SVM), random forest (RF), and light gradient boosting machine (LightGBM) 

methods. This rigorous comparison aims to validate the effectiveness and robustness of the proposed model 

against established machine learning algorithms. 

 

3.1.  Materials 

The study included 128 patients, all diagnosed with various forms of anemia. The data used in this 

research came from the Clinical Pathology Laboratory of RSUP Dr. Sardjito Yogyakarta, Indonesia, and the 

Department of Clinical Pathology and Laboratory Medicine, Faculty of Medicine, Public Health and Nursing, 

Gadjah Mada University. Hematological measurements were obtained from patients diagnosed with beta-

thalassemia trait (BTT) and iron deficiency anemia (IDA). It is important to note that the Medical and Health 

Research Ethics Committee (MHREC) of the Faculty of Medicine, Public Health, and Nursing at Dr. Sardjito, 

Gadjah Mada University, Yogyakarta, Indonesia issued an ethics approval letter marked KE/FK/1255/EC/2021 

for the implementation of this research, ensuring adherence to ethical standards. The analysis considered 

several parameters, including RBC, Hb, HCT, MCV, MCH, MCHC, and RDW. Table 1 provides definitions 

for some of the acronyms used in the investigation. 

 

Table 1. Abbreviation and Data Profile 

Parameter Abbreviation Unit 

Data Profile 

Standard 

Deviation 
Minimum Maximum Average 

Red Blood Cell RBC 
𝑚𝑖𝑙𝑙𝑖𝑜𝑛

/𝑚𝑐𝐿 
3.77 29.4 48.5 37.18 

Haemoglobin Hb 𝑔/𝑑𝐿 1.38 9.0 16.8 11.21 

Haematocrit HCT % 2.31 16.7 27.9 22.16 

Mean Corpuscular Volume MCV 𝑓𝑙 1.86 19.3 35.2 29.96 

Mean Corpuscular 

Haemoglobin 
MCH 𝑝𝑔 6.09 55.9 86.0 73.53 

Mean Corpuscular 

Haemoglobin Concentration 
MCHC 𝑔/𝑑𝐿 0.57 3.78 6.94 5.08 

Red-cell Distribution Width RDW % 1.44 13.6 21.2 16.97 
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Our exclusion criteria were as follows: 1) the patients has MCV ≥ 80 fL and MCH ≥ 27 pg; 2) the patients 

has Hb < 9 g/dL. Before processing the data, we apply StandardScaler. In machine learning, StandardScaler is 

typically applied to each feature independently and rescales it so that the mean (average) of the feature is 0 and 

the standard deviation is 1 [58]. This transformation is crucial in scenarios where features in the dataset have 

different scales, which can prevent some machine learning algorithms from performing well. The formula for 

StandardScaler denoted as. Where  𝑧 is the standardized value, 𝑥 is the original value, 𝜇 is the mean of the 

feature, and 𝜎 is the standard deviation of the feature. Python is used for data processing. 

 𝑧 =
𝑥 − 𝜇

𝜎
, (4) 

 

3.2.  Proposed Model: HNIHA 

The proposed model uses a combination of FPA, MCC, and SMOTE to optimize the balance of data 

within the training set. For classification, the model employs SVM due to its resilience against overfitting, 

which is a common concern in scenarios with limited datasets. The primary objective of maximizing margins 

in SVMs significantly contributes to effective generalization, which is a critical attribute when dealing with a 

limited pool of training examples. SVMs are particularly advantageous in such situations because they 

meticulously create a clear and wide margin between different classes, which fortifies the stability of the 

decision boundary. 

Support vectors that encapsulate the most informative aspects of the data are emphasized by SVM to 

mitigate the risk of capturing noise or outliers during training. This approach not only refines the model's 

adaptation to new, unseen instances but also enhances its overall reliability in the face of a scarcity of training 

examples. The emphasis on creating a robust and well-defined margin further contributes to the model's 

adeptness in generalizing effectively. The adaptability of SVMs is enhanced by the incorporation of kernel 

functions, which allows for the capture of complex relationships within the data. This feature is especially 

useful when dealing with limited datasets that may exhibit intricate patterns. 

The HNIHA is a combination of the FPA, MCC loss function, and SMOTE. It is designed to address 

imbalanced datasets by utilizing the MCC loss as a fitness measure. The MCC loss incorporates TP, TN, FP, 

and FN to evaluate the performance of the classifier. The FPA facilitates the optimization process by updating 

the positions of flowers through Levy flights and random selections [59]. This approach converges towards a 

solution that minimizes the MCC loss. 

To evaluate the fitness of each flower, a classifier is trained on synthetic instances generated using the 

FPA solution. The FPA solution is applied to the original samples to produce synthetic instances, resulting in 

a balanced dataset. This process ensures that the algorithm learns from the synthesized data, improving its 

ability to handle imbalances. The SMOTE algorithm enhances oversampling by generating synthetic instances 

within the minority class, thereby improving the classifier's discriminatory capabilities. 

The process of synthetic instance generation involves calculating the difference between each original 

sample and the FPA solution. This difference is then added to the original sample, resulting in a synthetic 

instance that is clipped to ensure feature values fall within the valid range of [0, 1]. The algorithm iteratively 

applies this process to each sample in the dataset, adapting its synthetic instance generation strategy to the 

evolving FPA solution. 

The MCC loss is calculated by negating the MCC. The MCC measures the correlation between predicted 

and true binary classifications, providing a balanced assessment, particularly for imbalanced datasets. The 

MCC loss aims to minimize misclassifications while considering both sensitivity and specificity denoted as 

 𝑀𝐶𝐶 𝐿𝑜𝑠𝑠 = −𝑀𝐶𝐶. (5) 

The fitness of each flower is determined by evaluating the MCC loss. The optimization of MCC loss is 

guided by the solution of the FPA. To generate synthetic instances for a given flower, we use SMOTE. A 

classifier is trained on the augmented data set, and the MCC loss is calculated based on the predictions made 

on the original data set denoted as 

 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝐹𝑖) = −𝑀𝐶𝐶 𝐿𝑜𝑠𝑠(𝐹𝑖, 𝑋, 𝑦), (6) 

where, 

 𝑀𝐶𝐶 𝐿𝑜𝑠𝑠(𝐹𝑖 , 𝑋, 𝑦) = −
𝑀𝐶𝐶(𝑦,𝑦̂𝐹𝑖

)

𝑛
, (7) 

where 𝐹𝑖 represents the 𝑖-th flower, 𝑦̂𝐹𝑖
 is the prediction of the classifier trained on the synthetic instances 

generated using  𝐹𝑖 and 𝑛 is the number of the flowers. 
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Algorithm 1 

HNIHA  

Given: 

𝑛𝑢𝑚_𝑓𝑙𝑜𝑤𝑒𝑟𝑠: Number of flowers (potential solutions) 

𝑛𝑢𝑚_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠_𝑓𝑝𝑎: Number of iterations for Flower Pollination Algorithm (FPA) 

𝑛𝑢𝑚_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠_𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟_𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔: Number of iterations for classifier training 

 

Input: 

𝑋, 𝑦: Input imbalanced dataset 

 

Process: 

Perform Matthews Correlation Coefficient (MCC) Loss: 

Function MCC_Loss(y_true, y_pred): 

    MCC = Calculate the MCC based on Equation (3) 

    MCC_Loss = -MCC 

 

    Return MCC_Loss 

 

Perform Flower Pollination Algorithm (FPA): 

    flowers = Randomly_Initialize_Flowers(num_flowers) 

    best_solution = None 

    best_fitness = Infinity 

 

    For iteration in range(num_iterations_fpa): 

        fitness_values = Evaluate_Fitness  

 

        For each flower in flowers: 

            j, k = Randomly_Select_Two_Flowers based on Equation (1) 

 

        current_best_fitness = Minimum(fitness_values) 

 

        If current_best_fitness < best_fitness: 

            best_fitness = current_best_fitness 

            best_solution = flowers[IndexOf_Minimum(fitness_values)] 

 

Perform Synthetic Instance Generation: 

    X_train_augmented = Generate_Synthetic_Instances based on Equation (2) 

 

Train Classifier on Augmented Dataset: 

    classifier = Train_Classifier(X_train_augmented, y_train,  

                       num_iterations_classifier_training) 

 

Evaluate Classifier Performance: 

    mcc_test = Evaluate_Classifier(classifier, X_test, y_test) 

 

Output: 

mcc_test 

 

Synthetic instances are created using the FPA solution. The difference between each original instance and 

the FPA solution is calculated. A synthetic instance is created by applying this difference to the original 

instance. Randomness guided by the Levy distribution is introduced by the Levy flight denoted as 

 𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑖 = 𝑋𝑖 + (𝐹𝑃𝐴 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 − 𝑋𝑖) (8) 

where 𝑋𝑖 represents the 𝑖-th sample, and the FPA solution guides the generation of synthetic instances. 

The dataset was optimized using HNIHA, and then SVM was used for classification. In the case of a 

linearly separable dataset, the hyperplane equation can be expressed as follows: 
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 𝑓(𝑥) = 𝑤 ∙ 𝑥 + 𝑏, (9) 

where, 𝑥 represents the input vector, 𝑤 is the weight vector, and 𝑏 is the bias term. 

The decision function classifies a point based on the sign of 𝑓(𝑥). If 𝑓(𝑥) is positive, the point belongs 

to one class; if it's negative, the point belongs to the other class. 

 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛: 𝑦̂ = 𝑠𝑖𝑔𝑛(𝑓(𝑥))  

The margin is the distance between the hyperplane and the nearest data point of one of the two classes. 

For a point 𝑥𝑖, the margin is given by: 

 
𝑀𝑎𝑟𝑔𝑖𝑛 =

1

||𝑤||
𝑓(𝑥𝑖) (10) 

The objective is to optimize the margin while accurately classifying the training data. This results in the 

subsequent optimization problem: 

 
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑀 =

2

||𝑤||
 (11) 

Subject to the constraints: 

 𝑦𝑖(𝑤 ∙ 𝑥𝑖 + 𝑏) ≥ 1  

 𝑖 = 1, 2, 3, … , 𝑁  

where, 𝑦𝑖  represents the class label of the ith data point, and 𝑁 is the total number of data points. 

To solve the constrained optimization problem, Lagrange multipliers (a) are introduced for each 

constraint. The Lagrangian is then calculated by 

 
𝐿(𝑤, 𝑏, 𝛼) =

1

2
||𝑤||

2
− ∑ 𝛼𝑖[𝑦𝑖(𝑤 ∙ 𝑥𝑖 + 𝑏) − 1]

𝑁

𝑖=1
 (12) 

The problem can be transformed into its dual form by taking derivatives and setting them to zero. The 

optimal values for 𝛼 can be obtained by solving the dual problem. 

 
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑊(𝛼) = ∑ 𝛼𝑖 −

1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖 ∙ 𝑥𝑗

𝑁

𝑗=1

𝑁

𝑖=1

𝑁

𝑖=1
 (13) 

Subject to the constraints: 

 𝛼𝑖 ≥ 0,  

 𝑖 = 1,2,3, … , 𝑁,  

 

 
∑ 𝛼𝑖𝑦𝑖 = 0

𝑁

𝑖=1
. 

 

The non-zero 𝛼 values correspond to the support vectors. These support vectors are the data points that 

determine the position of the hyperplane. The 𝑤 vector can be represented as a linear combination of the support 

vectors denoted as 

 
𝑤 = ∑ 𝛼𝑖𝑦𝑖𝑥𝑖

𝑁

𝑖=1
. (14) 

The bias term 𝑏 can be computed using any support vector: 

 

 𝑏 = 𝑦𝑗 − 𝑤 ∙ 𝑥𝑗 . (15) 

  

The HNIHA algorithm integrates the FPA, MCC loss function, and SMOTE to address imbalanced 

datasets. The FPA guides the optimization of the MCC loss. The synthetic instance generation, which 
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incorporates SMOTE, helps to create a balanced training dataset. This holistic approach aims to enhance the 

classifier's ability to generalize and make accurate predictions on imbalanced data. 

 

3.2.  Model Testing 

Model performance was evaluated using several metrics, including MCC, F1-Score, Precision, and 

Recall. Mean square error (MSE) and root mean square error (RMSE) were also used as a reliable measure of 

algorithm performance. The formula for MSE denoted as 

 
𝑀𝑆𝐸 =

1

𝑛
∑ (𝑌𝑖 − 𝑌̂𝑖

𝑁

𝑖=1
)2, (16) 

Root mean square error (RMSE) is a widely used metric for evaluating the accuracy of predictive models 

[60]. It is especially prevalent in the fields of statistics and machine learning for assessing the performance of 

regression models. RMSE measures the average magnitude of errors between predicted and observed values 

[61]. The formula for RMSE denoted as 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑌𝑖 − 𝑌̂𝑖

𝑁

𝑖=1
)2, (17) 

where 𝑛 is the number of data points, 𝑌𝑖 represents the observed values, and 𝑌̂𝑖 represents the predicted 

values. 

Subsequently, the obtained results will be compared to those derived from alternative methodologies, 

specifically the RF and LightGBM algorithms, to ensure objectivity in the testing process. To validate the 

model, it will be applied to data points in the training data. For model testing purposes, the algorithm is executed 

on data points that were excluded from the training process, also known as test data. 

 

4. RESULT AND DISCUSSION 

Before delving deeper, we calculate the correlation coefficient for each variable concerning the target 

class. The outcomes are displayed in Table 2, revealing that MCV exhibits the highest correlation coefficient. 

This underscores the closest relationship between MCV and the occurrence of anemia. 

 

Table 2. Correlation coefficient 
Variable Correlation coefficient 

RBC -0.585073 

Hb -0.358959 

HCT -0.353653 

MCV 0.318985 

MCH 0.177136 

MCHC -0.165253 

RDW 0.232664 

 

The dataset of 128 instances was partitioned into two sets: a training dataset and a testing dataset. The 

main objective of this research is to present an innovative model as an alternative solution to the challenges 

faced by SVM when dealing with datasets of moderate size. SVM is inherently resistant to overfitting, which 

is a common issue in scenarios with limited and imbalanced datasets. This research aims to evaluate the model's 

applicability across diverse datasets with HNIHA-SVM. The training and testing data are divided into 80% 

and 20%, respectively. Our dataset includes seven variables. To demonstrate the reliability of the method, we 

calculated the MSE for both HNIHA-RF and HNIHA-LightGBM.  

After applying the model to the anemia dataset, the results, depicted in Figure 1, show a striking similarity 

between the anemia levels in the actual data and the HNIHA-SVM output. This resulted in a very low MSE of 

0.0385, proving the efficacy of the proposed model in accurately reflecting anemia rates. 
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Figure 1. HNIHA-SVM Classification: True Class vs Predicted Class 

 

However, the comparison becomes interesting when considering HNIHA-RF. Figure 2 shows a slight 

difference between the anemia levels in the real data and the HNIHA-RF output, resulting in a slightly higher 

MSE of 0.0769. These small differences encourage a closer examination of HNIHA-RF performance, revealing 

insights into its behavior in contrast to HNIHA-SVM models. 

 

 
Figure 2. HNIHA-RF Classification: True Class vs Predicted Class 

 

Additionally, Figure 3 illustrates a clearer difference between the anemia levels in the actual data and 

HNIHA-LightGBM output. The MSE in this case is 0.1154, indicating a significant deviation between 

predictions and real-world observations. These differences highlight the importance of methodological choice 

and algorithm selection in achieving accurate and reliable predictions, particularly in the context of anemia 

prediction in our dataset. 
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Figure 3. HNIHA-LightGBM Classification: True Class vs Predicted Class 

 

Figure 4 presents the performance metrics of three machine learning models: SVM, RF, and LightGBM. 

The metrics provide insights into the models' classification accuracy. The SVM model shows exceptional 

performance with a Matthews Correlation Coefficient (MCC) of 87.39, indicating a strong correlation between 

its predictions and actual outcomes. The model achieves a high F1-Score of 97.67, indicating a balanced trade-

off between precision and recall. The SVM model has a Precision of 95.45 and a Recall of 100, correctly 

identifying positive instances while minimizing false positives. The Random Forest (RF) model also 

demonstrates commendable performance, although slightly trailing behind SVM. The MCC of 75.24 suggests 

a strong correlation between predictions and actual outcomes. The model achieves a balanced F1-Score, 

Precision, and Recall of 95.24, indicating robust classification across different classes. In comparison, 

LightGBM exhibits a lower MCC of 65.92, indicating a weaker correlation between its predictions and actual 

outcomes. Despite this, the model achieves a reasonable F1-Score of 92.68, with a Precision of 95.00 and a 

Recall of 90.48. In summary, the models can be ranked based on MCC, with SVM leading, followed by RF, 

and then LightGBM. However, selecting the most appropriate model depends on the specific requirements and 

trade-offs inherent in the application. 

 

 
Figure 4. Evaluation Model Comparison 
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The receiver operating characteristic (ROC) is a widely used graphical representation and evaluation 

metric in binary classification tasks [62]. It shows the trade-off between the True positive rate (sensitivity) and 

the false positive rate (1 - specificity) across varying classification thresholds. Figure 5, an ROC score from 

HNIHA-SVM is 0.90 indicating a highly effective model, reflecting a strong ability to discriminate between 

the positive and negative classes. A score of 0.90 indicates that the model has a high true positive rate and a 

relatively low false positive rate. This highlights its ability to correctly identify positive instances while 

minimizing the risk of misclassifying negative instances. A ROC score of 0.90 is indicative of a well-calibrated 

and accurate classifier, making it a valuable metric for assessing the overall performance of binary 

classification models. 

 

 

Figure 5. ROC HNIHA-SVM 

SVM have remarkable advantages that make them stand out in the machine learning field [63]. One key 

strength is their proficiency in navigating high-dimensional spaces, making them particularly adept at tasks 

where the number of features exceeds the number of examples [64]. SVM strikes a balance between overfitting 

and robust performance with diverse datasets. They are also adaptable to smaller datasets without 

compromising accuracy. Additionally, SVM are versatile in decision-making. SVM can handle both linear and 

non-linear patterns in data through the use of different kernel functions, providing a flexible approach to 

capturing complex relationships. They offer a powerful toolset for crafting accurate and adaptable models 

across a range of machine learning applications, whether dealing with straightforward linear separations or 

more intricate, non-linear distinctions [65]-[68]. 

The HNIHA algorithm, which combines the Hybrid Nature-Inspired Imbalance Handling Algorithm with 

MCC Loss, along with SMOTE and SVM, forms a robust ensemble approach for handling imbalanced datasets. 

SMOTE plays a pivotal role in this ensemble by generating synthetic instances within the minority class to 

address the class imbalance. This augmentation leads to a more balanced and representative training dataset, 

which provides a solid foundation for improved generalization. Additionally, the HNIHA component optimizes 

the SVM classifier using the Flower Pollination Algorithm guided by the MCC loss and SMOTE. This dynamic 

optimization process ensures that the SVM adapts effectively to varying data distributions within the 

imbalanced dataset, contributing to enhanced generalization. 

The adaptability of the ensemble to data dynamics is highlighted by the dynamic nature of both SMOTE 

and HNIHA. SMOTE adjusts its synthetic instance generation based on the local structure of the minority class, 

while HNIHA-MCC dynamically optimizes the FPA solution to evolving imbalanced scenarios. SVM's 

flexibility in selecting different kernel functions enables it to adapt to various data structures, adding another 

layer of adaptability to the ensemble. The ensemble approach enhances discriminatory power through the 

diversity introduced by SMOTE, preventing biases and aiding SVM in distinguishing between minority and 

majority classes. HNIHA optimization of MCC loss ensures a balanced trade-off between sensitivity and 

specificity, contributing to SVM's discriminatory capabilities. Fine-tuning SVM hyperparameters, such as the 

choice of kernel and regularization parameters, further refines its ability to discriminate between classes. 
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The synergy among these components creates a powerful ensemble that integrates nature-inspired 

optimization, data-level synthesis, and robust classification techniques. The combination of SMOTE, HNIHA-

MCC, and SVM provides a comprehensive solution for imbalanced datasets, utilizing the unique strengths of 

each component. The ensemble is evaluated using a comprehensive set of metrics, including MCC loss, 

accuracy, precision, recall, and F1 Score, providing a thorough assessment of its effectiveness. This approach 

integrates a sophisticated strategy for handling imbalanced classification tasks, promising robust performance 

across diverse datasets and imbalanced scenarios. 

The presented ensemble approach offers a balanced and synergistic solution compared to traditional 

methods that rely solely on resampling techniques or algorithmic adjustments. To overcome class imbalance, 

SMOTE generates synthetic instances, while the FPA optimizes the model dynamically, guided by MCC loss 

and adapting to the intricacies of imbalanced data. The proposed ensemble incorporates SVM to enhance 

robustness and discriminative power. SVMs are known for their ability to handle complex decision boundaries 

and diverse datasets. Unlike other popular ensemble techniques such as Random Forest or AdaBoost, which 

focus on combining weak learners, this ensemble uniquely integrates nature-inspired optimization and data-

level synthesis with the strengths of SVMs. Although Random Forest and AdaBoost can be effective in some 

situations, their performance may vary when dealing with highly imbalanced datasets, and they may not 

explicitly optimize for metrics such as MCC, which balance sensitivity and specificity. 

The ensemble approach shows promise in real-world scenarios where imbalanced datasets are prevalent 

[69]-[71]. For example, in healthcare, where minority class instances, such as rare diseases, are often 

underrepresented, the ensemble can aid in building robust predictive models [72][73]. Similarly, in financial 

fraud detection, where fraudulent activity is rare, the ensemble's ability to handle class unbalance ensures 

accurate identification of anomalies [74][75]. The adaptability of the ensemble to the changing dynamics of 

the data makes it suitable for domains with characteristics that evolve. This could include scenarios such as 

network intrusion detection or cybersecurity, where attack patterns may change, and the model needs to 

continuously adapt to emerging threats [76][77]. 

Although the ensemble approach provides a comprehensive solution, it is essential to consider 

computational resources and scalability, particularly in large-scale applications. Fine-tuning hyperparameters 

for both the FPA and SVM is a crucial step for achieving optimal performance. Furthermore, it is important to 

consider the interpretability of the ensemble, as the combination of different components may make it difficult 

to interpret feature importance or decision-making processes. In conclusion, the proposed ensemble approach, 

which integrates HNIHA, MCC, SMOTE, and SVM, presents a robust solution for handling imbalanced 

datasets. This unique combination of nature-inspired optimization, data-level synthesis, and robust 

classification offers a promising avenue for improving model performance in imbalanced scenarios. However, 

it is important to carefully consider specific application requirements and computational considerations during 

implementation. 

 

5. CONCLUSIONS 

The integrated Hybrid Nature-Inspired Imbalance Handling Algorithm (HNIHA) with MCC Loss, 

Synthetic Minority Over-sampling Technique (SMOTE), and Support Vector Machines (SVM) ensemble 

proved to be a highly successful approach for addressing the challenges posed by imbalanced datasets. The 

performance of the ensemble was evaluated using a comprehensive set of metrics, demonstrating its 

effectiveness in handling both sensitivity and specificity in classification tasks. The Matthews Correlation 

Coefficient (MCC), a key guiding metric for the optimization process, yielded an impressive value of 0.8739. 

This indicates a well-balanced performance, considering both true positives and true negatives, highlighting 

the ensemble's ability to navigate the complexities of imbalanced data. The ensemble's success in achieving 

high predictive accuracy, precision, and sensitivity is further affirmed by the F1 Score, Precision, and Recall 

metrics. The F1 Score reached 0.9767, Precision was at 0.9545, and Recall was a perfect 1.0. 

The Area Under the Curve (AUC) and Area Under the Precision-Recall curve (AUC-PR) scores, with 

values of 0.9 and 0.9773 respectively, reinforce the ensemble's capability to discriminate between classes and 

make well-calibrated predictions. The Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) 

scores indicate minimal prediction errors, underscoring the ensemble's accuracy in capturing the underlying 

patterns within the imbalanced dataset. In conclusion, the proposed ensemble approach emerges as a powerful 

solution, seamlessly integrating nature-inspired optimization, data-level synthesis, and robust classification. 

The results demonstrate the efficacy of the solution in handling imbalanced datasets, with potential applications 

across various domains where accurate predictions on minority class instances are crucial. This ensemble is an 

adaptable and holistic solution that holds promise for advancing the state-of-the-art in imbalanced classification 

tasks. 
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